Реферат по предмету "Экология"


Причины возникновения и экологические последствия кислотных дождей

Содержание. ВВЕДЕНИЕ 1.Определение темы исследования 2.Выделение блоков модели 2.1. Поступление в атмосферу соединений серы
2.1.1 Виды соединений серы 2.1.2 Источники соединений серы 2.2 Поступления в атмосферу соединений азота 2.2.1 Виды соединений азота 2.2.2 Источники соединений азота 2.3 Химические превращения соединений серы и азота в атмосфере 2.3.1 Химические превращения соединений серы 2.3.2 Химические превращения соединений азота 2.4 Кислотная седиментация (кислотные дожди) 2.4.1 Вымывание кислотных веществ из атмосферы 2.4.2 Сухие осадки 2.5 Влияние кислотных осадков на природу и человека 2.5.1 Косвенные воздействия 2.5.2 Непосредственные (прямые) воздействия 2.5.3 Прямые воздействия на человека 2.6 Мероприятия по снижению негативного воздействия кислотных дождей 3. Описание взаимосвязей между блоками системы ЗАКЛЮЧЕНИЕ Список использованной литературы Введение. Человек всегда использовал окружающую среду в основном как источник ресурсов, однако в течение очень длительного времени его деятельность не оказывала заметного влияния на биосферу. Лишь в конце прошлого столетия изменения биосферы под влиянием хозяйственной деятельности обратили на себя внимание ученых. В первой половине нынешнего века эти изменения нарастали и в настоящее время лавиной обрушились на человеческую цивилизацию. Стремясь к улучшению условий своей жизни, человек постоянно наращивает темпы материального производства, не задумываясь о последствиях. При таком подходе большая часть взятых от природы ресурсов возвращается ей в виде отходов, часто ядовитых или непригодных для утилизации. Это создает угрозу и существованию биосферы, и самого человека. Среди весьма серьезных проблем экологического плана наибольшее беспокойство вызывает нарастающее загрязнение воздушного бассейна Земли примесями, имеющими антропогенную природу. Атмосферный воздух является основной средой деятельности биосферы, в том числе человека. В период промышленной и научно-технической революции увеличился объем эмиссии в атмосферу газов и аэрозолей антропогенного происхождения. По ориентировочным данным ежегодно в атмосферу поступают сотни миллионов тонн оксидов серы, азота, галогенопроизводных и других соединений. Основными источниками атмосферных загрязнений являются энергетические установки, в которых используется минеральное топливо, предприятия черной и цветной металлургии, химической и нефтехимической промышленности, авиационный и автомобильный транспорт. 1. Определение темы исследования. Термином "кислотные дожди" называют все виды метеорологических осадков - дождь, снег, град, туман, дождь со снегом, - рН которых меньше, чем среднее значение рН дождевой воды (средний рН для дождевой воды равняется 5.6). Выделяющиеся в процессе человеческой деятельности двуокись серы (SO2) и окислы азота (NОx) трансформируются в атмосфере земли в кислотообразующие частицы. Эти частицы вступают в реакцию с водой атмосферы, превращая ее в растворы кислот, которые и понижают рН дождевой воды. Впервые термин «кислотный дождь» был введен в 1872 году английским исследователем Ангусом Смитом. Его внимание привлек викторианский смог в Манчестере. И хотя ученые того времени отвергли теорию о существовании кислотных дождей, сегодня уже никто не сомневается, что кислотные дожди являются одной из причин гибели жизни в водоемах, лесов, урожаев, и растительности. Кроме того кислотные дожди разрушают здания и памятники культуры, трубопроводы, приводят в негодность автомобили, понижают плодородие почв и могут приводить к просачиванию токсичных металлов в водоносные слои почвы. Вода обычного дождя тоже представляет собой слабокислый раствор. Это происходит вследствие того, что природные вещества атмосферы, такие как двуокись углерода (СО2), вступают в реакцию с дождевой водой. При этом образуется слабая угольная кислота (CO2 + H2O —> H2CO3). Тогда как в идеале рН дождевой воды равняется 5.6-5.7, в реальной жизни показатель кислотности (рН) дождевой воды в одной местности может отличаться от показателя кислотности дождевой воды в другой местности. Это, прежде всего, зависит от состава газов, содержащихся в атмосфере той или иной местности, таких как оксид серы и оксиды азота. Кислотный дождь образуется в результате реакции между водой и такими загрязняющими веществами, как оксид серы (SO2) и различными оксидами азота (NOх). Эти вещества выбрасываются в атмосферу автомобильным транспортом, в результате деятельности металлургических предприятий и электростанций, а также при сжигании угля и древесины. Вступая в реакцию с водой атмосферы, они превращаются в растворы