Реферат по предмету "Астрономия"


Функції багатьох змінних Означення границя та неперервність похідні диференціали

Тема: Функції багатьох змінних. Означення, границя та неперервність, похідні диференціали.

Як відомо, будь-який упорядкований набір з n дійсних чисел х1…,хn позначається (х1,…,хn) або М(х1,…,хn) і називається точкою n-вимірного арифметичного простору Rn; числа х1,…,хn називаються координатами точки М(х1,…,хn). Відстань між точками М(х1,…,хn) і М/(х/1,…,х/n) визначається за формулою

Нехай D Rn – довільна множина n-вимірного арифметичного простору. Якщо кожній точці М(х1,…,хn) D поставлено у відповідність деяке цілком визначене дійсне число f(M)= f(х1,…,хn), то кажуть, що на множині D задана числова функція f : RnR від n змінних х1…,хn. Множина D називається областю визначення, а множина - множиною значень функції f.

Зокрема, при n = 2 функцію двох змінних z = f(x,y),(x,y)D можна розглядати як функцію точок площини в тривимірному просторі з фіксованою системою координат Оxyz. Графіком цієї функції називається множина точок

яка визначає, взагалі кажучи, деяку поверхню в R3.

Приклад 4. Знайти точки розриву функції

Функція не визначена в точках, в яких знаменник перетворюється в нуль. Тому вона має лінією розриву пряму 2х + 3у + 4 = 0.

Нехай (х01,…,х0k,…x0n) – довільна фіксована точка в області визначення функції u = f(х1,…,хn). Надаючи значенню змінної хk приросту , розглянемо границю

.

Ця границя називається частинною похідною 1-го порядку функції по змінній xk в точці (x01,…,x0n) і позначається або

Обчислюються частинні похідні за звичайними правилами і формулами диференціювання, але при цьому всі змінні, крім xk, розглядаються як сталі.

Частинними похідними 2-го порядку функції u=f(x1,…,xn) називаються частинні похідні від її частинних похідних першого порядку. Похідні другого порядку позначаються так:

Аналогічно визначаються і позначаються частинні похідні порядку вищого, ніж другий.

Результат багатократного диференціювання функції по різних змінних не залежать від черговості диференціювання за умови, що одержані при цьому змішані частинні похідні неперервні.

Повним приростом функції в точці , який відповідає приростам аргументів , називається різниця

Функція u=f(M) називається диференційовною в точці М0, якщо скрізь в околі цієї точки певний приріст функції можна подати у вигляді

де A1,…An – числа, не залежні від .

Диференціалом 1-го порядку du функції називається вираз

Диференціали незалежних змінних за означенням беруться рівними їх приростам: .

Для диференціала du правильна формула

Якщо p достатньо мале, то для диференційовної функції правильна наближена формула:

Диференціалом 2-го порядку d2u функції називається диференціалом від її диференціала 1-го порядку, розглянутого як функція змінних при фіксованих значеннях : d2u = d(du). Аналогічно визначається диференціал 3-го порядку d3u = d(d2u). Взагалі, dku = d(dk-1 u).

Диференціал k-го порядку функції , де х1…хn – незалежні змінні, символічно записуються у вигляді формули

яка формально розкривається за біномним законом.

Зокрема, у випадку функції двох змінних , маємо:

Градієнт функції - це вектор, що визначається формулою grad Він визначає напрямок найшвидшого зростання функції:

Приклад 9. Нехай Знайти grad u (M0).

Маємо

Тоді

а тому grad u(M0)= (10;3;8)=



Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Организация и перспективы увеличения производства картофеля в СХПК Янгорчино Вурнарского рай
Реферат Economic Sanctions In Iraq Essay Research Paper
Реферат Адаптация детей раннего возраста в детском образовательном учреждении
Реферат «молодежная субкультура» сущность понятия «молодежная субкультура»
Реферат Ален Рене Лесаж
Реферат Ceremony A Book Report Including Indian Culture
Реферат Neal And Jesse Eldridge Essay Research Paper
Реферат История становления библиотек Cовременное состояние задачи содержание деятельности
Реферат Системы счисления и коды
Реферат Resources On Internet Essay Research Paper Please
Реферат Сталин Иосиф Виссарионович 3
Реферат Экономико-географическая характеристика Российской Федерации
Реферат Вина, причинний зв'язок як основні категорії кримінального права
Реферат Extracting DNA From The Bacterium Escherichia Coli
Реферат Поняття адміністративного права та його місце у правовій системі держави