Реферат по концепции современного естествознания на тему: «Кибернетика – наука ХХ века» Введение. Современное поколение является свидетелем стремитель¬ного развития науки и техники. За последние триста лет челове¬чество прошло путь от простейших паровых машин до мощных атомных электростанций, овладело сверхзвуковыми скоростями полета, поставило себе на службу энергию рек, создало огромные океанские корабли и гигантские землеройные машины, заменяю¬щие труд десятков тысяч землекопов.
Запуском первого искусствен¬ного спутника Земли и полетом первого человека в космос наша страна проложила путь к освоению космического пространства. Однако до середины XX века почти все создаваемые человеком механизмы предназначались для выполнения хотя и весьма разно¬образных, но в основном исполнительных функций. Их конструк¬ция предусматривала всегда более или менее сложное управление, осуществляемое человеком, который должен оценивать внешнюю обстановку, внешние условия,
наблюдать за ходом того или иного процесса и соответственно управлять машинами, движением тран¬спорта и т. д. Область умственной деятельности, психики, сфера логических функций человеческого мозга казались до недавнего времени совершенно недоступными механизации. Рисуя картины жизни будущего общества, авторы фантастиче¬ских рассказов и повестей часто представляли, что всю работу за человека будут выполнять машины, а роль человека сведется лишь к тому, чтобы, наблюдая
за работой этих машин, нажимать на пульте соответствующие кнопки, управляющие определенными операциями. Однако современный уровень развития радиоэлектроники по¬зволяет ставить и разрешать задачи создания новых устройств, которые освободили бы человека от необходимости следить за производственным процессом и управлять им, т. е. заменили бы собой оператора, диспетчера. Появился новый класс машин - управ¬ляющие машины, которые могут выполнять самые разнообразные и часто
весьма сложные задачи управления производственными процессами, движением транспорта и т. д. Создание управляющих машин позволяет перейти от автоматизации отдельных станков и агрегатов к комплексной автоматизации конвейеров, цехов, це¬лых заводов. Вычислительная техника используется не только для управле¬ния технологическими процессами и решения многочисленных тру¬доемких научно-теоретических и конструкторских вычислительных задач, но и в сфере управления народным хозяйством, экономики и планирования.
1. Зарождение кибернетики Существует большое количество различных определений поня¬тия «кибернетика», однако все они в конечном счете сводятся к тому, что кибернетика - это наука, изучающая общие закономерности строения сложных систем управления и протекания в них процес¬сов управления. А так как любые процессы управления связаны с принятием решений на основе получаемой информации, то кибер¬нетику часто определяют еще и как науку об общих законах полу¬чения, хранения, передачи и преобразования
информации в сложных управляющих системах. Появление кибернетики как самостоятельного научного направ¬ления относят к 1948 г когда американский ученый, профессор математики Массачусетского технологического института Норберт Винер (1894 -1964гг.) опубликовал книгу «Кибернетика, или управ¬ление и связь в животном и машине». В этой книге Винер обоб¬щил закономерности, относящиеся к системам управления различ¬ной природы -
биологическим, техническим и социальным. Во¬просы управления в социальных системах были более подробно рассмотрены им в книге «Кибернетика и общество», опубликован¬ной в 1954 г. Название «кибернетика» происходит от греческого «кюбернетес», что первоначально означало «рулевой», «кормчий», но впо¬следствии стало обозначать и «правитель над людьми». Так, древне¬греческий философ Платон в своих сочинениях в одних случаях называет кибернетикой искусство
управления кораблем или колесницей, а в других — искусство править людьми. Примечательно, что римлянами слово «кюбернетес» было преобразовано в «губернатор». Известный французский ученый-физик А. М. Ампер (1775-1836 гг.) в своей работе «Опыт о философии наук, или Аналитическое изложение естественной классификации всех человеческих знаний», первая часть которой вышла в 1834 г назвал кибернетикой науку о текущем управлении государством (народом), которая помогает
правительству решать встающие перед ним конкретные задачи с учетом разнообразных обстоятельств в свете общей задачи принести стране мир и процветание. Однако вскоре термин «кибернетика» был забыт и, как отмечалось ранее, возрожден в 1948 г. Винером в качестве названия науки об управлении техническими, биологическими и социальными системами. 1.1 Причины… Необходимость или целесообразность замещения человека автоматом может определяться одной из следующих
причин. Во-первых, функционирование объекта управления может характеризоваться такими большими скоростями, что человек в силу нейрофизиологических ограничений скорости своих реакции не может достаточно быстро в темпе функционирования объекта или, как принято говорить, в реальном масштабе времени осуществлять необходимые управляющие воздействия. Данное ограничение от¬носится в той или иной мере, например, к процессам управления самолетами, космическими кораблями, ракетами, атомными и хи¬мическими реакциями.
Во-вторых, управляющий автомат оказывается необходимым, когда управление должно осуществляться в тех местах, где при¬сутствие человека либо невозможно, либо связано с большими трудностями и затратами (космические аппараты, другие планеты, опасные и вредные производственные помещения), а телеуправле¬ние по тем или иным причинам нецелесообразно. В-третьих, в ряде производственных процессов автоматическое управление может обеспечить более высокие показатели точности изготовления изделий и улучшение других качественных
показа¬телей. Наконец, в-четвертых, даже и в тех случаях, когда человек может успешно управлять некоторым производственным процес¬сом, применение управляющих автоматов может дать значительный экономический эффект за счет существенного снижения трудовых затрат. 1.2 Развитие кибернетики Становление и успешное развитие любого научного направле¬ния связаны, с одной стороны, с накоплением достаточного коли¬чества знаний, на базе которых может развиваться данная наука,
и, с другой — с потребностями общества в ее развитии. Поэтому не случайно, что размышления о кибернетике Платона и Ампера не получили в свое время дальнейшего развития и были в сущ¬ности забыты. Достаточно солидная научная база для становления кибернетики создавалась лишь в течение XIX—XX веков, а тех¬нологическая база непосредственно связана с развитием электро¬ники за период последних 50—60
лет. Социальная потребность в развитии кибернетики на современ¬ной ступени общественного развития определяется прежде всего бурным ростом технологического уровня производства, в резуль¬тате чего доля суммарных физических усилий человека и живот¬ных составляет в настоящее время менее 1 % мирового энергети¬ческого баланса. Снижение данной величины обусловлено стремительным ростом энерговооруженности работников физического труда, сопровождающимся и значительным повышением его произ¬водительности.
Вместе с тем так как управление современной тех¬никой требует все больших затрат нервной энергии, а психофизи¬ческие возможности человека ограничены, то оказывается, что именно они. В значительной степени ограничивали полноценное ис¬пользование достижений технического прогресса. С другой стороны, в развитых странах доля работников умст¬венного труда по отношению ко всем работающим приближается уже к 50%, причем дальнейшее возрастание ее является объек¬тивным законом общественного
развития. А производительность умственного труда, в процессе которого до недавнего времени ис¬пользовались лишь самые примитивные технические средства по¬вышения его эффективности (арифмометры, конторские счеты, ло¬гарифмические линейки, пишущие машинки), практически оста¬валась на уровне прошлого века. Если учитывать также непрерывное возрастание сложности тех¬нологических процессов, характеризующихся большим количест¬вом разнообразных показателей, то становится ясным, что отсутст¬вие механизации информационных
процессов тормозит дальнейшее развитие научно-технического прогресса. Перечисленные факторы в совокупности и обусловили быстрое развитие кибернетики и ее технической базы - кибернетической техники 2.1 Работы ученых Развитие кибернетики как науки было подготовлено многочисленными работами ученых в области математики, механики, автоматического управления, вычислительной техники, физиологии высшей нервной деятельности. Основы теории автоматического регулирования и теории устойчивости
систем регулирования содержались в трудах выдающегося русского математика и механика Ивана Алексеевича Вышнеградского (1831—1895 гг.), обобщившего опыт эксплуатации и разработавшего теорию и методы расчета автоматических регуляторов паровых машин. Общие задачи устойчивости движения, являющиеся фундаментом современной теории автоматического управления, были решены одним из крупнейших математиков своего времени
Александром Михайловичем Ляпуновым (1857—1918 гг.), многочисленные труды которого сыграли огромную роль в разработке теоретических вопросов технической кибернетики. Работы по теории колебаний, выполненные коллективом ученых под руководством известного советского физика и математика Александра Александровича Андронова (1901—1952 гг.), послужили основой для решения впоследствии ряда нелинейных задач теории автоматического регулирования.
А. А. Андронов ввел в теорию автоматического управления понятия и методы фазового пространства, сыгравшие важную роль в решении задач оптимального управления. Исследование процессов управления в живых организмах связывается прежде всего с именами великих русских физиологов - Ивана Михайловича Сеченова (1829—1905 гг.) и Ивана Петровича Павлова (1849—1936 гг.). И. М. Сеченов еще во второй половине прошлого столетия заложил
основы рефлекторной теории и выска¬зал весьма смелое для своего времени положение, что мысль о машинности мозга — клад для физиолога, коренным образом проти¬воречащее господствовавшей тогда доктрине о духовном начале человеческого мышления и психики. Блестящие работы И. П. Павлова обогатили физиологию выс¬шей нервной деятельности учением об условных рефлексах и фор¬мулировкой принципа обратной афферентации, являющегося ана¬логом принципа обратной связи в теории автоматического
регули¬рования. Труды И. П. Павлова стали основой и отправным пунк¬том для ряда исследований в области кибернетики, и биологиче¬ской кибернетики в частности. Материальной базой реализации управления с использованием методов кибернетики является электронная вычислительная тех¬ника. При этом «кибернетическая эра» вычислительной техники характеризуется появлением машин с «внутренним программиро¬ванием» и «памятью», т. е. таких машин, которые в отличие от ло¬гарифмической
линейки, арифмометров и простых клавишных машин могут работать автономно, без участия человека, после того как человек разработал и ввел в их память программу решения сколь угодно сложной задачи. Это позволяет машине реализовать скорости вычислений, определяемые их организацией, элементами и схемами, не ожидая подсказки «что дальше делать» со стороны человека-оператора, не способного выполнять отдельные функции чаще одного-двух раз в секунду. Именно это и позволило достичь в настоящее время быстродействия
ЭВМ, характеризующегося сотнями тысяч, миллионами, а в уникальных образцах — сотням миллионов арифметических операций в секунду. К наиболее ранним и близким прообразам современных цифровых ЭВМ относится «аналитическая машина» английского математика Чарльза Беббиджа (1792—1871 гг.). В первой половине XIX века он разработал проект машины для автоматического решения задач, в котором гениально предвосхитил
идею современны кибернетических машин. Машина Беббиджа содержала арифметическое устройство («мельницу») и память для хранения чисел («склад»), т. е. основные элементы современных ЭВМ. Большой вклад в развитие кибернетики и вычислительной техники сделан английским математиком Аланом Тьюрингом (1912-1954 гг.). Выдающийся специалист по теории вероятностей и математической логике, Тьюринг известен как создатель теории универсальных автоматов и абстрактной схемы автомата, принципиально
пригодного для реализации любого алгоритма. Этот автомат с бесконечной памятью получил широкую известность как «машина Тьюринга» (1936 г.). После второй мировой войны Тьюринг разработал первую английскую ЭВМ, занимался вопросами программирования и обучения машин, а в последние годы жизни - математическими вопросами биологии. Исключительное значение для развития кибернетики имели работы американского ученого (венгра по национальности)
Джона фон Неймана (1903—1957 гг.) — одного из самых выдающихся и разносторонних ученых нашего века. Он внес фундаментальный вклад в область теории множеств, функционального анализа, квантовой механики, статистической физики, математической логики теории автоматов, вычислительной техники. Благодаря ему получили развитие новые идеи в области этих научных направлений. Д. фон Нейман в середине 40-х годов разработал первую цифровую
ЭВМ в США. Он — создатель новой математической науки — теории игр, непосредственно связанной с теоретической кибернетикой. Им разработаны пути построения сколь угодно надежных систем из ненадежных элементов и доказана теорема о способности достаточно сложных автоматов к самовоспроизведению и к синтезу более сложных автоматов. Важнейшие для кибернетики проблемы измерения количества информации разработаны американским инженером и математиком Клодом Шенноном, опубликовавшим в 1948 г. классический труд «Теория передачи
электрических сигналов при наличии помех» в котором заложены основные идеи существенного раздела кибернетики — теории информации. Ряд идей, нашедших отражение в кибернетике, связан с именем советского математика академика А. Н. Колмогорова. Первые в мире работы в области линейного программирования (1939 г.) принадлежат академику Л. В. Канторовичу. Необходимо отметить и труды А. А. Богданова (1873—1928 гг.) в этой области. Всем известна острая критика, которой
В. И. Ленин подверг А. А. Богданова за его путаные философские построения. Но Богданов был также автором ряда работ по политической эко¬номии и большой монографии «Всеобщая организационная наука (тектология)». Эта работа, опубликованная впервые в 1912—1913 гг а затем изданная в виде трехтомника в 1925—1929 гг содержит ряд оригинальных идей, предвосхищающих многие положения сов¬ременной кибернетики. Появление в 1948 г. работы Н. Винера было представлено на
Западе некоторыми журналистами как сенсация. О кибернетике, вопреки мнению самого Винера, писали как о новой универсальной науке, якобы способной заменить философию, объясняющую про¬цессы развития в природе и обществе. Все это наряду с недостаточ¬ной осведомленностью отечественных философов с первоисточни¬ками из области теории кибернетики привело к необоснованному отрицанию ее в нашей стране как самостоятельной науки. Однако уже в середине 50-х годов положение изменилось.
В 1958 г. в русском переводе выходит первая книга Н. Винера, а в 1959 г.— книга «Введение в кибернетику» английского биолога У. Р. Эшби, написанная им в 1958 г. Эта, а также другие работы Эшби, в частности его монография «Конструкция мозга» (1952 г.) принесли ученому широкое признание в области кибернетики, и биологической кибернетики в частности.
Интенсивное развитие кибернетики в нашей стране связано с деятельностью таких крупных ученых, как академик А. И. Берг (1893—1979 гг.) — выдающийся ученый, организатор и бессмен¬ный руководитель Научного совета по кибернетике АН СССР; академик В. М. Глушков (1923—1982 гг.) — математик и автор ряда работ по кибернетике, теории конечных автоматов, теорети¬ческим и практическим проблемам автоматизированных систем управления; академик
В. А. Котельников, разработавший ряд важ¬нейших проблем теории информации; академик С. А. Лебедев (1902—1974 гг.), под руководством которого был создан ряд быстро¬действующих ЭВМ; член-корреспондент АН СССР А. А. Ляпу¬нов (1911—1973 гг.)—талантливый математик, сделавший очень много для распространения идей кибернетики в нашей стране; академик А. А. Харкевич (1904—1965 гг.) — выдающийся ученый в области теории информации, и многих других.
Большой вклад в развитие экономической кибернетики внесли академики Н. П. Федоренко и А. Г. Аганбегян. Первые работы по сельскохозяйствен¬ной кибернетике выполнены М. Е. Браславцем, Р. Г. Кравченко, И. Г. Поповым. Поэтому не случайно, что признавая конкретные достижения отдельных русских и советских ученых в области ки¬бернетики, некоторые зарубежные исследователи по праву назы¬вают второй родиной этой науки Советский Союз.
