--PAGE_BREAK--По мнению Ф. Фребеля первые временные представления ребенок должен усвоить в процессе деятельности, в играх и занятиях с дидактическим материалом. Еще более узкий объем знаний указывает М. Монтесори, предлагая учить детей понимать слова: «до», «после», «чаще», «реже», правильно употреблять — «сегодня», «завтра», «вчера». Предлагает знакомить с метром, сантиметром, а вот необходимость соизмерения временных величин детьми дошкольного возраста отрицала. Мы видим, что в зарубежной педагогике авторы придерживались прагматического подхода к освоению детьми пространственно — временных отношений — через действия с предметами.
К.Д.Ушинский предлагает знакомить детей 7 года жизни с понятиями: сутки, неделя, месяц, год, а также тысячелетие и понятиями, определяющими возраст людей: младенец, дитя, отрок, юноша, девушка, мужчина, женщина, старик, старуха. Он указывал на важную роль чувственного опыта ребенка и степень овладения им речью.
Разработанная А.М. Леушиной в 40-е годы концепция формирования количественных представлений, была существенно дополнена в 60-ые и 70-ые годы за счет научно-теоретической и методической разработки проблемы развития пространственно-временных представлений у дошкольников. В дальнейшем под руководством А.М. Леушиной были разработаны содержание и методы формирования у детей пространственных и временных представлений, обучения измерению объектов, массы тел, обеспечивающие умственное и всестороннее развитие детей. Усвоение дошкольниками содержания абстрактных знаний осуществлялось в основном через усвоения практических действий.
Хотелось бы отметить, что содержание математических знаний для дошкольников, в частности о времени и пространстве, в образовательных программах А.М. Леушиной было представлено достаточно полно и разнообразно. Это пополнило содержание дошкольного образования и явилось существенным отличием от образовательных программ за рубежом.
Т.Д. Рихтерман также раскрывает основные особенности восприятия детьми времени, уточняет задачи, предлагает интересные приемы работы. Однако она предлагает ознакомление с частями суток на наглядной основе — использование картинок с отражением деятельности детей в различные части суток, затем — предлагает пейзажные картинки, где дети ориентируются по основным природным показателям: цвет неба, положение Солнца на небосклоне, степень освещенности дня. Современная система образования широко использует искусство как педагогически ценное средство развития личности ребенка. Именно искусство, отражающее художественный образ времени и пространства жизнедеятельности людей позволяет ребенку открыть новые культурно — философские грани данных понятий.
Познание пространства и времени в культурно — исторической концепции позволяет активизировать процесс развития ребенка и закладывать основы философско — логического мышления, начиная с дошкольного детства.
1.2 Программные требования к методике преподавания математики дошкольникам в современных ДОУ
Современная программа по математике направлена на развитие и формирование математических представлений и способностей, логического мышления, умственной активности, смекалки, то есть умения делать простейшие суждений, пользоваться грамматически правильными оборотами речи.
В математической подготовке предусмотренной программой, наряду с обучением детей счету, развитием представлений о количестве и числе в пределах первого десятка, делению предметов на равные части большое внимание уделяется операциям с наглядным материалом, проведению измерений с помощью условных мерок, определению объема жидких и сыпучих тел, развитию глазомера ребят, их представлений о геометрических фигурах, о времени, формированию понимания пространственных отношений. На занятиях по математике воспитатель осуществляет не только образовательные задачи, но и решает воспитательные. Педагог знакомит дошкольников с правилами поведения, воспитывает у них старательность, организованность, привычку к точности, сдержанн6ость, настойчивость, целеустремленность, активное отношение к собственной деятельности.
Работу по развитию у детей элементарных математических представлений воспитатель организует на занятиях и вне занятий: утром, днем во время прогулок, вечером; 2-3 раза в неделю. Педагоги всех возрастных групп должны использовать все виды деятельности для закрепления у ребят математических знаний. Например, в процессе рисования, лепки, конструирования у детей закрепляются знания о геометрических фигурах, числе и размере предметов, об их пространственном расположении; пространственные представления, счетные навыки, порядковый счет – на музыкальных и физкультурных занятиях, во время спортивных развлечений. В различных подвижных играх могут быть использованы знания детей об измерениях условными мерками величин предметов. Для закрепления математических представлений воспитатели широко используют дидактические игры и игровые упражнения отдельно для каждой возрастной группы. В летний период программный материал по математике повторяется и закрепляется на прогулках, в играх. В основе методики обучения математическим знаниям лежат обще дидактические принципы: систематичность, последовательность, постепенность, индивидуальный подход. Предлагаемые детям задания последовательно, от занятия к занятию, усложняются, что обеспечивает доступность обучения. При переходе к новой теме не следует забывать о повторении пройденного. Повторение материала в процессе изучения нового не только позволяет углубить знания детей, но и дает возможность легче сосредоточить внимание на новом.
