1) ом називається поверхня, яка в деякій прямокутній системі координат визначається рівнянням.
Рівняння (1) називається канонічним рівнянням еліпсоїда. Дослідження форми еліпсоїда проведемо методом паралельних перерізів. Для цього розглянемо перерізи даного еліпсоїда площинами, паралельними площині Оху. Кожна з таких площин визначається рівнянням z=g, де h – довільне дійсне число, а лінія, яка утвориться і перерізі, визначається рівняннями
Дослідимо рівняння (2) при різних значення h.
Якщо
Якщо h=+ c, то
Якщо
Аналогічні результати дістанемо, якщо розглядатимемо перерізи еліпсоїда площинами х=h і у=h.
Таким чином, розглянуті перерізи дають змогу зобразити еліпсоїд як замкнуту овальну поверхню. Величина а, b, с називаються півосями еліпсоїда. Якщо будь-які дві півосі рівні між собою, то триосний еліпсоїд перетворюється в еліпсоїд обертання, а якщо всі три півосі рівні між собою, - у сферу.
Отже даний еліпсоїд має півосі: а= 2
2) Одно порожнинний гіперболоїд
Однопорожнинним гіперболоїдом називається поверхня, яка в деякій прямокутній системі координат визначається рівнянням
Рівняння (3) називається канонічним рівнянням однопорожнинного гіперболоїда.
Досліджують рівняння (3), як і в попередньому пункті, методом паралельних перерізів. Перетинаючи одно порожнинний гіперболоїд площинами, паралельними площині Оху, дістанемо в перерізі еліпси. Якщо поверхню (3) перетинати площинами х=h або у=h, то в перерізі дістанемо гіперболи.
Детальний аналіз цих перерізів показує, що однопорожнинний гіперболоїд має форму нескінченної трубки, яка необмежено розширюється в обидва боки від найменшого еліпса, по якому однопроджнинний гіперболоїд перетинає площину Оху.
Двопорожнний гіперболоїд
Двопорожнинним гіперболоїдом називаються поверхня, яка в деякій прямокутній системі координат визначається рівнянням
Рівняння (4) називається канонічним рівнянням двопорожнинного гіперболоїда.
Метод паралельних перерізів дає змогу зобразити двопорожнинний гіперболоїд як поверхню, що складається з двох окремих порожнин (звідси назва двопорожннний), кожна з яких перетинає вісь Оz і має форму опуклої нескінченної часі.
Еліптичний параболоїд
Еліптичним параболоїдом називається поверхня, яка в деякій прямокутній системі координат визначається рівнянням
що є канонічним рівнянням еліптичного параболоїда. Він має форму нескінченної опуклої чаші. Лініями паралельних перерізів еліптичного параболоїда є параболи або еліпси.
Гіперболічний параболоїд
Гіперболічний параболоїдом називається поверхня, яка в деякій прямокутній системі координат визначається рівнянням
що є канонічним рівнянням гіперболічного параболоїда. Ця поверхня має форму сідла.
Лініями паралельних перерізів гіперболічного параболоїда є гіперболи або параболи.
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |