Реферат по предмету "Педагогика"


Методика использования визуальных моделей в обучении школьников решению математических задач

--PAGE_BREAK--4. Эстетическая функция. Эстетика – красота. Она может быть постигаемая органами чувств, то есть формальная красота, и интеллектуальная, доступная только разуму. В математическом доказательстве должны быть соразмерны логическая и наглядная части. Так, благодаря простой наглядной модели, становится ясной суть доказательства, а логика уточняет лишь некоторые детали доказательства.
Для любого математического объекта существует возможность его «визуализации», то есть создания его наглядного образа. Красивые формулы, задачи, графики функций, многоугольники и т. п. являются объектами с эстетическими свойствами во внешнем облике.
Различные рисунки, чертежи, схемы, таблицы являются эстетическими объектами. Они отображают логику процессов, поэтому углубляют познание, способствуют раскрытию внутренней красоты математики.
К методическим функциям наглядности можно отнести также функцию обеспечения целенаправленного внимания учащегося, функцию запоминания при повторении учащимися учебного материала, функцию использования прикладной направленности и др.
А. Н. Леонтьев выделяет также психологическую функцию, включенную в процесс обучения с использованием наглядности. Она состоит в том, что наглядный материал (пособия) служит как бы внешней опорой внутренних действий, которые совершает ребенок под руководством учителя в процессе овладения знаниями.
Реализуя различные функции наглядности, можно способствовать развитию наиболее плодотворного мышления учащегося, так как его внимание легко и своевременно переключается со средств наглядности на полученную с их помощью информацию об объекте и обратно. Такое переключение сводит к минимуму отвлечение умственных усилий учащихся от предмета их деятельности.
1.3. Виды наглядности в обучении математике Понимание роли и значения каждого вида наглядности на каждом этапе обучения необходимо для разработки оптимальной методики. Существует несколько принципов, по которым классифицируются виды наглядности. В данном случае виды наглядности классифицируются по градации приемов деятельности, отражающих способы моделирования отдельного математического знания или организованного набора знаний [8].
Операционная наглядность – процесс формирования модели в учебной деятельности, базирующийся на опорных внешних действиях. К операционной наглядности относят демонстрационную наглядность (использование чертежей, схем, таблиц, плакатов, графиков, моделей), применение оперативной наглядности расширяет число каналов передачи и получения информации, ускоряя и углубляя восприятие изучаемого материала. Применение оперативной наглядности может служить мотивацией творческой деятельности ученика, позволяет увидеть процессы в динамике, способствует установлению межпредметных связей, расширяет область практического применения изучаемых вопросов.
Формализованная наглядность – процесс формирования модели в учебной деятельности, базирующийся на структурных внешних действиях, процесс формирования «внешней» структуры, структуры обозначения, выделения или размещения текста на доске или в учебном пособии. К этому виду наглядности относится: использовании при записи курсива, рамок, абзацев, выделение отдельных формул в строчку, подчеркивание важных слов и предложений, обозначение значимости текста на полях различными знаками, обозначение начала и конца доказательства, использование цвета для выделения важных формул, элементов. Этот вид наглядности способствует лучшему восприятию, осмыслению и запоминанию материала.
Структурная наглядность – процесс формирования модели учебной деятельности, базирующийся на структурных внешних действиях, процесс формирования «внутренней структуры». К этому виду наглядности относится выделение основного материала, построение модели с опорой на устойчивые ассоциации, характеризующиеся полнотой изложения основных понятий, методов теорем, доведение изучаемого материала до узнаваемости объекта восприятия. Примером использования структурной наглядности служит выделение в процессе восприятия учебного материала опорных качеств предмета, составление опорной таблицы, использование блок-схем, логический анализ теорем. Структурная наглядность активизирует мыслительную деятельность в процессе восприятия, учит логически мыслить, выделяет существенное в плане перцепции. Расположение изучаемых объектов в определенной системе улучшает восприятие, вызывая минимальные усилия со стороны органов чувств.
Фоновая наглядность – процесс моделирования специфических особенностей данного организованного набора знаний, носящий мотивационный сквозной характер, обеспечивающий лучшее восприятие и усвоение. Фоновая наглядность характеризуется длительностью, неодномерностью, опорностью ассоциативно-рефлекторных функций восприятия, «ненавязчивостью» побочно применяемых действий. Примером применения этого вида наглядности могут служить приемы создания фона настроения, создание пониженного фона интенсивности вокруг опорной информации, привлечение исторического материала, применение различных мнемонических эффектов. Целевая установка, мотивация, внешнее ненавязчивое побуждение учителя к внутренним действия ученика, адекватным поставленной цели – составляющие компоненты фоновой наглядности. Фоновая наглядность имеет большое значение в процессе обучения и воспитания. От умелого использования ее зависит возникновение у учащихся потребности учиться, самостоятельно добывать знания, эмоциональное удовлетворение от учебы, воспитание воли культуры поведения [10].
Дистрибутивная наглядность характеризуется структурными внешними действиями при изучении сформированной модели в процессе учебной деятельности. К этому виду относится структура размещения материала, выделение базовых определений, порций материала, классификацию методов доказательства. Использование этого вида наглядности позволяет расставлять акценты на изучаемом материале, делает его доступным для восприятия и усвоения, учит логически мыслить, анализировать, выделять главное и устанавливать связи между изучаемыми понятиями, уметь ориентироваться в большом объеме информации, воспитывает критическое отношение, учит быть собранным.
Наглядность преемственности характеризуется опорностью ассоциативных связей внутри раздела, предмета и межпредметных. Сюда относится структура взаимосвязей, методы изложения, пропедевтика, опорные мотивационные исторические задачи, циклы задач исследовательского характера.
1.4. Роль наглядности в математике Применение различных средств наглядности активизирует учащихся, возбуждает их внимание и тем самым помогает их развитию, способствует более прочному усвоению материала, дает возможность экономить время. Тот факт, что математике присуща большая абстрактность, определяет и характер средств наглядности, и особенности применения их. В таких учебных предметах, как естествознание, история, география, наглядные пособия чаще всего используются для показа изучаемых объектов. Чтобы учащиеся могли составить наиболее правильное, наиболее полное представление о животном или растении, о том или ином событии, о природном явлении и т.п., все это необходимо показать в возможно более естественном виде и так, чтобы хорошо были различимы все нужные детали. Что касается математики, то здесь предметы, во-первых, выступают только как элементы множеств, над которыми могут производиться некоторые операции и относительно которых может быть поставлен вопрос об их численности [4, 10, 22]. Поэтому, когда учитель говорит о яблоках на ветке, или о птичках на дереве, то он не останавливается на том, какие это яблоки или птички. Он обращает внимание детей лишь на количества их и на количественные отношения. Во-вторых, когда идет речь о том или ином предмете, то может быть поставлен вопрос об исследовании его формы или некоторых числовых характеристик, носящих названия величин. Но чтобы исследовать количественные отношения и формы в чистом виде, необходимо совершенно отделить их от содержания. В этом и оказывают помощь учителю различные средства наглядности и в первую очередь модели, чертежи, схемы, которые более всего отвечают указанному требованию [5].