На занятиях по математике воспитатели используют различные методы (словесный, наглядный, игровой) и приемы (рассказ, беседа, описание, указание и объяснение, вопросы детям, ответы детей, образец, показ реальных предметов, картин, дидактические игры и упражнения, подвижные игры).
Большое место в работе с детьми всех возрастных групп занимают методы развивающего обучения. Это и систематизация предлагаемых им знаний, использование наглядных средств (эталонных образцов, простейших схематических изображений, предметов-заместителей) для выделения в реальных предметах и ситуациях различных свойств и отношений, применение общего способа действия в новых условиях.
Если педагоги сами подбирают наглядный материал, им при этом следует строго соблюдать требования, вытекающие из задач обучения и особенностей возраста детей. Эти требования следующие:
— достаточное количество предметов, используемых на занятии;
— разнообразие предметов по размерам (большие и маленькие);
— обыгрывание с детьми всех видов наглядности до занятия в разные отрезки времени, с тем, чтобы на занятии их привлекала только математическая сторона, а не игровая (при обыгрывании игрового материала нужно указать ребятам его назначение);
— динамичность (ребята действуют с предложенном им предметом в соответствии с заданиями воспитателя, поэтому предмет должен быть прочным, устойчивым, чтобы его можно было переставить, перенести с места на место, взять в руки);
— художественное оформление. Наглядный материал должен привлекать детей эстетически. Красивые пособия вызывают у ребят желание заниматься с ними, способствуют организованному проведению занятий и хорошему усвоению материала. Для умственного развития дошкольников большое значение имеют занятия по развитию элементарных математических представлений. На занятиях по этому разделу программы дети не только занимаются усвоением навыков счета, решением и составлением простых арифметических задач, но и знакомятся с геометрическими формами, понятием множества, учатся ориентироваться во времени и пространстве. На этих занятиях в значительно большей степени, чем на других, интенсивно развивается сообразительность, смекалка, логическое мышление, способность к абстрагированию, вырабатывается лаконичная и точная речь. «Программа воспитания и обучения в детском саду» предусматривает преемственную связь с программой по этому предмету для 1 класса школы. Если ребенок не усвоил какое-либо правило или понятие, то это неизбежно повлечет за собой его отставание на занятиях по математике в школе.
Задача воспитателя детского сада, проводящего занятия по математике,— включить всех детей в активное и систематическое усвоение программного материала. Для этого он, прежде всего, должен хорошо знать индивидуальные особенности детей, отношение их к таким занятиям, уровень их математического развития и степень понимания ими нового материала. Индивидуальный подход в проведении занятий по математике дает возможность не только помочь детям в усвоении программного материала, но и развить их интерес к этим занятиям. Обеспечить активное участие всех детей в общей работе, что ведет за собой развитие их умственных способностей, внимания, предупреждает интеллектуальную пассивность у отдельных ребят, воспитывает настойчивость, целеустремленность и другие волевые качества. Воспитатель должен заботиться о развитии у детей способностей к проведению счетных операций, научить их применять полученные ранее знания, творчески подходить к решению предложенных заданий. Все эти вопросы он должен решать, учитывая индивидуальные особенности детей, проявляющиеся на занятиях по математике.
Обучение и воспитание ребенка — одно из возможных средств управления им. Образовательные программы для дошкольных учреждений ориентируют педагогов настойчиво и последовательно учить детей замечать время, соотносить с временем игры, занятия, повседневной жизни, приучать детей отдавать отчет о том, что сделано и могло быть сделано в то или другое время. Это вовсе не означает, что нужно постоянно говорить о времени, контролировать детей. Нужно так организовать жизнь, чтобы она была содержательна, интересна и полезна для развития у детей чувства времени. Чувство времени в общем его определении представляет способность ориентироваться при выполнении действий на определенное время без показания специальных приборов и вспомогательных средств. Воспитание чувства времени осуществляется на протяжении всего процесса формирования представлений о времени и не отделима от него.
Разработанная А.М. Леушиной концепция реализована в Типовой «Программе воспитания и обучения в детском саду» новые подходы к содержанию и приемам формирования — временных представлений определены на основе ряда исследований 60-70-80-ых годов (Е.Д. Рихтерман, Е. Щербакова, Н. Фунтикова и др.).
Во второй младшей группе работа с детьми трех лет, по развитию элементарных математических представлений в основном направлена на развитие представлений о множестве. Ребят учат сравнивать два множества, сопоставлять элементы одного множества с элементами другого, различать равенство и неравенство групп предметов, составляющих множество.
Программный материал второй младшей группы ограничен дочисловым периодом обучения. Дети этого возраста учатся составлять группы из отдельных предметов и выделять предметы по одному: различать понятия «много» и «один». При сравнении двух количественных групп с помощью приемов наложения и приложения определять их равенство и не равенство по числу входящих в них элементов.
