--PAGE_BREAK--5. Элективные курсы, посвященные изучению методов познания природы.
6. Элективные курсы, посвященные истории предмета, как входящего в учебный план школы (история физики, биологии, химии, географических открытий), так и не входящего в него (история астрономии, техники, религии и др.).
7. Элективные курсы, посвященные изучению методов решения задач (математических, физических, химических, биологических и т.д.), составлению и решению задач на основе физического, химического, биологического эксперимента.
II. Межпредметные элективные курсы, цель которых — интеграция знаний учащихся о природе и обществе.
III. Элективные курсы по предметам, не входящим в базисный учебный план.
Набор элективных курсов на основе базисного учебного плана определяется самой школой (школьный компонент).
Так как элективные курсы выбираются самими учащимися, они должны соответствовать их потребностям, целям обучения и мотивам выбора курса. Следует отметить, что к основным мотивам выбора элективных курсов в 10-11 классе, которые необходимо учитывать при разработке и реализации элективных курсов относятся:
· подготовка к ЕГЭ по профильным предметам;
· приобретение знаний и навыков, освоение способов деятельности для решения практических, жизненных задач, уход от традиционного школьного «академизма»;
· возможности успешной карьеры, продвижения на рынке труда;
· любопытство;
· поддержка изучения базовых курсов;
· профессиональная ориентация;
· интеграция имеющихся представлений в целостную картину мира.
То, что набор элективных курсов определяют сами школьники, ставит учащихся в ситуацию самостоятельного выбора индивидуальной образовательной траектории, профессионального самоопределения. В связи с этим основными принципами обучения должны являться:
· индивидуальность,
· доступность,
· преемственность,
· результативность.
1.4. Требования к содержанию программ элективных курсов Основой для работы учителя, ведущего элективный курс, могут стать программы факультативных курсов, разнообразные учебные пособия.
Базовыми требованиями к содержанию программ элективных курсов являются следующие:
1) ориентация на современные образовательные технологии;
2) соответствие учебной нагрузки учащихся нормативам;
3) соответствие принятым правилам оформления программ;
4) наличие пособия, содержащего необходимую информацию;
5) краткосрочность проведения курса;
6) развитие содержания одного из базовых курсов, изучение которого осуществляется на минимальном общеобразовательном уровне, что позволяет поддерживать изучение смежных предметов на предпрофильном уровне;
7) удовлетворение познавательных интересов школьника в различных областях деятельности человека;
8) ознакомление учащихся с комплексными проблемами, выходящими за рамки традиционных учебных предметов.
Методической задачей учителя является отбор заданий в соответствии с функциями элективного курса и структурирование их особым образом. Содержанием элективного курса, направленного на углубление математики, может быть учебный материал, который проверяется на ЕГЭ в части С на высоком уровне сложности. Он выступает в качестве дополнительной подготовки учащихся к ЕГЭ по математике и обеспечивает взаимосвязь с обязательным минимумом содержания обучения на профильном уровне.
Содержанием элективных курсов, развивающих базовый курс математики для изучения смежных предметов на профильном уровне, могут стать новые темы обязательного минимума содержания обучения математике по профильному курсу.
Для отбора содержания элективных курсов с целью дополнительной полготовки к ЕГЭ можно руководствоваться общим перечнем контролируемых вопросов содержания курса математики в контрольно-измерительных материалах ЕГЭ. Для этой цели могут служить учебно-методические пособия для подготовки к ЕГЭ по математике.
1.5. Место курса в образовательном процессе
При разработке содержания и методической системы элективного курса важно показать, каково место курса в соотношении как с общеобразовательными, так и с базовыми профильными предметами:
· какие межпредметные связи реализуются при изучении элективного курса;
· какие общеучебные и профильные умения и навыки при этом развиваются;
· каким образом создаются условия для активизации познавательного интереса учащихся, профессионального самоопределения;
· как введение курса в учебный план конкретной школы поможет в выявлении и решении проблем школьного общества (например, развитие школьного самоуправления; организация досуга учащихся; усиление взаимодействия семьи и школы; школы, местной администрации, общественности; учет регионального компонента; улучшение имиджа и повышения конкурентоспособности школы).
Элективные курсы характеризуется тем, что из предложенного их набора ученик может выбрать те, которые ему интересны или нужны. Как только курс выбран, он становится таким же, как нормативный: с обязанностью посещать и отчитываться. Элективный курс в профильной школе краткосрочен, но его объем по часам (максимум 72 часа) выше, чем рекомендуемый объем курсов по выбору для девятиклассников (максимум 35 часов).
Элективные курсы в старшей школе должны быть систематичными (раз или два раза в неделю). В 10-11 классах целью элективного курса является расширение, углубление знаний, выработка специфических умений и навыков, знакомство с новыми областями науки в рамках выбранного профиля.
1.6. Методы и формы обучения
Методы и формы обучения должны определяться требованиями профилизации обучения, учета индивидуальных и возрастных особенностей учащихся, развития и саморазвития личности. В связи с этим выделяют основные приоритеты методики изучения элективных курсов [15]:
· междисциплинарная интеграция, содействующая становлению целостного мировоззрения;
· обучение через опыт и сотрудничество;
· учет индивидуальных особенностей и потребностей учащихся;
· интерактивность (работа в малых группах, ролевые игры, имитационное моделирование, тренинги, метод проектов);
· личностно-деятельностный и субъект-субъективный подход
· (большее внимание к личности учащегося, а не целям учителя, равноправное их взаимодействие);
· фасилитация.
Ведущее место в обучении следует отвести методам поискового и исследовательского характера, стимулирующим познавательную активность учащихся. Значительной должна быть доля самостоятельной работы с различными источниками учебной информации. При этом главная функция учителя – фасилитация – лидерство, основанное на совместной деятельности, направленное на достижение общей образовательной цели. Такой подход позволяет создать лишенный духа соперничества, конкуренции, агрессивности, доверительный психологический климат, в основе которого- взаимообучение, взаимопомощь, сотрудничество. Из единственного источника знаний в традиционном обучении учитель – фасилитатор превращается в «проводника» в мир знаний: эксперта и консультанта- при изучении теоретического материала и выполнения самостоятельных заданий, ведущего – в имитационной игре и тренинге, координатора и консультанта- при выполнении учебного проекта.
При определении форм организации учебных занятий следует исходить прежде всего из специфических целей курса. Преобладающие формы организации учебной деятельности на элективных курсах: лекции, семинары, лабораторно-практические занятия, коллоквиумы, зачеты.
Поскольку не исключается изучение элективного курса даже одним учащимся, необходимо предусмотреть варианты изучения как в коллективных, так и в индивидуально-групповых формах. В то же время, если содержание курса может быть освоено только в групповых или коллективных формах, то следует оговорить минимальную численность учебной группы.
Важно предусмотреть использование таких методов и форм обучения, которые давали бы представление учащимся об условиях и процессах будущей профессиональной деятельности в соответствии с выбранным профилем обучения, т. е. в какой-то степени моделировали бы их.
1.7. Формы контроля уровня достижений учащихся.
Не менее важно продумать систему форм контроля уровня достижений учащихся и критерии оценки.Необходимо разработать как формы промежуточного контроля, так и формы итоговой зачетной работы по курсу. Оценка может выставляться как в форме «зачтено/не зачтено», так и по балльной шкале. С целью повышения привлекательности курса для учащихся и повышения шансов его продвижения на рынке образовательных услуг желательно, чтобы формы и содержание контроля уровня достижений учащихся в рамках элективного курса согласовывались с требованиями контрольно-измерительных материалов ЕГЭ по базовым предметам.
Для контроля уровня достижения учащихся могут быть использованы такие способы, как наблюдение активности на занятии, беседа с учащимися, родителями, экспертные оценки педагогов по другим предметам, анализ творческих, исследовательских работ, результатов выполнения диагностических заданий учебного пособия или рабочей тетради, анкетирование, тестирование. Важно использовать оценку промежуточных достижений, прежде всего как инструмент положительной мотивации, а также своевременной коррекции деятельности как учащихся, так и учителя.
Для проведения итоговой аттестации по результатам изучения курса можно использовать:
ü специальную зачетную работу (экзамен, тест);
ü портфолио ученика (совокупность самостоятельно выполненных работ и документально подтвержденных достижений;
ü накопительную систему оценивания (когда результаты выполнения всех предложенных заданий оцениваются в баллах, которые суммируются по окончании курса).
Важным элементом методической системы элективного курса является определение ожидаемых результатов изучения курса [16]. Ожидаемый результат изучения курса подразумевает ответы на следующие вопросы: какие знания, умения, опыт, необходимые для построения индивидуальной образовательной траектории в школе и успешной профессиональной карьеры по ее окончании, будут получены, какие виды деятельности будут освоены, какие ценности будут предложены для усвоения [15].
1.8. Правила оформления программ
Структурными элементами программы элективного курса являются[22]:
1) титульный лист;
2) пояснительная записка;
3) требования к подготовке учащихся
4) учебно-тематический план;
5) содержание изучаемого курса;
6) методические рекомендации;
7) список литературы.
Пояснительная записка включает:
· аннотацию, обоснование необходимости введения данного курса в школе. Аннотация должна включать в себя название, основное содержание, для кого предназначен курс. Важно, чтобы аннотация была краткой и в то же время давала потребителю достаточно полное представление о курсе: в чем привлекательность курса для учащихся, для учителей, родителей, школьного сообщества в целом;
· указание на место и роль курса в профильном обучении(важно показать, каково место курса в соотношении как с общеобразовательными, так и с базовыми профильными предметами; какие межпредметные связи реализуются при изучении элективных курсов, какие общеучебные и профильные умения и навыки при этом развиваются, каким образом создаются условия для активизации познавательного интереса учащихся, профессионального самоопределения);
· цель и задачи элективного курса(цель курса – для чего он изучается, какие потребности субъектов образовательного процесса удовлетворяет: учащихся, учителей, школьного сообщества, общества; задача курса – что необходимо для достижения целей);
· сроки реализации программы (продолжительность обучения, этапы);
· основные принципы отбора и структурирование материала.
Учебно-тематический план содержит:
· перечень тем и разделов;
· время на изучение;
· деление на виды учебной деятельности;
· формы контроля.
Оформляется в виде таблицы:
№ п/п
Содержание учебного материала
Всего часов
В том числе
Лекц.
Практ.
Семин.
Содержание изучаемого курса включает перечень тем, вопросов теоретической и практической части и их описание. Список литературы состоит из списка книг, использованных при разработке элективного курса и списка литературы, рекомендованной учащимся.
1.9 Элективные курсы в образовательной области «Математика»
В старших классах школы изучаются два предмета, составляющих образовательную область “Математика”, – алгебра и основы математического анализа и геометрия.
Сейчас наметилась тенденция наличия в учебном плане школы одного предмета – математики. Можно предположить, что в создаваемой профильной школе, скорее всего, в классах естественнонаучного математического профиля, сохранится раздельное обучение алгебре и геометрии. А вот в классах других профилей в учебном плане, вероятнее всего, будет присутствовать интегрированный курс математики.
Специфика преподавания математики в старших классах во многом определяется еще и тем, что экзамен по математике (в данное время по алгебре и началам анализа) является обязательным для всех школьников.В настоящее время этот экзамен проводится в виде ЕГЭ. Единый государственный экзамен по математике – процедура серьезная, требующая специальной подготовки.
Математику, в отличие от других предметов, сдают в вузах разного профиля (математических, естественнонаучных, технических, экономических, военных, связанных с математической лингвистикой и т. д.). С введением ЕГЭ на учителя математики явно или неявно возлагается еще большая ответственность за сдачу его выпускниками вступительных экзаменов в вуз.
Из всего вышеизложенного можно сделать вывод, что в профильной школе математика займет весьма важное место, учитель математики независимо от профиля будет, так или иначе, стремиться к увеличению числа учебных часов по своему предмету, поэтому, скорее всего, абсолютное большинство учителей математики будут заинтересованы во введении элективных курсов.
Вывод по параграфу: изложенные выше цели, задачи, типы, требования к элективным курсам необходимо учитывать при разработке любого элективного курса.
§2. Использование свойств функций при решении уравнений и неравенств
2.1. Общие методы решения уравнений
В методической литературе [25], [26] принято все методы, на которых основана школьная линия уравнений и неравенств с 7 по 11 классы, делить на три группы:
ü метод разложения на множители;
ü метод введения новых переменных;
ü функционально-графический метод.
В данной работе мы рассмотрим третий метод, а именно, использование графиков функций и различных свойств функций.
продолжение
--PAGE_BREAK--
продолжение
--PAGE_BREAK--Выводы по главе: введение элективных курсов предоставит учащимся возможность, комбинируя их с базовыми и профильными предметами, выстроить индивидуальный маршрут получения полного среднего образования. Это позволит школьникам к окончанию учебного заведения выйти с разным уровнем подготовки как минимальным, так и максимально возможным.
В соответствии с изложенными целями, задачами, типами и требованиями к элективным курсам будет разработан элективный курс «Решение уравнений и неравенств с использованием свойств функций»
Глава II. Разработка элективного курса
«Решение уравнений и неравенств с использованием свойств функций»
§1. Методические основы разработки элективного курса
Пояснительная записка. Основная задача обучения математике в школе – обеспечить прочное и сознательное овладение учащимися системой математических знаний и умений, необходимых в повседневной жизни и трудовой деятельности каждому члену современного общества, достаточных для изучения смежных дисциплин и продолжения образования. Данный элективный курс связан с основным курсом математики. Развивает систему ранее приобретенных программных знаний, углубляет и расширяет курс математики основной школы. Материал, связанный с уравнениями и неравенствами, составляет значительную часть школьного курса математики. Это объясняется тем, что уравнения и неравенства широко используются в различных разделах математики, в решении важных прикладных задач. Есть много уравнений и неравенств, которые считаются для школьников задачами повышенной трудности. Для решения таких задач лучше применять не традиционные методы, а приёмы, которые не совсем привычны для учащихся. В данном элективном курсе рассматривается метод решения уравнений и неравенств, основанный на применении свойств функций (монотонность, ограниченность, четность и др.). Целесообразность этого метода состоит в том, что он дает более рациональное решение уравнений или неравенств. Учебный материал, касающийся нестандартных методов решения уравнений и неравенств, содержится в учебных пособиях для подготовки к ЕГЭ по математике, к конкурсным экзаменам в вузы. Во временных рамках уроков полностью этот материал рассмотреть невозможно, поэтому есть смысл вынести его на курсы по выбору.
Цели курса:
· познакомить учащихся с некоторыми приёмами решения уравнений и неравенств с использованием свойств входящих в них функций, показать применение производной при решении уравнений или неравенств;
· обеспечить прочное и сознательное овладение учащимися системой математических знаний и умений;
· углубление и расширение знаний учащихся;
· привить ученику навыки употребления нестандартных методов рассуждения при решении задач;
· формирование у учащихся устойчивого интереса к предмету;
· выявление и развитие их математических способностей, ориентация на профессии, существенным образом связанных с математикой;
· подготовка учащихся к итоговой аттестации и к обучению в вузе.
Требования к подготовке учащихся. В результате изучения данного элективного курса ученик должен
знать:
· основные свойства функций, которые применяются при решении уравнений и неравенств;
· о применении производной при решении уравнений и неравенств;
· уметь:
· объяснять, на основе какого свойства функции решаются уравнение или неравенство;
· применять производную для доказательства свойства функции, входящей в уравнение или неравенство;
· использовать приобретённые знания и умения в практической деятельности при подготовке к ЕГЭ.
Тематика и содержание данного элективного курса отвечает следующим требованиям:
· поддержание изучения базового курса алгебры;
· социальная и личностная значимость: повышается уровень образованности учащихся, расширяется их кругозор, удовлетворяются познавательные интересы в области математики;
· обладание значительным развивающим потенциалом (развитие математического мышления, умения систематизировать, обобщать, делать выводы).
Основная форма изложения теоретического материала – лекция. На всех практических занятиях должна присутствовать самостоятельная работа учащихся: как индивидуально, так и в группах. Такая организация учебной деятельности способствует реализации поставленных целей курса, так как развитие способностей учащихся возможно лишь при сознательном, активном участии в работе самих школьников.
Содержание курса может быть освоено как в коллективных, так и в индивидуально-групповых формах. Численность учебной группы может быть любой.
Ожидаемый результат изучения курса:
· знание учащимися методов решения уравнений и неравенств с использованием свойств, входящих в них функций;
· умение самостоятельно добывать информацию и осознанно ее использовать при выполнении заданий;
· приобретение опыта в нахождении правильного и рационального пути решения уравнений и неравенств;
· практика работы в группе: умение распределять обязанности, учитывать мнение каждого члена группы, адекватно оценивать работу товарищей (при условии коллективной формы организации обучения).
Система форм контроля уровня достижений учащихся и критерии оценки. Уровень достижений учащихся определяется в результате:
· наблюдения активности на практикумах;
· беседы с учащимися;
· анализа творческих, исследовательских работ;
· проверки домашнего задания;
· выполнения письменных работ;
· самостоятельно созданных слайдов, мини-задачников, выполненных проектов, которые могут быть индивидуальными и коллективными.
Итоговая аттестация проводится в виде зачетной работы в форме теста, состоящего из трех блоков: А — задания с выбором вариантов ответа; В — задания с краткой записью ответа; С — задания, предполагающие развернутый ответ.
Итоговая оценка является накопительной, т.е. результаты выполнения предложенных заданий оцениваются в баллах, которые суммируются по окончании курса.
Предлагаемый курс, как и любой другой, улучшает имидж и повышает конкурентоспособность школы, так как реализация элективного курса дает более глубокие знания по математике, увеличивает уровень интеллектуального развития.
Содержание программы. Программа рассчитана на второе полугодие 11 класса (2 часа в неделю, всего 11 часов). Это обусловлено тем, что во втором полугодии уже изучены основные функции и их свойства.
1. Функции и их основные свойства.(1час)
Понятие функции. Область определения и область значения функции. Монотонность функции. Ограниченность функции. Четность, нечетность, периодичность функций.
2. Использование области определения функций.(1час)
Решение уравнений и неравенств с использованием области определения входящих в них функций
3. Использование монотонности функций.(2 часа)
Теоремы о корне. Нахождение промежутков монотонности с помощью производной. Решение уравнений и неравенств. Уравнения вида .
4. Использование понятия области изменения функции при решении уравнений.(3 часа)
Способы определения области изменения функции: с помощью построения схемы графика, введение нового неизвестного, сведение к простой функции с помощью преобразований. Решение уравнений и неравенств. Использование неотрицательности функций, входящих в уравнение или неравенство.
5. Использование свойств четности или нечетности и периодичности функций.(1 час).
Учебно-тематическое планирование элективного курса
Литература для учителя: [2], [3], [5], [6], [7], [8], [9], [10], [11], [14], [15], [16], [21], [23], [24], [27], [29], [30], [31], [35], [36], [37], [38], [39], [40], [41], [42];
для учащихся: [2], [3], [5], [6], [13], [24], [29], [30], [31], [35], [38], [40].
§2. Разработка занятий элективного курса
Занятие №1 Тема: «Функции и их основные свойства».
Цели: обобщение и систематизация имеющихся у учащихся знаний по теме «Функции. Основные свойства функций».
Форма работы: беседа.
Ход занятия:
1. Организационный момент. Введение в элективный курс «Применение свойств функций при решении уравнений и неравенств», сообщение целей и задач курса, требований к учащимся, форм работы, системы контроля уровня достижений учащихся и критериев оценки, ожидаемого результата по окончании изучения курса. Вопросы учащихся по организации данного курса и ответы на них учителя.
2. Обзорная лекция по теме «Функция. Основные свойства функций». Повторение имеющихся знаний программы общеобразовательной школы по теме «Функция. Основные свойства функций»: понятие функции, область определения и область изменения функции, ограниченность, определения возрастающей, убывающей функции, четность, нечетность и периодичность функций.
1) Историческая справка. Понятие функции уходит своими корнями в ту далекую эпоху, когда люди впервые поняли, что окружающие их явления взаимосвязаны. Они еще не умели считать, но уже знали, что, чем больше оленей удастся убить на охоте, тем дольше племя будет избавлено от голода, чем сильнее натянута тетива лука, тем дальше полетит стрела, чем дольше горит костер, тем теплее будет в пещере. С развитием скотоводства и земледелия, ремесла и обмена увеличилось количество известных людям зависимостей между величинами. Многие из них выражались с помощью чисел. Если за одного быка давали 6 овец, то двух быков обменивали на 12 овец, а трех быков — на 18 овец; если из одного ведра глины изготовляли 4 горшка, то из двух ведер глины можно было сделать 8 горшков, а из трех ведер — 12 горшков. Такие расчеты привели к возникновению понятия о пропорциональности величин. Впервые термин «функция» (от латинского «функтус» — выполнять) в конце XVII века употребил Лейбниц (1646—1716) [12].
2) Что называется функцией?
Пусть каждому числу x из множества чисел X в силу некоторого закона f поставлено в соответствие единственное число y. Тогда говорят, что задана функция , определенная на множестве X; при этом x называют независимой переменной или аргументом, а переменную y – зависимой переменной.
3) Какие свойства функций вам известны?
o Область определения функции. Из определения функции следует, что функция задается вместе с областью определения X. Чаще всего функцию задают с помощью какой-либо формулы. При этом, если не дано дополнительных ограничений, то областью определения функции, заданной формулой, считают множество всех значений переменной, при которых эта формула имеет смысл.
o Область значений (область изменения) – множество всех значений функции .
o Ограниченность функции. Функцию называют ограниченной снизу (сверху), если существует такое число M, что для любого x из области определения верно неравенство , (). Функция называется ограниченной, если она ограничена и сверху и снизу.
o Возрастание, убывание функции. Функция возрастает (убывает), если большему значению аргумента соответствует большее (меньшее) значение функции. Общее название этих двух понятий – монотонность.
o Четность, нечетность функции. Функцию называют четной (нечетной), если для любого значения x из множества X выполняется равенство ().
o Периодичность функции. Функцию называют периодической, если существует число , такое что для любого x из области определения X число , число и справедливо равенство и . Число T называют периодом функции f(x).
4) Привести пример для каждого свойства.
3. Подведение итогов занятия. На занятии мы вспомнили основные сведения о свойствах функции. В течение элективного курса мы увидим, как работают свойства при решении уравнений и неравенств.
4. Постановка домашнего задания. Повторить теоретический материал.
Занятие №2 Тема: «Использование области определения функций».
Цель: познакомить учащихся с методом решения уравнений и неравенств, основанном на применении области определения, входящих в них функций.
Ход занятия:
1. Актуализация знаний
1) Что называется областью определения функции?
2) Найдите область определения функций:
А); Б).
3) Что называется областью определения уравнения (неравенства)? (Множество всех значений переменной, при которых уравнение (неравенства) имеет смысл, или ОДЗ).
Найдите ОДЗ уравнения .
4) Учитель делает вывод, что для того, чтобы найти ОДЗ переменной данного уравнения, необходимо найти область определения функций, в него входящих, и посмотреть при каких x одновременно имеют смысл выражения, стоящие в левой и правой частях.
2. Изучение нового материала.