2.2 Предмет кибернетики ее методы и цели. Кибернетика как наука об управлении имеет очевидно объектом своего изучения управляющие системы. Для того чтобы в системе могли протекать процессы управления она должна обладать определенной степенью сложности. С другой стороны, осуществление процессов управления в системе имеет смысл только в том случае, если эта система изменяется, движется, т. е. если речь идет о динамической системе. Поэтому можно уточнить, что объектом изучения кибернетики являются сложные динамические
системы. К сложным динамическим системам относятся и живые организмы (животные и растения), и социально-экономические комплексы (организованные группы людей, бригады, подразделения, пред приятия, отрасли промышленности, государства), и технические агрегаты (поточные линии, транспортные средства, системы агрегатов). Однако, рассматривая сложные динамические системы, кибернетика не ставит перед собой задач всестороннего изучения ид функционирования. Хотя кибернетика и изучает общие законо¬мерности управляющих
систем, их конкретные физические особен¬ности находятся вне поля ее зрения. Так, при исследовании с по¬зиций кибернетической науки такой сложной динамической системы, как мощная электростанция, мы не сосредоточиваем внимания не¬посредственно на вопросе о коэффициенте ее полезного действия, габаритах генераторов, физических процессах генерирования энер¬гии и т. д. Рассматривая работу сложного электронного автомата, мы не интересуемся, на основе каких элементов (электромехани¬ческие
реле, ламповые или транзисторные триггеры, ферритовые сердечники, полупроводниковые интегральные схемы) функцио¬нируют его арифметические и логические устройства, память и др. Нас интересует, какие логические функции выполняют эти уст¬ройства, как они участвуют в процессах управления. Изучая, на¬конец, с кибернетической точки зрения работу некоторого социального коллектива, мы не вникаем в биофизические и биохимические процессы, происходящие внутри организма индивидуумов, образующих этот
коллектив. Изучением всех перечисленных вопросов занимаются меха¬ника, электротехника, физика, химия, биология. Предмет кибернетики составляют только те стороны функционирования систем, которыми определяется протекание в них процессов управления, т. е. процессов сбора, обработки, хранения информации и ее исполь¬зования для целей управления. Однако когда те или иные частные физико-химические процессы начинают существенно влиять на процессы управления системой, кибернетика должна включать их в сферу своего исследования,
но не всестороннего, а именно с позиций их воздействия на процессы управления. Таким образом, предметом изучения кибернетики являются процессы управления в сложных динамических системах. Всеобщим методом познания, в равной степени применимым к исследованию всех явлений природы и общественной жизни, служит материалистическая диалектика. Однако, кроме общефи¬лософского метода, в различных областях науки применяется большое количество специальных методов.
До недавнего времени в биологических и социально-экономи¬ческих науках современные математические методы применялись в весьма ограниченных масштабах. Только последние десятилетия характеризуются значительным расширением использования в этих областях теории вероятностей и математической статистики, математической логики и теории алгоритмов, теории множеств и теории графов, теории игр и исследования операций, корреляцион¬ного анализа, математического программирования и других мате¬матических методов.
Теория и практика кибернетики непосредст¬венно базируются на применении математических методов при опи¬саний и исследовании систем и процессов управления, на построе¬нии адекватных им математических моделей и решении этих моде¬лей на быстродействующих ЭВМ. Таким образом, одним из основ¬ных методов кибернетики является метод математического моде¬лирования систем и процессов управления. К основным методологическим принципам кибернетики отно¬сился применение
системного и функционального подхода при описании и исследовании сложных систем. Системный подход исходя из представлений об определенной целостности системы выражается в комплексном ее изучении с позиций системного анализа, т.е. анализа проблем и объектов как совокупности взаимосвязанных элементов. Функциональный анализ имеет своей целью выявление и изу¬чение функциональных последствий тех или иных явлений или событий для исследуемого объекта.
Соответственно функциональ¬ный подход предполагает учет результатов функционального ана¬лиза при исследовании и синтезе систем управления. Основная цель кибернетики как науки об управлении - добиваться построения на основе изучения структур и механизмов управления таких си¬стем, такой организации их работы, такого взаимодействия эле¬ментов внутри этих систем и такого взаимодействия с внешней средой, чтобы результаты функционирования этих систем были наилучшими, т.е. приводили бы наиболее быстро к заданной цели функционирования
при минимальных затратах тех или иных ресурсов (сырья, энергии, человеческого труда, машинного времени горючего и т. д.). Все это можно определить кратко термином «оптимизация». Таким образом, основной целью кибернетики является оптимизация систем управления. 2.2 Место кибернетики в системе наук Теоретическая кибернетика, подобно математике, является по существу абстрактной наукой. Ее задача - разработка научного аппарата и методов исследования систем управления
независимо от их конкретной природы. В теоретическую кибернетику вошли и по¬лучили дальнейшее развитие такие разделы прикладной матема¬тики, как теория информации и теория алгоритмов, теория игр, исследование операций и др. Ряд проблем теоретической киберне¬тики разработан уже непосредственно в недрах этого научного направления, а именно: теория логических сетей, теория автома¬тов, теория формальных языков и грамматик, теория преобразова¬телей информации и т. д.