1.5. Использование наглядности в процессе обучения математике Помогая детям в поисках решения задачи, нужно сделать схематический рисунок или чертеж к задаче; объясняя прием вычисления, сопровождая пояснение действиями с предметами и соответствующими записями и т. д. При этом важно использовать наглядное пособие своевременно, иллюстрируя самую суть объяснения, привлекая к работе с пособием и пояснению самих учащихся. При раскрытии приема вычисления, измерения, решении задачи и т. д. надо особенно четко показывать движение (прибавить-придвинуть, вычесть-убрать, отодвинуть) [4, 10]. Сопровождение объяснения рисунком (чертежом) и математическими записями на доске не только облегчает детям восприятие материала, но и одновременно показывает образец выполнения работы в тетрадях [4]. Например: как расположить чертеж и запись решения в тетради, как обозначить периметр с помощью букв и т. п. При ознакомлении с новым материалом и, особенно, при закреплении знаний и умений надо так организовать работу с наглядными пособиями, чтобы учащиеся сами оперировали ими и сопровождали действия соответствующими пояснениями. Качество усвоения материала в большинстве случаев значительно повышается, так как в работу включаются различные анализаторы (зрительные, двигательные, речевые, слуховые). При этом дети овладевают не только математическими знаниями, но и приобретают умения самостоятельно использовать наглядные пособия. Учитель должен всячески поощрять детей к использованию наглядных средств, к самостоятельной работе. Важным условием эффективности использования наглядных пособий является применение на уроке достаточного и необходимого количества наглядного материала. Если наглядные средства применять там, где этого совсем не требуется, то они играют отрицательную роль, уводя детей в сторону от поставленной задачи. Наглядность, использованная в этом случае, не только не помогает, но наоборот, задерживает формирование умения решать задачи, т. е. выбирать действие над числами, данными в условии.
Центральным в методике обучения решению задач является вопрос о том, как обучать детей решению текстовой задачи. Наблюдения за школьниками нередко показывают, что многие из них не только не хотят решать текстовые задачи, но и не умеют. Достичь такого умения можно, в частности, с помощью визуализации задачи.
В современной школе, несомненно, присутствуют разнообразные приемы, способствующие развитию навыков решения текстовых задач, но заданий на построение вспомогательных моделей мало. Во многих учебниках преобладают модели в виде краткой записи и рисунка задачи, меньше моделей в виде чертежа и соответственно мало заданий на их сравнение.
Для раскрытия сущности визуализации рассмотрим сначала понятие «модель».Слово «модель» в переводе с французского означает «образец». По видам средств, используемых для построения, все модели можно разделить на схематизированные и знаковые. Схематизированные модели, в свою очередь, делятся на вещественные (предметные) и графические, в зависимости от того, какое действие они обеспечивают. К знаковыммоделям, выполненным на естественном языке, можно отнести краткую запись текстовой задачи, таблицы. Знаковыми моделями текстовых задач, выполненными на математическом языке, являются: формула, выражение, уравнение, система уравнений, запись решения задачи по действиям.
Визуализация текстовой задачи – это использование моделей (средств наглядности) для нахождения значений величин, входящих в задачу, данных и искомых чисел, а также для установления связей между ними.
Методика обучения моделированию текстовых задач включает следующие этапы:
1)       подготовительная работа к моделированию текстовых задач;
2)       обучение моделированию текстовых задач;
3)       закрепление умения решать задачи с помощью моделирования.
Подготовительная работа должна быть направлена на выполнение предметных действий. Отображая эти действия графически, сначала в виде рисунка, затем в виде модели, учащиеся в дальнейшем подходят к знаково-символической форме: равенству, формуле, уравнению и т. д. Прежде чем представить задачу в виде модели, необходимо ознакомиться с ее содержанием. При решении текстовой задачи учитель часто сталкивается с проблемой текста в математике. Проблема в том, что его нужно «перевести» с русского на математический язык и наоборот [11, 20]. В этом случае необходимо выявление «математического ядра» задачи. Для этого нужно выделить величины и отношения между ними, которые заключены, как говорят дети, в «главных» словах и числах (буквах)». Можно с учащимися договориться подчеркивать слова карандашом в книге и цветным мелом на доске. Вопрос задачи всегда выделяем особо – это цель наших действий. Приведем пример.
У Маши было 9 конфет. Она отдала 3 конфеты Толику и 2 конфеты Максиму, а 2 конфеты съела сама. Сколько конфет осталось у Маши. 
Таким образом, исключение части слов не повлияло на математическую модель задачи, то есть учащиеся совершенно безболезненно смогут понять, а, следовательно, решить данную задачу.
После ознакомления с содержанием задачи нужно приступить к ее моделированию [12]. Особенностью предметного моделирования простых текстовых задач является использование предметов, замещающих образец. Это могут быть полоски бумаги, геометрические фигуры и так далее. Особенности графического моделирования простых текстовых задач в том, что они строятся как частные случаи отношения величин: величины в задаче находятся в отношении целого (С) и частей (А и В), что наглядно показывается в схеме:

                                                        С
 
                                                      А              B
Моделирование в виде схемы целесообразно использовать при решении задач, в которых даны отношения значений величин («больше», «меньше», «столько же»). Задачи, связанные с движением, целесообразнее моделировать с помощью чертежа, диаграммы или графика [2].
Наряду со схематическим моделированием, начиная с 1 класса, используется и знаковое моделирование – это краткая запись задачи [18]. В краткой записи фиксируются величины, числа – данные и искомые, а также некоторые слова, показывающие, о чем говорится в задаче: «было», «положили», «стало» и т. п. Краткую запись задачи можно выполнять в таблице и без нее.
При табличной форме требуется выделение и название величины. Расположение числовых данных помогает установлению связей между величинами: на одной строке, одно под другим. Искомое число обозначается вопросительным знаком [2].
Закреплению навыков моделирования текстовых задач помогают упражнения творческого характера. К ним относятся моделирование задач повышенной трудности, задач с недостающими и лишними данными, а так же упражнения в составлении и преобразовании задач по данным моделям [15].