1) Рассмотрим пример: . Найдем корни этого уравнения. Заметим, что если уравнение имеет решения, то они содержатся только в области определения уравнения. А ОДЗ мы уже нашли {-2;2}. Осталось подставить эти значения в уравнение. Ответ: 2.
2) Рассмотрим на примере, как знание области определения помогает найти решение неравенства:
ОДЗ неравенства есть все x, удовлетворяющие условию . Для всех x из этого промежутка имеем , а . Следовательно, решением этого неравенства является промежуток .
3. Решение задач. Учащиеся самостоятельно решают в тетради. Ответы проверяются и фиксируются на доске учителем. Задания, вызвавшие затруднения, разбираются учителем или одним из учеников на доске.
Решите уравнение или неравенство (список задач написан на доске):
1) ;
2) ;
3) ;
4) ;
5) ;
6) ;
7) ;
8) .
4. Подведение итогов занятия.
Учитель выставляет баллы за работу на занятии. Если решены первые четыре задания – 1 балл, за задания 5-8 по одному баллу. Всего за урок можно получить 5 баллов.
5. Постановка домашнего задания.
1) Решите уравнение .
Решите уравнение .
Решите неравенство .
Подготовить доклады на тему «Способы доказательства возрастания (убывания) функций» (по определению, с помощью производной) и «Как монотонность помогает решать уравнения и неравенства» (сформулировать теоремы о корне, 1 доказать). Это задание выполняют два ученика по желанию.
Занятие №3 Тема: «Использование монотонности функций»
Цели:
а) познакомить учащихся с методом решения уравнений и неравенств, основанном на применении монотонности функций;
б) обобщить и систематизировать знания учащихся о монотонности функций, способах исследования функции на монотонность.
Ход занятия:
1. Проверка домашнего задания. Решение первого задания учитель разбирает устно, ученики проверяют в тетради. Решение 2-ого и 3-его один ученик выписывает на доску до начала занятия. Школьники сверяют со своим решением, учитель комментирует решение.
2. Изучение нового материала.
продолжение
--PAGE_BREAK--1) Доклад «Способы доказательства возрастания (убывания) функций».
2) Доклад «Как монотонность помогает решать уравнения и неравенства».
3) Учитель делает выводы по докладам.
3. Решение задач. Список задач написан на доске. 1-ое задание разбирается учителем. На остальные дается время для самостоятельного решения. После ученики по желанию показывают свое решение на доске.
Решите уравнение или неравенство:
1) ;
2) ;
3) ;
4) ;
5) ;
6) ;
7) .
4. Подведение итогов занятия.
Учитель выставляет баллы за работу на занятии. По одному баллу за доклад, по одному баллу за каждую задачу, решенную у доски.
5. Постановка домашнего задания.
1) ;
2) ;
3)
4) .
Занятие №4 Тема: «Уравнения вида .»
Цель: систематизировать и обобщить знания о методе решения уравнений вида .
Ход занятия:
1. Организационный момент. Постановка целей занятия, темы и плана его проведения.
2. Проверка домашнего задания. Решение каждой задачи с места объясняют ученики. Если нужно, учитель корректирует и комментирует ответы учеников.
3. Решение задач. Решение первой задачи учитель подробно разбирает на доске.
1) .
В обеих частях уравнения стоят функции, похожие внешне. Поэтому имеет смысл рассмотреть функцию .
‑ Назовите область определения этой функции (R).
‑ Исследуйте функцию на монотонность (убывает на R).
Если выполняются эти условия, то исходное уравнение равносильно уравнению . Найдем корни этого уравнения, они будут корнями исходного уравнения.
2) . В этом задании следует обратить внимание учеников на то, что функция определена не на всей числовой прямой, поэтому уравнение равносильно системе ;
3) ;
4) ;
5) .
4. Подведение итогов занятия.
Учащимся, решившим верно все задания, за урок ставится 3 балла.
5. Постановка домашнего задания.
1) Повторить теоретический материал, связанный с понятием области изменения функции.
2) Решить уравнения:
;
;
;
.
6. Проверочная работа.
Вариант №1
1) ;
2) ;
3) .
Вариант №2
1) ;
2) ;
.
Критерии оценивания:
«5» — верно выполнены все задания;
«4» — верно выполнены любые два задания;
«3» — верно выполнено любое одно задание.
Занятие №5 Тема: «Использование понятия области изменения функции при решении уравнений».
Цели:
а) изучить теоретический материал по теме «Использование понятия области изменения функции при решении уравнений»;
б) познакомить с основными способами определения множества значений функции.
Ход занятия:
1. Проверка домашнего задания. На доске записывается ответ к каждому заданию. Если у большинства учащихся есть затруднения в решении, то задание разбирается на доске. Если задание вызвало затруднение у небольшой группы учащихся, то к каждому из них «приставляется» ученик, выполнивший задание, с целью объяснить решение.