кислот - серной, сернистой, азотистой и азотной. Затем, вместе со снегом или дождем, они выпадают на землю. Последствия выпадения кислотных дождей наблюдаются в США, Германии, Чехии, Словакии, Нидерландах, Швейцарии, Австралии, республиках бывшей Югославии и еще во многих странах земного шара. Кислотный дождь оказывает отрицательное воздействие на водоемы - озера, реки, заливы, пруды - повышая их кислотность до такого уровня, что в них погибает флора и фауна. Водяные растения лучше всего растут в воде со значениями рН между 7 и 9.2. С увеличением кислотности (показатели рН удаляются влево от точки отсчета 7) водяные растения начинают погибать, лишая других животных водоема пищи. При кислотности рН 6 погибают пресноводные креветки. Когда кислотность повышается до рН 5.5, погибают донные бактерии, которые разлагают органические вещества и листья, и органический мусор начинает скапливаться на дне. Затем гибнет планктон - крошечное животное, которое составляет основу пищевой цепи водоема и питается веществами, образующимися при разложении бактериями органических веществ. Когда кислотность достигает рН 4.5, погибает вся рыба, большинство лягушек и насекомых. Кислотный дождь наносит вред не только водной флоре и фауне. Он также уничтожает растительность на суше. Ученые считают, что хотя до сегодняшнего дня механизм до конца еще не изучен, сложная смесь загрязняющих веществ, включающая кислотные осадки, озон, и тяжелые металлы в совокупности приводят к деградации лесов. 2. Выделение блоков модели. Имитационная модель возникновения кислотных дождей в атмосфере описывает различные источники выбросов соединений серы и азота в атмосферу, химические реакции, в результате которых в атмосфере образуются серная и азотная кислоты и влияние кислотных осадков на природные экосистемы и человека. Также рассматривается ряд мероприятий по снижению образования кислотных дождей в атмосфере. На входе модели рассматриваются различные источники поступления окислов серы и азоты. Эти источники могут иметь как природное так и антропогенное происхождение. Вклад антропогенных источников в образование кислотных дождей во много раз превышает вклад природных источников. Поэтому необходимо применение мер по снижению именно антропогенных выбросов окислов серы и азота в атмосферу.
На выходе модели рассматриваются негативные явления, которые возникают в природных экосистемах при воздействии на них кислотных осадков. На основе изучения процесса возникновения кислотных дождей в атмосфере были выделены следующие блоки модели (рис.1). Естественные источники Естественные источники
соединений серы. NOx Атмосфера Антропогенные источники соединений серы. Антропогенные источники NOx Рис.1 Блок-схема модели возникновения кислотных дождей в атмосфере. 2.1. Поступление в атмосферу соединений серы. 2.1.1 Виды соединений серы. К наиболее важным соединениям серы, находящимся в атмосфере, относятся двуокись серы (оксид серы (IV)), оксисульфид (сероокись углерода), сероуглерод, сероводород и диметилсульфид. Послед­ние четыре соединения вследствие сильного окислительного действия атмосферы легко превращаются в двуокись серы или в серную кислоту (сульфаты). Под влиянием деятельно­сти человека более всего изменяется содержание двуокиси се­ры. В сильно загрязненных районах уровень двуокиси серы может в 1000 и даже в десятки тысяч раз превысить естест­венную границу значений на суше и в океане. Концентрация других соединений серы, обычно образующихся из естествен­ных источников, более или менее одинакова вблизи поверх­ности земли. Среди соединений серы, находящихся в твердом и жидком состоянии, принимаются в расчет только серная кислота и сульфаты (сульфат и гидросульфат аммония), а также морская соль. 2.1.2 Источники соединений серы. Соединения серы, как мы уже упоминалось, частично попадают в атмосферу естествен­ным путем, а частично антропогенным. Поверхность суши, как и поверхность океанов и морей, играет роль естественно­го источника. Обычно деятельность человека ограничивается сушей, поэтому мы можем учитывать загрязнение серой только на этой территории. Существуют три основных источника естественной эмиссии серы. 1. Процессы разрушения биосферы. С помощью анаэробных (действующих без участия кислорода) микроорганизмов происходят различные процессы разрушения органических веществ. Благодаря этому содержащаяся в них сера образует газообразные соединения. Вместе с тем определенные анаэ­робные бактерии извлекают из сульфатов, растворенных в ес­тественных водах, кислород, в результате чего образуются сернистые газообразные соединения. Из указанных веществ сначала в атмосфере был обнару­жен сероводород, а затем с развитием измерительных