Теоретическая кибернетика включает также общеметодологи¬ческие и философские проблемы этой науки. В зависимости от типа систем управления, которые изучаются прикладной кибернетикой, последнюю подразделяют на техниче¬скую, биологическую и социальную кибернетику. Техническая кибернетика - наука об управлении техническими системами. Техническую кибернетику часто и, пожалуй, неправо¬мерно отождествляют с современной теорией автоматического
ре¬гулирования и управления. Эта теория, конечно, служит важной составной частью технической кибернетики, но последняя вместе с тем включает вопросы разработки и конструирования автоматов (в том числе современных ЭВМ и роботов), а также проблемы тех¬нических средств сбора, передачи, хранения и преобразования ин¬формации, опознания образов и т. д. Биологическая кибернетика изучает общие законы хранения, передачи и переработки информации в биологических системах. Биологическую кибернетику в свою очередь подразделяют: на медицинскую
кибернетику, которая занимается главным образом моделированием заболеваний и использованием этих моделей для диагностики, прогнозирования и лечения; физиологическую кибернетику, изучающую и моделирующую функции клеток и органов в норме и патологии; нейрокибернетику, в которой моделируются процессы переработки информации в нервной системе; психологи¬ческую кибернетику, моделирующую психику на основе изучения поведения человека. Промежуточным звеном между биологической и технической кибернетикой является бионика
— наука об исполь¬зовании моделей биологических процессов и механизмов в качестве прототипов для совершенствования существующих и создания новых технических устройств. Социальная кибернетика - наука, в которой используются методы и средства кибернетики в целях исследования и организа¬ции процессов управления в социальных системах. Необходимо, однако, учитывать, что социальная кибернетика, изучающая зако¬номерности управления обществом
в количественном аспекте, не может стать всеобъемлющей наукой об управлении обществом, характеризующимся в значительной мере неформализуемыми яв¬лениями и процессами. В связи с этим наибольшие практические успехи в современ¬ных условиях могут быть достигнуты в результате применения ки¬бернетики в области управления экономикой, производственной деятельностью как важнейшими основами развития общества. Среди социальных подсистем именно экономика характеризуется наиболее развитой
системой количественных показателей и соотношений. Сферой экономической кибернетики являются проблемы оптимизации управления народным хозяйством в целом, его отдельными отраслями, экономическими районами, промышленными комплексами, предприятиями и т. д. В качестве основного метода экономической кибернетики ис¬пользуется экономико-математическое моделирование, позволяющее представить динамику развития производственно-экономических систем разрабатывать меры по
улучшению их структуры и методы экономического прогнозирования и управления. Основным направлением и одной из важнейших целей экономической кибернетики в настоящее время стала разработка теории построения и функционирования автоматизированных систем управления (АСУ). Необходимость создания АСУ обусловливается высокими темпами роста производства, углублением его специализации, расширением кооперирования предприятии, существенным увеличением числа межхозяйственных связей и их
усложнением. В ходе развития этих процессов происходит снижение эффективности традиционных методов управления производством, возникает настоятельная необходимость привлечения на помощь руководителю кибернетической техники, т. е. создания систем управления «человек — машина» которые нашли реальное воплощение в виде АСУ. Особенности сельскохозяйственного производства (территориальная рассредоточенность, большая длительность производственных циклов, сильное влияние случайных факторов и др.) повышают значение
АСУ в управлении им. Кибернетика - обобщающая наука, ис¬следующая биологиче¬ские, технические и социальные системы. Однако предметом ее исследования служат не все вопросы структуры и поведения этих систем, а только те из них, ко¬торые связаны с про¬цессами управления. Следовательно, являясь междисциплинарной на¬укой, кибернетика не претендует на роль наддисциплинарной науки. Если, например, фило¬софия оперирует такими универсальными катего¬риями, как материя, время,
пространство, то кибернетика имеет дело непосредственно лишь с категорией информации, являющейся свойством особым образом организованной материи. Таким образом, место кибернетики в системе наук можно определить следующим образом (рис.1). Кибернетика охватывает все науки, но не полностью, а лишь в той их части , которая относится к сфере процессов управления, связанных с этими науками и соответственно с изучаемыми ими системами. Философия же, объясняя эти закономерности, общие для всех наук, рассматривает наряду
с ними и кибернетику как сферу действия общефилософских законов диалектического материализма. Каковы же основные философские проблемы, возникшие в связи с появлением и развитием кибернетики как нового научного направления? Это прежде всего вопрос о природе и свойствах информации как основной категории кибернетики, вопросы диалектики структуры и развития сложных систем, их иерархии, зависимости их свойств от количества элементов, взаимодействия с внешне средой.
Ряд методологических и философских вопросов возникает в связи с проблемами моделирования—о сущности, типах и свойствах материальных и идеальных моделей, их адекватности и границах применения. С задачами бионического моделирования и созданием универсальных кибернетических автоматов, роботов и искусственного интеллекта связана проблема о предельных возможностях таких систем и о сравнении возможностей переработки информации кибернетическими машинами и человеком.
Создание автоматизированных человеко-машинных систем управления ставит философские проблемы о роли человека в этих системах и о характере своеобразного симбиоза человека и машины. Заключение. Подводя итог, поставим вопрос: к каким выводам, относящимся к информатике-кибернетике будущего и ее влиянию на нашу жизнь, он нас подводит? Как кажется, эти выводы можно сформулировать в следующих пяти пунктах. Первое. Кибернетика, а потом синтетическая ин¬форматика-кибернетика прошла путь становления
и развития, глубоко отличный от путей «обычных», «классических» наук. Ее идеи, формальный аппарат и технические решения вызревали и развивались в рамках разных научных дисциплин, в каждой по-особому; на определенных этапах динамики научного знания между ними пере¬кидывались мосты, приводившие к концептуально-методологическим синтезам. Идеи управления и информации - как и весь связанный с ними арсенал понятий и методов — были подняты
до уровня общенаучных представлений. Кибернетика явилась первым комплексным научным направлением, общность которого столь велика, что приближает его к философскому видению мира. Неудивительно, что вслед за ней «двинулся» системный подход, глобальное моделирование, синергетика и некоторые другие столь же широкие интеллектуальные и технологические концепции. Конечно, информационно-кибернетический подход не подменяет ни методологию, ни гносеологию.
Но он очень важен для более глубокой разработки ряда существенных аспектов философского мышления. Я думаю, что интегративно-синтетическая и генерализующе-обобщающая функция кибернетики-информатики будет возрастать — по мере того, как будут множиться успехи в учете человеческого фактора, выступающего и как важнейшая компонента сложных систем, и как объект исследования. И здесь мы подходим к нашему сле¬дующему выводу. Второе.
Я думаю, что ближайшие десятилетия в рассматриваемой нами сфере пройдут под девизом «Человек!». Человек! Как много и вместе с тем как досадно мало мы знаем о самих себе. Какие тайны, относящиеся к процессам управления, переработки информации, при¬обретения и использования знаний, какие глубинные ме¬ханизмы, ответственные за человеческие чувства, пере¬живания, волеизъявления, таятся в каждом из пас! Го¬ловной мозг, сложнейшая система нейродинамики, тон¬чайшие процессы физиологической
регуляции, загадки интуиции и лабиринты логики мысли, бездны нашего Я, в которые мы далеко не всегда можем (или смеем!) хоть как-то заглянуть, драма симпатий-антипатий в человече¬ских коллективах, великие чувства любви и долга, наши ценности и наши предрассудки, предпочтения и реше¬ния — всего неизведанного и не перечислить! Но ведь, это, с определенных позиций, «подведомственно» киберне¬тике и информатике — не им одним, конечно,
и не им в первую очередь, но ведь — и не в последнюю тоже. Ин¬форматика-кибернетика грядущего, освоив могучие сред¬ства физики и химии — да, наверняка, и биологии — внесет свой, только для нее возможный, вклад в то, что все чаще называют теперь философской антропологией. Главным в этом вкладе, по-видимому, будет выработ¬ка новых методов формализации человеческих знаний и информационно-кибернетическая их реализация — приобретение, накопление, распространение, поиск, использование.