1.       Работа с незаконченными моделями:
а) дополнение числовых данных и вопроса предложенной модели;
б) дополнение какой-либо части модели.
2.Исправление специально допущенных ошибок в модели.
3.Составление условия задачи по данной модели.
4.Составление задач по аналогии.
Итак, в данной работе, для использования визуальных моделей при решении задач, применяется методика, содержащая три вышеуказанных этапа. Первый этап данной методики предполагает выделение понятий, использующихся для составления модели, и отношений между ними. Его цель состоит в раскрытии смысла этих понятий и формирования навыков работы с этими понятиями. Второй этап предполагает применение выделенных понятий для построения визуальных моделей, обучения правилам этого построения. Результатом данного этапа является умения составлять модель по задаче и интерпретировать эту модель, т. е. опираясь на визуальную модель переходить к математической модели и формулировать из условий эквивалентные утверждения, удобные для дальнейшей работы. Третий этап предполагает закрепление полученных навыков. Роль и значение указанных этапов может варьироваться в зависимости от конкретного метода визуализации. Например, первый этап может отсутствовать в случае владения учащимися средствами моделирования. Важно только, чтобы всякий раз были в наличии результаты каждого этапа в указанной последовательности.
    продолжение
--PAGE_BREAK--
§ 2. Методика обучения решению математических задач с использованием визуальных моделей
2.1. Методика построения визуальных моделей при обучении решению текстовых задач В этом параграфе рассмотрим методы визуализации тестовых задач. В качестве методов визуализации рассмотрим использование линейных и двумерных диаграмм, а так же применение графиков линейной функции. Данные методы визуализации основаны на геометрических свойствах фигур (прямоугольников, треугольников, отрезков) и свойствах операций над ними. При решении задач с использованием данного вида визуализации выделяют следующие три этапа: построение визуальной модели, то есть перевод задачи на геометрический язык, решение получившейся геометрической задачи, перевод задачи с геометрического языка на естественный. Для обучения построению и работы с визуальными моделями используется указанная выше трехэтапная методика, роль и значение этапов которой варьируется в зависимости от сложности конкретного способа визуализации. Задачи в этом параграфе выделяются не по содержанию сюжета, а по соответствию тому методу визуализации, который к ним применим.
Линейные диаграммы используются преимущественно в тех задачах, в которых искомое находится в зависимости от данных, выразимой с помощью арифметических операций сложения (вычитания) и умножения (деления). В курсе алгебры представлены два основных вида задач (текстовых), решаемых с помощью линейных диаграмм: 1) задачи, в которых даны отношения значений величин и отражена одна ситуация в данный момент времени; 2) задачи, в которых даны отношения значений величин и отражены две ситуации – первоначальная и конечная. При решении задач первого вида линейная диаграмма выступает в качестве статической геометрической модели, то есть в процессе решения задачи она не изменяется и выполняет только иллюстративную функцию. Наибольший интерес с точки зрения использования линейных диаграмм в курсе алгебры представляют задачи второго вида. Построение линейной диаграммы при решении этих задач проходит в два приема: в начале строится диаграмма, отражающая первоначальное (конечное) состояние объектов, а затем согласно условию она изменяется таким образом, чтобы вновь полученное изображение (диаграмма) отражала конечное (первоначальное) состояние объектов. Изменение построенной диаграммы осуществляется путем действий над отрезками (сложения и умножения на число) [9].
Так как роль первого этапа методики обучения работе с визуальными моделями состоит в том, чтобы выделить основные понятия и объекты, участвующие в построении модели, то, в данном случае необходимость в нем отпадает. Связанно это с тем, что для построения и работы с линейными диаграммами используются отрезки и операции с ними, что изучается на протяжении всего школьного курса математики.
Второй и третий этапы не нужно явно отделять друг от друга: обучение моделированию происходит непосредственно в процессе решения задач, но в начале нужно провести методическую работу для формирования умений построения визуальной модели. Эта работа заключается в акцентировании внимания на существенных сторонах в построении визуальной модели, которые отражают суть задачи. А именно, рассмотреть случаи, в которых длина отрезка может выбираться произвольно, и случаи когда длина отрезка зависит от каких-то условий. Необходимо также провести различие между задачами первого и второго вида. Для задач второго вида показать, что мы идем от одного состояния к другому, при этом посредством арифметических операций над отрезками, соответствующих условию, получаем из первоначальной диаграммы другую, иллюстрирующую данное состояние. Приведем пример.
Задача 1. На одном овощехранилище было втрое больше картофеля, чем на другом. С первого вывезли 450 кг картофеля, а на второе привезли 120 кг картофеля, после чего на обоих овощехранилищах картофеля стало поровну. Сколько килограмм картофеля было на каждом овощехранилище первоначально?
Как было отмечено выше решение задачи при использовании диаграмм, осуществляется в три этапа.
Первый этап. После прочтения задачи учащиеся отвечают на вопросы:
1.                Сколько ситуаций рассматривается в задаче? (Две: первоначальная и конечная).
2.                С какой ситуации следует начать построение линейной диаграммы? (Можно начать с первой ситуации и перейти от нее ко второй, а можно сначала построить диаграмму конечной ситуации и перейти от нее к первоначальной. Рассмотрим первый вариант).
3.                Что будет представлять собой первоначальная диаграмма? (Два отрезка, один из которых втрое больше другого). После этого ученики строят первоначальную диаграмму, далее рассуждения продолжаются.
4.                Как перейти на диаграмме от первой ситуации ко второй? (Надо из первого отрезка вычесть второй условно изображающий 450 кг, а ко второму прибавить отрезок изображающий 120 кг).
5.                  Произвольно ли берутся отрезки изображающие 120 и 450 килограмм? (Нет, следует учитывать, что вновь полученные отрезки должны быть равны, так как на обоих хранилищах картофеля стало поровну).
Выполнив действия с отрезками, учащиеся получают диаграмму конечной ситуации. Первый этап работы над задачей заканчивается обозначением отрезков и оформлением записей на чертеже (рис.1).
Второй этап. Построенная линейная диаграмма превращает алгебраическую задачу в геометрическую, решение которой основано на использовании свойств длины отрезка. Ответ можно получить арифметически, не составляя уравнение, иногда его можно «усмотреть» на чертеже. С помощью диаграммы можно составлять различные уравнения к задаче, то есть решать её разными способами.
Третий этап. Перевод с геометрического языка на естественный осуществляется автоматически, в результате переноса терминологии. В начале следует сделать подробную запись с указанием того, что обозначает каждый отрезок. Постепенно можно переходить к краткой записи, так как некоторые факты видны на чертеже.
На мотивационном этапе формирования геометрического метода основанного на использовании линейных диаграмм целесообразно предлагать решить задачу двумя методами: алгебраическим и геометрическим. При этом следует подбирать задачу таким образом, чтобы её решение с помощью линейной диаграммы было более рациональным по сравнению с решением без чертежа.
Далее следует рассмотреть класс задач, для которых применим данный метод визуализации. При этом сюжеты задач должны быть разными, для того чтобы данный метод не ассоциировался с каким-то определенным видом сюжетных задач. При этом сложность задач, сложность построения модели должна повышаться. Нужно также указывать на модели различных сюжетных задач, в случае если они сходны, так как это формирует представление об универсальности данного метода, и вообще о моделировании как общего математического метода [12, 21].
Данный метод визуализации применим для относительно простых задач, тем не менее, его значимость достаточно высока. Он обогащает арсенал средств, которыми может пользоваться ученик при решении задач, а задачи, в которых данный метод применим, довольно часто возникают в качестве подзадачи на этапе анализа при решении более сложных задач. Часто такие задачи бывают на всевозможных математических турнирах, где требуется их решить за минимальное время. Например: «Кирпич весит 2 кг и еще пол кирпича. Сколько весит кирпич?» или ««То» да «это», да половина «того» да «этого»– сколько это будет процентов от трех четвертей «того» да «этого»?». Данный метод может оказать в подобном случае существенную помощь. Кроме того, данный метод является эффективным средством как при обучении решению задач на проценты, так и при обучении понятию процента как части от целого.
Линейные диаграммы могут использоваться на разных этапах решения задачи. При анализе текста она помогает учащимся лучше понять смысл задачи, рассматриваемые в ней отношения, при поиске способа решения – составить уравнение или арифметическое выражение. На этапе анализа решения задачи можно найти другое (иногда более рациональное) решение. Оно может использоваться для проверки ответа, полученного алгебраическим способом.
В задачах, где одна из рассматриваемых величин является произведением двух других, можно для наглядности представить такое произведение в виде площади прямоугольника, то есть в виде двумерной диаграммы. Двумерная диаграмма может состоять из одного или нескольких прямоугольников.
Подготовительная работа к моделированию текстовых задач в данном случае, как и при использовании линейных диаграмм не требуется, так как используемые объекты и методы работы с ними ученикам достаточно хорошо известны и не представляют особой сложности.
Второй этап в методике обучения использованию двумерных диаграмм можно реализовать, опираясь на линейные диаграммы. Лучше всего перейти к моделированию тех задач, которые предварительно решены алгебраическим методом. Это связанно с тем, что ученики знают структуру задачи, установлены связи между данными и искомым, что делает построение модели более естественным. Кроме того, такой подход позволяет сравнить два способа решения задачи.
Перед построением геометрической модели, нужно установить связь геометрических преставлений в виде двумерных диаграмм с геометрическими представлениями в виде линейных диаграмм. Для этого, необходимо заметить учащимся, что в случае использования линейных диаграмм отрезками изображались значения одной и той же величины. Эти отрезки располагались на параллельных прямых. В задачах, где рассматривается произведение двух величин, отрезками будем изображать значения двух разных величин и отрезки будем располагать на двух перпендикулярных прямых так, чтобы они были смежными сторонами прямоугольника. Тогда площадь прямоугольника будет соответствовать произведению этих величин, а полученное изображение будем называть двумерной диаграммой. Приведем пример.
Задача 2.Моторная лодка, скорость которой в стоячей воде 15 км/ч, прошла по течению реки 35 км и против течения 25 км. На путь по течению реки она затратила столько же времени как на путь против течения. Какова скорость течения реки.
Алгебраический метод приводит к уравнению:
,
где  – скорость реки. Решив уравнение, находим .
Рассмотрим геометрический метод. Так как в данной задаче рассматривается равномерное движение, то пройденный лодкой путь можно представить в виде произведения скорости и времени движения.
Пусть сторона АВ прямоугольникаАВСDизображает скорость лодки по течению реки (рис. 2). Тогда ADбудет изображать время движения лодки по течению реки. Если обозначить через  скорость течения реки, а через  – время движения лодки по течению реки, то  и .
Площадь прямоугольника АВСD(S1)будет соответствовать пути пройденному лодкой по течению реки: .
Далее следует предоставить учащимся самим построить двумерную диаграмму движения лодки против течения реки. Необходимо акцентировать их внимание на следующих моментах: прямоугольники нужно изображать вместе, чтобы они составляли одну фигуру, причем высоты этих прямоугольников должны быть равны, так как лодка двигалась одинаковое время по течению и против течения реки, целесообразнее высоту прямоугольников, изображающую время, сделать общей, тогда получаем фигуру в виде прямоугольника, площадь которого легко найти.
Далее продолжаем решение. Пусть отрезок BEизображает скорость лодки против течения реки (BEберем меньше АВ), тогда отрезок EF изображает время движения лодки против течения реки: .
Площадь прямоугольника BEFCсоответствует пути пройденному протии течения реки: . Площадь прямоугольника ABFC определяет весь путь пройденный лодкой: .
В то же время, , , , тогда имеем: 60=30, , 35:2 = 17,5 – скорость движения лодки по течению,  17,5 – 15 = 2,5 – скорость течения реки.
Использование двумерных диаграмм в курсе алгебры опирается на следующую теорему: если через произвольную точку Eдиагонали AC прямоугольника ABCDпроведены прямые FM и HKпараллельные соответственноABиAD, образовавшиеся при этом прямоугольники HBME и FEKDбудут равновелики, прямоугольники ABMF и AHKD тоже равновелики, кроме того отрезки FH, DB и KM параллельны.
Приведем пример решения задачи с использованием данной теоремы.
Задача 3. Один наборщик работал над выполнением заказа 9 часов. После чего закончить работу было поручено второму наборщику, который закончил работу за 4 часа 48 минут. Если бы оба наборщика работали вместе, то они выполнили бы работу за 6 часов 40 минут. За сколько времени каждый выполнил бы работу, работая отдельно?
    продолжение
--PAGE_BREAK----PAGE_BREAK--При данных условиях формируется умение выбирать положительное направление движения. Здесь же можно поставить вопрос о времени или месте встречи велосипедистов, что даст первоначальные представления о сути метода. В данной задаче возможны еще случаи варьирования условий, но вышеуказанные составляют основу, так как остальные из них являются комбинацией первоначальных.