2. Лекция по теме «Использование понятия области изменения функции при решении уравнений».
Утверждение 1. Пусть дано уравнение , причем функции как правило разнородные. Если множества значений этих функций имеют общую точку (или небольшое конечное число общих точек) ; , то уравнение равносильно системе .
В системе можно решить только одно уравнение, а второе проверить подстановкой получившихся корней.
Утверждение 2. Если области изменения функций, входящих в уравнение (неравенство), не имеют общих точек, то уравнение (неравенство) решений не имеет.
Существует несколько способов определения множества значений функций. Рассмотрим их на примерах.
Пример 1. Найти область изменения функции .
Для решения задачи построим схему графика с помощью производной:
1) область определения функции y промежуток ;
2) с помощью производной найдем экстремумы. В точке функция принимает свое максимальное значение;
3) найдем значения функции в точке максимума и на концах отрезка области определения: ; ; .
4) таким образом, получаем .
Пример 2. Найти область изменения функции .
Преобразуем функцию к виду .
Область изменения этой функции находится непосредственно: .
Для нахождения множества значений некоторых тригонометрических функций удобно пользоваться следующим фактом.
Утверждение 3. Функция вида изменяется на отрезке
Пример 3. Найти область изменения функции .
Введем замену и рассмотрим функцию ,. Ее область изменения с помощью производной найти гораздо проще. .
Рассмотрим на примере, как при решении уравнений знание области изменения функций, в него входящих, упрощает поиски корней.
Пример 3. Решить уравнение
Рассмотрим функции, стоящие в левой и правой частях уравнения, . Найдем их множество значений . Воспользуемся утверждением 1: так как множества значений имеет общую точку 2, от уравнения можно перейти к системе . Решением системы, а, значит, и исходного уравнения является .
Утверждение 4. Пусть дано неравенство . Если множества значений этих функций имеют общую точку; , то неравенство равносильно системе .
Пример 4. Решить неравенство .
ОДЗ неравенства есть все действительные x, кроме -1. Разобьем ОДЗ на три промежутка и рассмотрим неравенство на каждом из этих промежутков. На первом и третьем промежутках неравенство выполняется для любого x: (); (); (). Следовательно, оба промежутка являются решением неравенства. На втором промежутке , то есть неравенство решений не имеет. Исходя из этого получаем решением неравенства .
3. Постановка домашнего задания.
1) Выучить теоретический материал.
2) Найти множество значений функций:
а); б) .
3) Решить уравнение .
Занятие №6 Тема: «Использование понятия области изменения функции при решении уравнений».
Цель: закрепить знания по теме «Использование понятия области изменения функции при решении уравнений».
Ход занятия:
1. Проверка домашнего задания. До начала занятия один из учеников записывает домашнее задание на доске учитель и другие ученики проверяют решение.
2. Решение задач. На доске написан список задач. Учащиеся по одному решают у доски. Учитель напоминает, что данные уравнения и неравенства решаются с использованием множества значений функций, в них входящих.
1) ;
2) ;
3) ;
4) ;
5) ;
6) ;
7) ;
8) ;
9) ;
10) .
3. Подведение итогов занятия.
Учитель выставляет баллы за занятие: 1 балл за решение домашнего задания, по одному баллу за решение задач у доски
4. Постановка домашнего задания
Решить уравнения и неравенство:
1) ;
2) ;
3) ;
4) .
Занятие №7 Тема: «Использование неотрицательности функций, входящих в уравнение или неравенство».
Цели: познакомить учащихся с приемом решения уравнений и неравенств, состоящих из неотрицательных функций.
Ход занятия:
1. Проверка домашнего задания. На доске записывается ответ к каждому заданию. Уравнение, вызвавшее трудности, разбирается учеником, выполнившим его.
2. Изучение нового материала.
Утверждение 1. Пусть имеется уравнение . Если множество значений каждой из функций принадлежит промежутку , то уравнение равносильно системе .
‑Назовите функции, которые принимают неотрицательные значения на всей области определения ().
Пример1. Решить уравнение .
Преобразуем уравнение . Наше уравнение будет равносильно системе , которая не имеет решений. Значит и исходное уравнение решений не имеет.
Аналогичное утверждение можно сформулировать и для неравенств.
Утверждение 2. Пусть имеется неравенство . Если множество значений каждой из функций принадлежит промежутку , то неравенство равносильно системе .
Пример 2. Решить неравенство .
Так как для любого x справедливы неравенства , то неравенство равносильно системе , решением которой является . Значит, неравенство имеет единственное решение .
Утверждение 3. Пусть имеется неравенство . Если множество значений каждой из функций принадлежит промежутку , то решениями неравенства являются всеx из ОДЗ, за исключением тех x, которые являются решениями системы .