прибо­ров и способов отбора проб воздуха удалось выделить ряд ор­ганических газообразных соединений серы. Наиболее важны­ми источниками этих газов являются болота, зоны приливов и отливов у береговой линии морей, устья рек и некоторые почвы, содержащие большое количество органических ве­ществ. Поверхность моря также может содержать значительные количества сероводорода. В его возникновении принимают участие морские водо­росли. Можно предположить, что выделение серы биологиче­ским путем не превышает 30-40 млн т в год, что составляет около 1/3 всего выделяемого количества серы. 2. Вулканическая деятельность. При извержении вулкана в атмосферу наряду с большим количеством двуокиси серы попадают сероводород, сульфаты и элементарная сера. Эти со­единения поступают главным образом в нижний слой - тро­посферу, а при отдельных, большой силы извержениях на­блюдается увеличение концентрации соединений серы и в бо­лее высоких слоях - в стратосфере. С извержением вулканов в атмосферу ежегодно в среднем попадает около 2 млн. т. серосодержащих соединений. Для тропосферы это количество незначительно по сравнению с биологическими выделениями, для стратосферы же извержения вулканов являются самым важным источником появления серы. В результате деятельности человека в атмосферу попада­ют значительные количества соединений серы, главным образом в виде ее двуокиси. Среди источников этих соединений на первом месте стоит уголь, сжигаемый в зданиях и на электростанциях, который дает 70% антропогенных выбро­сов. Содержание серы (несколько процентов) в угле достаточно велико (особенно в буром угле). В процессе горения сера превращается в сернистый газ, а часть серы остается в золе в твердом состоянии. Содержание серы в неочищенной нефти также достаточно велико в зависимости от места происхождения (0, 1-2%). При сгорании нефтяных продуктов сернистого газа образуется значительно меньше, чем при сгорании угля. Источниками образования двуокиси серы могут быть так­же отдельные отрасли промышленности, главным образом металлургическая, а также предприятия по производству сер­ной кислоты и переработке нефти. На транспорте загрязне­ние соединениями серы относительно незначительно, там в первую очередь необходимо считаться с оксидами азота. Таким образом, ежегодно в результате деятельности чело­века в атмосферу попадает 60-70 млн т. серы в виде двуокиси серы. Сравнение естественных и антропогенных выбросов сое­динений серы показывает, что человек загрязняет атмосферу газообразными соединениями серы в 3-4 раза боль­ше, чем это происходит в природе. К тому же эти соедине­ния концентрируются в районах с развитой промышленно­стью, где антропогенные выбросы в несколько раз превыша­ют естественные, т. е. главным образом в Европе и Северной Америке. Примерно половина выбросов, связанных с деятельностью человека (30-40 млн т), приходится на Европу. 2.2 Поступления в атмосферу соединений азота. 2.2.1 Виды соединений азота. В состав атмосферы входит ряд азотсодержащих микровеществ, но в кислотной седиментации участвуют только два из них: окись и двуокись азота, которые в результате протекающих в атмосфере реакций образуют азо­тистую кислоту. Окись азота под действием окислителей (например, озона) или различных свободных радикалов преобразуется в дву­окись азота: (окись азота + радикал пероксида водорода = двуокись азота + радикал гидроксила); (окись азота + озон = двуокись азота + молекулярный кислород). Итак, можно предположить, что окисью азота можно пре­небречь вследствие указанных окислительных процессов. Од­нако это не совсем так, что объясняется двумя причинами. Первая заключается в том, что выброс оксидов азота в значи­тельной степени происходит в форме окиси азота, и требуется время, чтобы полностью превратилась в . С другой стороны, в непосредственной близости от источников загряз­нения количество окиси азота превышает количество двуоки­си азота. Это соотношение увеличивается в сторону двуокиси азота по мере приближения к территориям, непосредственно не подверженным загрязнению. Например, в безусловно чис­том воздухе над поверхностью океана часть окиси азота со­ставляет всего несколько процентов от двуокиси азота. Соот­ношение этих газов, впрочем, может меняться вследствие фо­тодиссоциации двуокиси азота:
(двуокись азота+ квант света = окись азота+ атом кислорода), Кислотную среду в атмосфере создает также азотная кис­лота, образующаяся из оксидов азота. Если находящаяся в воздухе азотная кислота нейтрализуется, то образуется азот­нокислая соль, которая обычно присутствует в атмосфере в виде аэрозолей. Это относится также к солям аммония, кото­рые получаются в результате взаимодействий аммиака с ка­кой-либо кислотой.
2.2.2 Источники соединений азота. Эти источники могут быть как естественными, так и антропогенными. Рассмот­рим наиболее важные естественные источники. Почвенная эмиссия оксидов азота. В про­цессе деятельности живущих в почве денитрифицирующих бактерий из нитратов высвобождаются оксиды азота. Соглас­но современным данным ежегодно во всем мире образуется 8 млн т оксидов азота. Грозовые разряды. Во время электрических разрядов в атмосфере из-за очень высокой температуры и пе­рехода в плазменное состояние молекулярные азот и кисло­род в воздухе соединяются в оксиды азота. В состоянии плаз­мы атомы и молекулы ионизируются и легко вступают в химическую реакцию. Об­щее количество образовавшихся таким способом оксидов азо­та составляет 8 млн т в год. Горение биомассы. Этот источник может быть как естественным, так и искусственным. Наибольшее количество биомассы сгорает в результате выжигания леса (с целью по­лучения производственных площадей) и пожаров в саванне. При горении биомассы в воздух поступает 12 млн т оксидов азота в год. Прочие источники естественных выбросов оксидов азота менее значительны и с трудом поддаются оценке. К ним относятся: окисление аммиака в атмосфере, разложение находящейся в стратосфере закиси азота, вследствие чего происходит обратное попадание образовавшихся оксидов в тропосферу и, наконец, фотолитические и биологические процессы в океанах. Эти естественные источники совместно вырабатывают в год 2-12 млн т оксидов азота. Среди антропогенных источников образования оксидов азота на первом месте стоит горение ископаемого топлива (уголь, нефть, газ и т. д.). Во время горения в результате воз­никновения высокой температуры находящиеся в воздухе азот и кислород соединяются. Количество образовавшегося оксида азота NO пропорционально температуре горения. Кро­ме того, оксиды азота образуются в результате горения имею­щихся в топливе азотсодержащих веществ. Сжигая топливо, человек ежегодно выбрасывает в воздух 12 млн т оксидов азота Значительным ис­точником оксидов азота также является транспорт. В целом количества естественных и искусственных выбросов приблизительно одинаковы, однако последние, так же как и выбросы соединений серы, сосредоточены на огра­ниченных территориях Земли. Необходимо упомянуть, однако, что количество выбросов оксидов азота из года в год растет в отличие от эмиссии двуокиси серы, поэтому соединения азота играют огромную роль в образовании кис­лотных осадков. 2.3 Химические превращения соединений серы и азота в атмосфере. Попадающие в воздух загрязняющие вещества в значительной мере подвергаются физическим и химическим воздействиям в атмосфере. Эти процессы идут параллельно их распространению. Очень часто загрязняющие вещества, испытав частичное или полное химическое превращение, выпадают в осадок, изменив таким образом свое агрегатное состояние. Рассмотрим подробнее химические реакции и фазовые изменения, происходящие с атмосферными кислотными микроэлементами (веществами). 2.3.1 Химические превращения соединений серы: Сера входит в состав в не полностью окисленной форме (степень окисления ее равна 4). Если соединения серы находятся в воздухе в течение достаточно длительного времени, то под действием содержащихся в воздухе окислителей они превращаются в серную кислоту или сульфаты. Рассмотрим в первую очередь наиболее значительное с точки зрения кислотных дождей вещество¾ двуокись серы. Реакции двуокиси серы могут протекать как в гомогенной среде, так и в гомогенной. Одной из гомогенных реакций является взаимодействие молекулы двуокиси серы с фотоном в видимой области спектра, относительно близкой к ультрафиолетовой области: . В результате этого процесса возникают так называемые активированные молекулы, которые располагают избыточной энергией по сравнению с основным состоянием. Звездочка означает активированное состояние. Активированные молекулы двуокиси серы в отличие от «нормальных» молекул могут вступать в химическое взаимодействие с находящимся в воздухе в довольно больших количествах молекулярным кислородом: (активированная молекула двуокиси + молекулярный кислород свободный радикал) (свободный радикал + молекулярный кислород триоксид серы + озон) Образовавшаяся триоксид серы, взаимодействуя с атмосферной водой, очень быстро превращается в серную кислоту, поэтому при обычных атмосферных условиях триокись серы не содержится в воздухе в значительных количествах. В гомогенной среде двуокись серы может вступить во взаимодействие с атомарным кислородом, также с образованием триокиси серы: (двуокись серы + атомарный кислород триокись серы) Эта реакция протекает в тех средах, где имеется относительно высокое содержание двуокиси азота, которая также под действием света выделяет атомарный кислород. В последние годы было установлено, что описанные выше механизмы превращения двуокиси серы в атмосфере не имеют превалирующего значения, так как реакции протекают главным образом при участии свободных радикалов. Свободные радикалы, возникающие при фотохимических процессах, содержат непарный электрон, благодаря чему они обладают повышенной реакционноспособностью. Одна из таких реакций протекает следующим образом: (двуокись серы +радикал гидроксила свободный радикал) (свободный радикал + радикал гидроксила серная кислота) В результате реакции образуются молекулы серной кислоты, которые в воздухе или на поверхности аэрозольных частиц быстро конденсируются. Превращение двуокиси серы может осуществляться и в гетерогенной среде. Под гетерогенным превращением мы понимаем химическую реакцию, которая происходит не в газовой фазе, а в каплях или на поверхности частиц, находящихся в атмосфере.