Третье. Следует ожидать коренного изменения во всей системе методов исследований и разработок, во внед¬рении их результатов, во всей методологии научной и - практической деятельности людей, в экономике и культуре. Грядет век информатики, или — быть может, это неудачное выражение, но само его появление показательно — эпоха «компьютерной культуры». Проявления этой культуры — в виде диалога человека и ЭВМ различных классов, в форме работы пользователей с экспертными системами и базами знаний, в растущем
использовании гибких автоматизированных производств и робототехнических систем, во все более широком обращении к мощным пространственно распределенным и даже глобальным сетям коммуникации, в экспансии бытовой и профессиональной информатики — налицо уже сейчас. Каким он будет, этот век информатики? Мы не можем этого предвидеть: научно-технический прогресс трудно прогнозируем. Но одно, я думаю, не вызывает сомнений.
Это: Четвертое — неизбежность определенных сдвигов в социально-психологической сфере. Работа с информационной техникой порождает новый психологический тип человека-творца, для которого компьютеры будущего (наверняка так же мало похожие на совре¬менные ЭВМ, как первые аэропланы — на современные авиалайнеры) будут непосредственным продолжением и орудием его руки и мысли, продолжением столь сильным и столь тонким, что они окажутся в состоянии «усиливать
не только вербализуемое, но и невербализуемое («неявное») знание, не только логику, но и интуицию. Вместе с техникой коммуникации, о характере которой мы сейчас можем лишь гадать, это приведет к новому, надо надеяться, более человечному, доверительному стилю общения между людьми, к такой производительности их трудовых усилий, о которой мы ныне не можем и мечтать. А вместе с тем — к колоссальному обогащению внутреннего мира личности, обогащению, для которого техника
информатики-кибернетики представит и средства, и время. Пятое и последнее, пожалуй, самое важное замечание. Смысл его в том, что достижения информационно-кибернетической науки и технологии, подобно силе атома двулики: могут служить как на пользу, так и во вред людям. Будем надеяться, что человеческие разум и добро, воплотившись в реальные благие дела, восторжествуют;
будем бороться за воплощение этой надежды! Залог успеха здесь мне видится в реализации лозунга нового мышления, органически связанного с глубокими преобразованиями, набирающими силу в нашем обществе, с осознанием приоритета общечеловеческих ценностей, с нарастанием тенденции гуманизации бытия на нашей планете. Кибернетика-информатика обязательно внесут свой - и немалый - вклад в упрочение нового мышления - нового видения мира. Литература 1. Кибернетика. Итоги развития
М.: Наука, 1979. – (Серия «Кибернетика – неограниченные возможности и возможные ограничения»). 2. Кибернетика. Современное состояние М.: Наука, 1980. – (Серия «Кибернетика – неограниченные возможности и возможные ограничения»). 3. Кибернетика. Перспективы развития М.: Наука, 1981. – (Серия «Кибернетика – неограниченные возможности и возможные ограничения»). 4. Кибернетика: прошлое для будущего М.: Наука, 1989. – (Серия «Кибернетика – неограниченные возможности
и возможные ограничения»). 5. Крайзмер Л. П. Кибернетика. Учеб. Пособие для студ. с х. вузов по экон. спец М.: Агропромиздат,1985.
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |
Реферат | English Grammar |
Реферат | English - topics |
Реферат | Economic sanctions in MP (english) |
Реферат | СОЗДАНИЕ СИСТЕМЫ ПРИЗРЕНИЯ И ПОПЕЧЕНИЯ В ЮЖНОМ ЗАУРАЛЬЕ ХIX НАЧАЛА ХХ ВВ. |
Реферат | Дослідження впливу факторів макросередовища на конюнктуру ринку |
Реферат | Herbert George Wells |
Реферат | Разработка ассортимента продукции для ресторана индийской кухни с учетом национальных традиций И |
Реферат | Management |
Реферат | Биография и поэзия И.И.Дмитриева |
Реферат | History of basketball |
Реферат | Foreign exchange market (Иностранный обменный рынок) |
Реферат | Боккаччо Дж. – Декамерон |
Реферат | Europe is our common home |
Реферат | Great Britain and Kazakhstan |
Реферат | Аду Хинт |