Итак, основополагающими являются умения выбирать точку отсчета по пути и по времени, положительное направление движения, понятие о зависимости угла наклона графика от скорости движения объекта. Достижение всего вышеуказанного происходит в процессе решения задач, подобных приведенным.
Этап обучения графическому моделированию задач на движение во многом опирается на умения, сформированные на предыдущем этапе. Но в данной части есть свои, специфические для данного этапа, особенности. Они заключаются в том, что условия, формулируемые в задаче, не позволяют однозначно построить график отдельного движущегося объекта, так как в них не задаются все те параметры, которые позволяли бы это сделать. Тем не менее, модель должна отображать существенные стороны задачи. Например, условия задачи не позволяют однозначно построить графики двух движущихся объектов, но из них ясно, что если один движется быстрее другого, то и угол наклона у него должен быть больше. Кроме того, на данном этапе нужно сформировать умение рационально строить модели. Этого можно добиться, давая при удобном случае рекомендации по построению модели. К таким рекомендациям можно отнести следующие [3]:
·                   если в задаче несколько объектов движутся на встречу одному, то удобнее в начало координат поместить эти несколько объектов;
·                   если в задаче движение начинается в какое-то определенное время суток, которое не влияет существенно на саму задачу, то при построении модели лучше полагать, что движение началось в момент времени;
·                   если в задаче есть динамика движения (то есть движение объектов относительно друг друга меняется), то удобнее те изменения, которые затрагивают меньшее количество графиков (например, если человека обгоняет рейсовый автобус через временной интервал, то для изображения момента встречи с идущим в другую сторону автобусом рациональнее развернуть график пешехода, чем совокупность прямых, изображающих движение рейсового автобуса).
Аккуратность чертежа хотя сама собой разумеется, но следует сделать акцент на то, что модель которая наиболее точно воспроизводит пропорции, указанные в задаче, может оказать существенную помощь в поиске решения задачи, тем более если эта задача первого типа.
Таким образом, модель становится схематичной, но, несмотря на это должна отражать существенные стороны задачи, так как это необходимое (а во многом и достаточное) условие успешности решения задачи [23].
В связи с этим необходимо обучать моделированию в данных условиях, что подразумевает под собой поэтапное движение от схематичного моделирования условий с двумя движущимися объектами к моделированию сложных условий с тремя и более движущимися объектами (например, периодическое движение рейсового автобуса). Необходимо также умение «читать» модели, то есть понимать, какой объект движется быстрее, какой раньше прибыл, где или когда они встретились. Значит, ученики должны выполнить работу по составлению моделей, по интерпретации моделей, по исправлению сознательно допущенных в ней ошибок, по составлению задач по данной модели.
Приведем примеры заданий, которые можно использовать на данном этапе.
Из пунктов А и В одновременно навстречу друг другу вышли два пешехода. После встречи первый находился в пути 16 минут, а второй  25 минут. Составьте модель данной задачи.
Данная задача не позволяет однозначно строить графики движения пешеходов, но подразумевает, что первый двигался быстрее, это должно быть отражено в модели. Для более хорошего освоения и закрепления можно дать еще 1-2 такие задачи.
Далее моделируемые ситуации должны усложняться, в условие должны входить 3 или более объектов, вместе с этим, как следствие возрастает количество числовых данных о вообще объем задачи, следовательно, усиливается роль анализа, умения выделить главные существенные стороны задачи.
Пешеход и велосипедист одновременно из одной точки направились навстречу всаднику. В момент, когда велосипедист встретил всадника, пешеход отставал от них на 3 км. В момент, когда пешеход встретил всадника, велосипедист обогнал пешехода на 6 км. Составьте модель данной задачи.
В этой задаче нужно выбрать положительное направление. Конечно, рациональнее выбор, при котором в положительном направлении движутся пешеход и велосипедист, но нужно показать оба случая для формирования умения рационально строить модель и понимания разновариантности. Кроме того, здесь уже три движущихся объекта, и подразумевается, но явно не сказано, что велосипедист движется быстрее пешехода.
Наращивая уровень сложности нужно дать задание подобного рода.
Идущего по дороге с постоянной скоростью человека рейсовый автобус обгоняет через каждые 7 минут, а через каждые 5 минут проходит встречный автобус. Составьте модель данной задачи.
Далее идут задачи, в которых по данной модели требуется определить числовые, или сравнительные характеристики движущегося объекта. Например, по данному рисунку определить какой объект двигался быстрее, где место встречи по отношению к началу и концу пути?
И, наконец, задания на составление задачи по модели.
Следующий этап предполагает непосредственное применение графических моделей для решения данного класса задач. В начале естественнее будет рассмотреть задачи первого типа, совместно провести анализ задачи, опираясь на графическую модель, перейти к математической модели.
Если мы рассматриваем задачи первого типа, то существенной чертой данного этапа является абстрагирование от функциональной части модели, и рассмотрение ее с позиций геометрии. То есть ученик должен уметь видеть геометрические отношения в данной модели, а так же уметь интерпретировать эти отношения в терминах данной задачи. Провести анализ задачи в данном случае означает выделить геометрический образ неизвестного, и идти от него к данным, устанавливая геометрические связи. Как правило, неизвестным бывает длина отрезка, в результате анализа задачи она выражается через данные, тем самым мы переходим к математической модели данной задачи. Строить графические модели, выделять геометрические образы неизвестных ученики умеют с предыдущих двух этапов, на этом этапе им нужно научиться проводить анализ задачи, используя графическую модель, что достигается путем выполнения упражнений. Приведем пример анализа подобной задачи и методической работы с ней.
Задача 6.Из пунктов А и В одновременно навстречу друг другу вышли два пешехода. После встречи первый находился в пути 16 минут, а второй 25 минут. Сколько времени каждый из них находился в пути?
Ученики владеют методами построения модели. Пусть модель построена (рис. 6), перейдем к ее анализу. Введем предварительно обозначения всех точек пересечения прямых, а через точку С проведем перпендикуляр МК к оси абсцисс. В задаче требуется найти время нахождения в пути обоих пешеходов, время движения каждого после встречи известно, следовательно, неизвестным является время движения до момента встречи. Геометрическим образом неизвестного будет отрезок ВК. Заметим, что величину x мы можем выразить через подобие треугольников ВСЕ и АСР. Так как треугольники ВСЕ и АСР подобны, то  (в подобных треугольниках все сходственные элементы находятся в одном отношении, ВК и КЕ – проекции сторон ВС и СЕ на сторону ВЕ в треугольнике ВСЕ, MP, AM– аналогичные проекции в треугольнике АСР). Т. е. . Далее, решая полученное уравнение, мы устанавливаем числовые данные.