Пример 3. Решить неравенство
ОДЗ неравенства . Для нахождения решения неравенства нужно исключит из его ОДЗ все решения системы . Решениями неравенства являются все x из множества .
3. Решение задач. На доске написаны два варианта заданий. Учащиеся в течение 13-15 минут решают каждый свой вариант, затем в паре обмениваются тетрадями и проверяют решение соседа по парте и ставят баллы (по одному за каждое верное решение уравнения или неравенства). Учитель выписывает ответы на доске.
Вариант 1.
1) ;
2) ;
3) .
Вариант 2.
1) ;
2) ;
3) .
4. Подведение итогов занятия. Учитель выставляет баллы полученные учениками. 1 балл ставится ученику, объяснявшему домашнее задание.
5. Постановка домашнего задания
Решите уравнения и неравенство:
1) ;
2) ;
3) ;
4) .
Занятие №8 Тема: «Использование свойств четности или нечетности и периодичности функций».
Цель: знакомство с новым приемом решения уравнений и неравенств – использование свойств четности, нечетности и периодичности функций.
Ход занятия:
1. Проверка домашнего задания. До начала занятия двое учащихся выписывают решение на доске. Остальные на занятии проверяют правильность решения.
2. Актуализация знаний.
‑Какие функции называются четными, какие нечетными?
‑Приведите примеры.
‑Исследовать функции на четность: ;.
‑Сформулируйте определение периодической функции.
‑Какие из перечисленных функций являются периодическими, укажите их период: , , .
Изучение нового материала.
Утверждение 1.Пусть дана функция с областью существования X. Пусть дано число α ≠0. Тогда функция имеет область существования X1, которая характеризуется свойством: для любого число , а для любого число . При этом, если функция имеет период T, то функция имеет период .
Утверждение 2.Если функция F(x) – периодическая, то решение уравнения F(x)=0 или неравенства F(x)>0 (F(x)
Утверждение 3.Чтобы решить уравнение F(x)=0, где F(x) – четная или нечетная функция, достаточно найти положительные (или отрицательные) корни, после чего записать отрицательные (или положительные) корни, симметричные полученным. Для нечетной функции корнем будет x=0, если это значение входит в область определения F(x). Для четной функции значение x=0 проверяется непосредственной подстановкой в уравнение.
Утверждение 4.Чтобы решить неравенство F(x)>0 (F(x)F(x) – четная функция, достаточно найти решения для x≥0 (или x≤0). Если решением данного неравенства является промежуток (x1, x2), где x1,x2 – числа одного знака или одно из них равно нулю, то его решением будет и промежуток ( ‑ x2, ‑ x1).
Утверждение 5.Чтобы решить неравенство F(x)>0 (F(x)F(x) – нечетная функция, достаточно найти его решения для x>0 (или xF(x) для любого x≥0 (x≤0) из области ее определения может находиться с нулем в одном из трех отношений: «равно», «больше», «меньше». Следовательно, если нам известно, при каких значениях x F(x)≥0 (F(x)≤0), то нам будет известно, при каких значениях x F(x)>0 (F(x)x из области определения). Но если нам известны промежутки знакопостоянства функции F(x) для x>0 (или x0), то легко записать промежутки знакопостоянства и для xx>0).
Решение задач. Список заданий написан на доске. Первое и второе учитель подробно разбирает. Остальные учащиеся самостоятельно решают в тетради и по желанию демонстрируют свое решение на доске.
1) Решить уравнение
Период, входящих в уравнение функций Т=200p. Возведем обе части в квадрат и получим ; . Проверим корни в пределах периода:
Решением уравнения является .
2) Решить уравнение ;
Заметим, что в обеих частях уравнения стоят четные функции, поэтому решим данное уравнение с использованием свойств четной функции. С учетом сказанного выше для четной функции, достаточно найти решения для x≥0. Но x=0 не есть корень уравнения. Рассмотрим два промежутка (0, 2], (2, ∞). На промежутке (0, 2] имеем ; ; x=. На промежутке (2, ∞) имеем ; ; 3x=2x; x=0. Но так как x=0 не является корнем уравнения, то для x>0 данное уравнение имеет корень x=. Но тогда x= ‑ также является корнем уравнения.
3) ;
4) .
3. Подведение итогов занятия.
Учитель выставляет баллы учащимся по одному баллу за решение домашнего задания и за решение у доски.
Постановка домашнего задания. На этом занятии завершается теоретическая часть курса. Следующий урок посветим решению разных задач. Поэтому вам нужно повторить всю теорию, посмотреть приемы решения уравнений и неравенств, рассмотренные нами на предыдущих занятиях. Занятие пройдет в форме игры. Класс нужно разделить на команды. Каждая команда готовит название, девиз.
Занятие №9 «Морской бой»
Цели: закрепить имеющиеся знания учащихся по изученному материалу.
продолжение
--PAGE_BREAK--