Дети учатся составлять группу однородных предметов и выделять из нее один предмет, правильно отвечать на вопрос «сколько?». Эта задача решается в основном в игровой и практической деятельности. Существует множество игр, в которых дети учатся выделять один предмет, составлять группу предметов, овладевают терминами «один» и «много». Например: «Медведь и пчелы», «Фонарики», «Поезд», «Кот и мыши» и т. п.
Раздел программы «Величина» связан с развитием первоначальных представлений у дошкольников о величине предметов контрастных и одинаковых размеров по длине, ширине, высоте, толщине, объему (больше, меньше, одинаковые по величине). Дети учатся словом определять величину предметов: длинный – короткий, широкий – узкий, высокий – низкий, толстый – тонкий, больший — меньший.
На каждом занятии обязательно давать детям геометрические фигуры в паре: например, круг и квадрат или квадрат и треугольник, треугольник и круг.
Первые сведения о геометрических фигурах дети получают во время игры. На основе накопленного на основе занятий опыта детей знакомят с названиями плоскостных геометрических фигур (квадрат, круг, треугольник). Учат выделять, различать и называть эти фигуры. Важно, чтобы ребята обследовали эти фигуры зрительным и двигательно-осязательным анализаторами. Дошкольники обводят контур, проводят рукой по поверхностям моделей — таким образом, происходит общее восприятие формы. Для сравнения фигур следует использовать приемы приложения и наложения.
Пространственные представления в группе детей четвертого года жизни целесообразно развивать, используя повседневную жизнь, режимные моменты, дидактические, подвижные игры, утреннюю гимнастику, музыкальные и физкультурные занятия. К концу учебного года дети должны научиться четко различать пространственные направления от себя: вперед, назад (сзади), направо, справа, налево, слева, вниз, снизу, а также части своего тела, их названия. Особое значение приобретает различение правой и левой рук, правой и левой частей своего тела.
В разделе «Ориентировка во времени» в основном предусматривается обучение детей умению различать части суток и называть их: утро, вечер, день и ночь. Этими понятиями ребята овладевают в повседневной жизни, при проведении режимных моментов.
Во второй младшей группе начинают проводить специальную работу по формированию элементарных математических представлений. От того, насколько успешно будет организовано первое восприятие количественных отношений и пространственных форм реальных предметов, зависит дальнейшее математическое развитие детей.
Современная математика при обосновании таких важнейших понятий, как «число», «геометрическая фигура» и т. д., опирается на теорию множеств, в связи с чем формирование понятий в школьном курсе математики происходит на теоретико-множественной основе.
Выполнение детьми дошкольного возраста различных операций с предметными множествами позволяет в дальнейшем развить у малышей понимание количественных отношений и сформировать понятие о натуральном числе. Умение выделять качественные признаки предметов и объединять предметы в группу на основе одного общего для всех их признака — важное условие перехода от качественных наблюдений к количественным.
Работу с детьми начинают с заданий на подбор и объединение предметов в группы по общему признаку. Пользуясь приемами наложения или приложения, дети устанавливают наличие или отсутствие взаимнооднозначного соответствия между элементами групп предметов (множеств).
В современном обучении математике в основе формирования понятия о натуральном числе лежит установление взаимнооднозначного соответствия между элементами сравниваемых групп предметов.
Детей не учат считать, но, организуя разнообразные действия с предметами, подводят к усвоению счета, создают возможности для формирования понятия о натуральном числе.
Программа средней группы направлена на дальнейшее формирование математических представлений у детей. Она включает обучение счету до 5 на сравнении двух множеств, выраженных смежными числами. Важной задачей в этом разделе остается умение устанавливать равенство и неравенство групп предметов, когда предметы находятся на различном расстоянии друг от друга, когда они различны по величине и т. д. Решение этой задачи подводит детей к пониманию абстрактного числа.
Группировка предметов по признакам вырабатывает у детей умение сравнивать, осуществлять логические операции классификации. В процессе разнообразных практических действий с совокупностями дети усваивают и используют в речи простые слова и выражения, обозначающие уровень количественных представлений: много, один, по одному, ни одного, совсем нет, мало, такой же, одинаковый, столько же, поровну; столько, сколько; больше, чем; меньше, чем; каждый из.., все, всех.
Ребята средней группы должны научиться называть числительные по порядку, соотносить каждое числительное только с одним предметом.
В конце счета подводить итог его круговым движением и именовать названием пересчитанных предметов (например, «одна, две, три. Всего три куклы»). При подведении итога счета всегда обращать внимание на то, чтобы дети всегда первым называли число, а потом — предмет. Детей учат отличать процесс счета от итога счета, считать правой рукой слева направо, в процессе счета называть только числительные, правильно согласовывать числительные с существительными в роде, числе, падеже, давать развернутый ответ.
Одновременно с обучением счету формируется и понятие о каждом новом числе путем добавления единицы. В течении всего учебного года повторяется количественный счет до 5. При обучении счету на каждом занятии следует уделить особое внимание таким приемам, как сравнение двух чисел, сопоставление, установление равенства и неравенства их, приемы наложения и приложения.
продолжение
--PAGE_BREAK--