В данной задаче мы установили геометрический образ неизвестного благодаря геометрическому образу точки встречи. Интерпретировать эти геометрические образы ученики умеют с предыдущего этапа. Тем не менее, работа по их выделению его неотъемлемая часть, существенно новым для данного этапа является геометрическое получение равенства . Важно, чтобы ученики поняли, что данный результат является обоснованным, что данное отношение следует из условия задачи, а использование графической модели лишь промежуточный шаг, который дает верные результаты вследствие изоморфности условию. Для этого их можно попросить ответить, опираясь на графическую модель, на следующие вопросы: что можно сказать о скоростях пешеходов, какие параметры в данной графической модели можно менять, какие остаются неизменными и сохраняется ли при этом полученное отношение? Для того, чтобы обосновать, что полученное в ходе решения уравнение является следствием условия задачи, а не данной графической модели можно привести решение, не опирающиеся на данную модель. Пусть скорость первого пешехода будет , а скорость второго пешехода будет , и пусть время, затраченное обоими до момента встречи, будет равно t. Тогда путь, пройденный первым до момента встречи, будет , а вторым ­ . Заметим, что второму осталось пройти до конца пути столько же, сколько прошел первый до момента встречи, а первому ­– сколько прошел второй. Значит 1) , а 2) , поделим первое равенство на второе, получим искомое отношение.
При таком подходе каждый раз, в отличие от способа, где используется графическая модель, нужно проводить различные рассуждения: в данном случае нужно догадаться и обосновать равенства 1) и 2) и уже потом перейти к отношению, в то время как из графической модели данное отношение непосредственно следует. Стоит показать ученикам данные подходы для обоснования независимости полученного решения и преимуществ первого подхода.
Далее следует перейти к задачам второго типа, давая их как задачи, в которых геометрия их графических моделей играет вспомогательную, а не основную роль. Четкого критерия для того, чтобы отличить данные задачи от задач первого типа дать нельзя, тем не менее, ученики должны понимать разницу между ними. Основной довод в пользу того, что задача второго типа состоит в том, что геометрический образ искомой величины не выражается явно (из подобия или равенства фигур) при помощи геометрии. Но, во всяком случае, геометрия графической модели такова, что величина геометрического образа искомого однозначно из нее определяется, в случае если условия задачи являются полными. И хотя мы ее не ищем при помощи геометрии, но имеющаяся в графической модели информационная картина такова, что содержит все сведения для перехода к математической модели. Все навыки для получения этих сведений ученики имеют, тем более они отработаны в процессе решения задач первого типа. Нужно переходить непосредственно к анализу данных задач. Приведем пример анализа подобной задачи.
Задача 7.Из пунктов А и В одновременно навстречу друг другу отправились велосипедист и пешеход. Велосипедист в пункте В повернул назад и через час после начала движения встретил пешехода. Доехав до А, снова повернул назад и встретил пешехода через 40 минут после первой встречи. Определить время, затраченное пешеходом на весь путь.
Так как в условиях не дана ни одна величина размерности длины, то весь путь можно принять за единицу. Обозначим через  скорость пешехода, через – скорость велосипедиста. Приведем для наглядности иллюстрацию (рис. 7), но в этой задаче она будет играть вспомогательную роль. Составим уравнения, используя при этом графическую модель. За час, прошедший до первой встречи, пешеход и велосипедист вместе прошли удвоенный путь от А до В, что непосредственно видно из иллюстрации, поэтому . За  часа до второй встречи велосипедист прошел на удвоенный путь больше, чем пешеход, поэтому
.
Решая систему
,
получаем . Это означает, что за час пешеход проходит 0,4 всего пути, а на весь путь он затратит 2,5 часа.
В данной задаче нам требуется найти длину отрезка AD. Она не выражается из подобия или равенства треугольников, но, как видно, имеет определенное значение. Все уравнения, полученные в ходе решения задачи, не являются следствиями каких-либо геометрических соображений, но имеющаяся в графической модели информация наглядно иллюстрирует логику построения математической модели данной задачи. Таким образом, графическая модель отвечает на вопросы: что дано и что требуется найти? Она помогает переформулировать вопросы так, что от них непосредственно можно перейти к уравнению, например, из того факта, что велосипедист и пешеход первый раз встретились через час после начала движения, с помощью иллюстрации достаточно просто получить, что к моменту первой встречи они вместе прошли удвоенный путь, что непосредственно приводит к уравнению.
В задачах второго типа ориентировочная основа действий менее содержательна по сравнению с ней для задач первого типа. Тем не менее, умения строить графическую модель, интерпретировать ее, формулировать факты, заложенные в ней в виде, удобном для составления уравнений, являются основополагающими для успешного решения и достигаются в процессе решения системы задач [12, 15].
Как показывает опытное преподавание, использование данного способа визуализации для обучения решению задач на прямолинейное равномерное движение, является эффективным средством. Его эффективность обуславливается следующими причинами: данный способ естественно приводит к математической модели, данный способ отражает структуру задачи, соответствует формуле наглядности, данной Болтянским. Поясним приведенные аргументы. Естественность получения математической модели заключается в том, что мы получаем её непосредственно из графической модели. Например, во втором способе решения задачи 6  непонятно, почему мы вводим в качестве переменных скорости движения пешеходов, почему рассматриваем именно равенства 1) и 2), и, наконец, деление одного равенства на другое является также достаточно искусственным шагом, в то время как из графической модели уравнение следует естественным образом. Данный способ визуализации отражает структуру задачи, т.е. взаимосвязи между данными задачи, это помогает увидеть общее в разных, на первый взгляд, задачах, что, в свою очередь, формирует представление о математическом моделировании в целом.
2.3. Методика применения визуальных моделей при обучении решению задач с параметрами Для решения некоторых аналитических задач можно использовать систему координат. Целесообразность ее использования можно аргументировать, ссылаясь на следующую цитату из статьи В. А. Далингера [2]: «Созданный Рене Декартом метод имеет огромное значение не только в научных открытиях. Он привнес значительный эффект и в процесс обучения математике. Эффект этот в первую очередь состоит в том, что координатный метод дает возможность многим абстрактным алгебраическим объектам, изучение которых строится на словесно-логической основе, дать геометрическую интерпретацию, позволяющую опираться на наглядно-образное, визуальное мышление».
    продолжение
--PAGE_BREAK--Среди множества всех задач с параметрами можно выделить целый класс задач, которые можно решить с использованием графических методов визуализации. Как и в случае с текстовыми задачами этот метод не является непосредственно наглядным, а, следовательно, для его усвоения требуется предварительная работа по формированию навыков работы с графическими моделями. Формирование самих по себе графических представлений и умений учащихся является задачей школьного курса математики, но данная тема (использование графических свойств для решения задач с параметрами) имеет свои специфические аспекты, которые заключаются в обобщении свойств графиков. Так, например, у учеников сформированы представления о зависимости угла наклона линейной функции и коэффициента при неизвестном в ее аналитическом выражении, но если данный коэффициент задан параметром, то мы получаем множество прямых с углами наклона от 0 до , которое условно называют «вращающаяся прямая».
Среди методов визуализации, применяемых при решении задач с параметрами, можно выделить следующие: 1) движущаяся прямая; 2) вращающаяся прямая; 3) координатные плоскости «неизвестное-параметр» и «параметр-неизвестное»; 4) применение свойств графиков функций.
Обучать применению данных методов целесообразнее в указанном порядке, так как каждый последующий метод является более сложным, и в некоторых случаях содержит идеи предыдущих.
Метод «Движущаяся прямая».
Данный метод позволяет решать всевозможные задачи с параметрами, которые заданы в виде (или преобразованы к нему) f(x) = a. Метод основывается на том, что простейшее параметрическое уравнение y= a задает множество всех прямых параллельных оси абсцисс.
Построение данной графической модели предполагает умение строить графики функций. На подготовительном этапе обучения моделированию нужно актуализировать знания связанные с построением графиков функций и подвести к графической модели параметрического уравнения y= a. Реализовать данные задачи можно через систему упражнений, которая предполагает построение графиков функций и работу с ними. Работа с графиками подразумевает ответ на следующие вопросы: назовите множество значений функции; сколько раз и почему функция принимала значение В (под В подразумевается конкретное числовое значение причем его нужно варьировать, в том числе брать его не из множества значений функции); каким должно быть значение а, чтобы уравнение y= aзадавало касательную к функции.
Этап обучения моделированию является обобщением первого этапа. Здесь нужно сформировать представление о зависимость между значением параметра и положением прямой y= a. На предыдущем этапе ученики отвечали на вопрос о том, сколько раз функция принимает конкретное значение, опираясь на это, нужно сформулировать общее правило ответа на этот вопрос, сопровождая его соответствующими иллюстрациями. Таким образом, возникает прямая, положение которой зависит от величины, не являющейся заранее определенной и, следовательно, уравнение y = a задает множество прямых.
Иногда учащиеся не понимают смысла параметров. Это связанно с его двойственностью: с одной стороны параметр обозначает конкретное число, с другой – параметр изменяет свои значения. Указанный выше подход опирается в начале на конкретные значения, затем изменению значений соответствует движение прямой, это помогает наглядно раскрыть смысл параметра.
При работе с моделями нужно подобрать задания, двигаясь при этом от простого к сложному. С предыдущих этапов ученики знают, как зависит положение движущейся прямой от значений параметра, умеют интерпретировать информацию, содержащуюся в модели. Им можно показать решение задачи с параметром и общий метод рассуждения для подобных заданий.
Найти число корней уравнения  в зависимости от параметра а.
Построим график функции  (предполагается, что ученики владеют приемами построения графиков подобных функций), и построим условно график уравнения y= a, причем дляaа два графика не пересекаются. Двигая прямую вдоль оси ординат вверх параллельно самой себе, получим, что при a= 0 уравнение имеет два корня, при  уравнение имеет четыре корня, при a= 4 – три корня и при a> 4 – два корня.
Далее нужно рассказать об общем виде заданий с параметрами, для которых применим данный метод. Если уравнение имеет другой вид, то его нужно преобразовать (если это возможно). Далее следует привести систему заданий, в которой будет усложняться условия: требуется преобразовать выражение к нужному виду; усложняется функция, которую надо строить; выбираются из различных промежутков значения для х и т.д.
Метод «Вращающаяся прямая».
Данный метод позволяет решать всевозможные задачи с параметрами, которые заданы в виде (или преобразованы к нему) f(x) = aх. Метод основывается на том, что параметрическое уравнение y= ax задает множество всех прямых, проходящих через начало координат.
Так как данный метод предполагает использование свойств линейной функции, то на подготовительном этапе нужно актуализировать знания об этих свойствах, подвести к графической модели параметрического уравнения y= ax. Для этого нужно проделать работу по построению графиков линейных уравнений, по нахождению коэффициентов из графика, по составлению уравнений из графиков [6]. Кроме того, нужно актуализировать знания о касательной, ответить на вопрос: при каком k график функции y=kx+b будет касательной для данной функции f(x), здесь kи bимеют конкретные числовые значения, найти геометрические образы решений уравненияf(x) = kx+b. Всё это реализуется через систему задач.
Этап обучения моделированию нужно начать с обобщения свойств линейной функции на случай произвольных коэффициентов. Опираясь на результаты предыдущего этапа можно сделать естественный переход от конкретного задания функции к параметрическому. Например, поставив вопрос: можем ли мы для данной линейной функции y=kx+b, где bфиксирован, так подобрать значения для k, чтобы график имел любой наперед заданный угол наклона (проходил через любую точку окружности с центром (0; b))? После этого нужно остановиться на геометрической модели параметрически заданной линейной функции y=аx. Далее этап обучения моделированию переходит в этап обучения работы с моделями.
Этот этап нужно начать с разбора простых задач, указав признаки, по которым мы применяем именно данный метод.
В зависимости от значений параметра aнайти количество корней уравнения .
Данное выражение можно преобразовать к виду, для которого применим метод «движущаяся прямая». Так как  не является решением данного уравнения, то его можно преобразовать к виду , но для ответа на вопрос нам потребуется построить график функции , что является достаточно трудной задачей, по сравнению с построением графика функции . Изученные свойства линейной функции позволяют нам пользоваться только последним построением. Построим в системе координат график функции . При каких значениях параметра мы получим прямые параллельные ветвям графика функции ? Построим графики линейной функции для значений параметра 1 и –1 (рис. 9). Из рисунка видно, что если график функции y=аx находится между лучами, лежащими выше оси абсцисс, то уравнение имеет одно решение, если между осью абсцисс и графиком функции y = –x – два решения, и если лежит вне указанных областей, то решений не имеет. Укажите значения параметра для названных областей.
Если выражение имеет вид, который позволяет решить задачу с параметром методом «вращающаяся прямая», то его достаточно просто преобразовать к виду, который позволяет нам решить данную задачу метолом «движущаяся прямая». Для этого достаточно поделить левую и правую часть выражения на х, следя при этом за равносильностью преобразований. Этот момент должен быть рассмотрен при решении задач для формирования умений находить более рациональный путь в том или ином задании. Относительная простота построения графика функции в случае решения методом «вращающаяся прямая» компенсируется более трудным получением ответа из графической модели, так как иногда для его получения требуется переходить к уравнению, используя производную, рассматривать характер монотонности функции, производить относительно трудные сопутствующие вычисления. Проще и нагляднее в этом отношении пользоваться методом «движущаяся прямая» и, если построение функции – не слишком трудная задача, то, скорее всего, этот метод является более рациональным. Для формирования умения выбирать более рациональный путь нужно дать задание решить обоими способами задачу с параметром. Для формирования и закрепления умений и навыков работы с графическими моделями при решении задач с параметрами нужно постепенно переходить к более сложным заданиям, в которых варьируются значения независимой переменной, условия заданий и увеличивается арсенал требующихся аналитических методов.
Метод «неизвестное-параметр».
При решении задач данным методом параметр объявляется переменной. В системе координат строится множество точек, которое задает уравнение или система уравнений, при помощи этого построения находятся требуемые значения параметра. В основе данного метода лежит так называемый метод областей – построение множества точек плоскости, которое задает данное уравнение с двумя переменными или система уравнений. Метод областей можно в некотором смысле назвать обобщением метода интервалов на случай уравнений с двумя переменными. Овладеть методом областей – значит уметь строить множества точек, задаваемые уравнениями в системе координат, а это умение предполагает в свою очередь умения построения графиков функций и решения простейших неравенств с двумя переменными.
Подготовительная работа в данном случае представляет собой обучение методу областей. Обучение нужно начать с построения множеств точек, которые являются решениями простейших неравенств. Это связанно с тем, что решение более сложных неравенств сводится к решению простейших. Кроме того, на их примере можно наглядно продемонстрировать алгоритм построения множеств и обосновать его, проведя аналогию с методом интервалов.
Построить в координатной плоскости множество точек удовлетворяющих неравенству .
Преобразуем данное неравенство к виду . Построим в системе координат прямую . Данная прямая разбивает плоскость на две области. Какая-то из этих областей будет искомым множеством точек. Для того, чтобы её определить, нужно, как и в методе интервалов, подставить точку с области и посмотреть удовлетворяет ли она неравенству. Отличие от метода интервалов состоит в том, что точка имеет две координаты: их и нужно подставлять вместо переменных. Та область, точка которой удовлетворяет неравенству и будет искомым множеством точек. В данном случае это будет полуплоскость лежащая выше прямой. Так как неравенство нестрогое, то прямая сама принадлежит искомому множеству.
Далее нужно построить множество для системы неравенств. Лучше сделать это, дополнив уже рассмотренное неравенство до системы, добавив линейное неравенство.
В последствии нужно решить систему заданий, которая предполагает переход от линейных неравенств к линейным неравенствам с модулями, к произвольным выражениям, к выражениям которые требуют преобразований.
Указать множество точек плоскости, удовлетворяющих условиям: ; ; ; ;  .
Каждое из этих заданий преобразуется к равносильной системе, где используются построения для элементарных функций.
На этапе обучения моделированию нужно перейти к задачам с параметрами. На этом этапе нужно объяснить, что параметр рассматривается как переменная, и показать, что существуют два случая: параметр объявляется независимой переменной и параметр зависит от значений другой переменной. По сути, мы получаем тот же метод областей, но задача усложняется в связи с тем, что кроме построения мы должны, опираясь на иллюстрацию, произвести отбор значений параметра которые требуются в задании. Разбор задач нужно начать с относительно простых заданий, для того чтобы показать действие данного метода.
При каких значениях параметра aимеет единственное решение система неравенств

Пусть a будет переменной. Для построения графической модели системы содержащей неравенство нам потребуется метод областей. Зависимая переменная a. Это связанно с тем, что a проще выразить через x. В качестве независимой переменной всегда выбирают ту, которую проще выразить через другую. Постройте в системе координат xOa множество точек, задаваемое системой. Мы получили фигуру (рис. 10) ограниченную параболами  и . Сейчас мы воспользуемся методом «движущаяся прямая», для каждого положения прямой мы получаем в пересечении с множеством отрезок, точку или пустое множество. Если прямая a=aпересекает множество по отрезку АВ, то это означает, что при a=a, система неравенств имеет решения равные абсциссам всех точек отрезка АВ. В задаче же нужно найти такие значения параметра, при которых система имела бы одно решение. Из рисунка видно, что такими значениями параметра являются  и .
Этап обучения работе с моделями начинается после того, как разобрали приведенное выше задание. Он предполагает решение простых заданий, но здесь, после того как задание решено, можно изменить его условие, а рисунок оставить тем же и, продолжая так, получить всю возможную информацию, которую может дать иллюстрация. Здесь делается основной упор не на решение трудных заданий, а на работу с графическими моделями. Здесь же нужно отработать умение выбирать независимую переменную. При построении моделей можно предложить использование разных цветов, например, разными цветами можно изображать включаемые и не включаемые линии, а так же оси координат, и конечное искомое множество. Это усилит наглядность рисунка и может избавить от случайной ошибки. После того как отработаны все приемы по построению и интерпретации графических моделей, можно переходить к более сложным заданиям, где в качестве подзадачи возникает задача приведения выражения к виду, удобному для графического моделирования.
В двух предыдущих методах решения заданий с параметрами был указан вид выражения, по которому мы можем сказать, что применим именно этот метод. В этом случае нужно отметить, что данный метод применяется, в случае, если задание содержит неравенство или неравенство возникает в результате преобразований, и можно выразить значение параметра через переменную или наоборот. Умение выбирать в случае необходимости подходящий метод делает решение сложных заданий более рациональным, рассуждения более ясными, последовательными и лаконичными.
Использование свойств функции.
Данный метод заключается в обобщении свойств графиков функций на случай параметра. Ученики владеют методами построения функций методом сдвига вверх и вниз, влево и вправо, сжатия и растяжения. Рассмотрение этих методов в случае параметрического задания функции дает эффективный способ решения задач с параметрами. Если выражение в задании с параметром не удается привести к виду, в котором его можно решить методами, изложенными выше, то можно прибегнуть к данному методу, еще его можно применить, в случае если полученное с его помощью решение будет более рациональным, чем решение, полученное иными методами.
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.