Кроме двуокиси серы в атмосфере можно обнаружить значительное количество других природных соединений серы, которые в конечном счете окисляются до серной кислоты. В их превращении важную роль играют образовавшиеся фотохимическим путем свободные радикалы и атомы. Конечные продукты играют определенную роль в антропогенной кислотной седиментации.
2.3.2 Химические превращения соединений азота: Наиболее распространенным соединением азота, входящим в состав выбросов, является окись азота , который при взаимодействии с кислородом воздуха образует двуокись азота. Последний в результате реакции с радикалом гидроксида превращается в азотную кислоту: (двуокись азота + радикал гидроксила азотная кислота). Полученная таким образом азотная кислота может долгое время оставаться в газообразном состоянии, так как она плохо конденсируется. Другими словами, азотная кислота обладает большей летучестью, чем серная. Пары азотной кислоты могут быть поглощены капельками облаков, осадков или частицами аэрозоля. 2.4 Кислотная седиментация (кислотные дожди). Заключительным этапом в круговороте загрязняющих веществ является седиментация, которая может происходить двумя путями. Первый путь¾ вымывание осадков или влажная седиментация. Второй путь¾ выпадение осадков или сухая седиментация. Совокупность этих процессов является кислотной седиментацией. 2.4.1 Вымывание кислотных веществ из атмосферы. Вымывание происходит во время образования облаков и осадков. Одним из условий образования облаков является перенасыщенность. Это означает, что воздух содержит больше водяного пара, чем он может принять при заданной температуре, сохраняя равновесие. При понижении температуры способность воздуха накапливать воду в виде пара уменьшается. Тогда начинается конденсация водяного пара, которая происходит до тех пор, пока не прекратится перенасыщенность. Однако при обычных атмосферных условиях водяной пар способен конденсироваться только при относительной влажности 400-500%. Относительная влажность в атмосфере лишь в редких случаях может превысить 100,5%. При такой перенасыщенности капельки облаков могут возникать только на частицах аэрозоля¾ так называемых конденсационных ядрах. Этими ядрами часто являются хорошо растворимые в воде соединения серы и азота. После начала образования капель элементы облака продолжают поглощать аэрозольные частицы и молекулы газа. Поэтому воду облака или его кристаллы можно рассматривать как раствор атмосферных элементов. Элементы облака не могут безгранично увеличиваться. Возникающая под действием гравитации седиментация, которая растет с увеличением размера капель, рано или поздно приводит к выпадению капель облаков с высоты нескольких сотен или тысяч метров. Во время выпадения эти капли промывают слой атмосферы между облаками и поверхностью земли. В это время поглощаются новые молекулы газа и новые аэрозольные частицы захватываются падающей каплей. Таким образом, достигающая поверхности земли вода вопреки всеобщему мнению никоим образом не является дистиллированной водой. Более того, во многих случаях растворенные в воде осадков вещества могут служить важным и иногда даже единственным источником восстановления запасов этих веществ в различных сферах. 2.4.2 Сухие осадки. Хотя эта форма седиментации существенно отличается от влажной седиментации, конечный результат их действительно идентичен¾ попадание кислотных атмосферных микроэлементов, соединений серы и азота на поверхность Земли. Известно достаточно много разнообразных кислотных микроэлементов, однако содержание большинства из них настолько мало, что их роль в кислотной седиментаци можно не принимать во внимание. Эти кислотные вещества могут выпадать на поверхность двумя способами. Один из них - турбулентная диффузия, под действием которой в осадок выпадают вещества, находящиеся в газообразном состоянии. Турбулентное диффузионное движение в первую очередь возникает из-за того, что движение струящегося воздуха над почвой и другой поверхностью является неравномерным вследствие трения. Обычно в вертикальном от поверхности направлении ощущается увеличение скорости ветра и горизонтальное движение воздуха вызывает турбулентность. Таким путем компоненты воздуха достигают Земли, и наиболее активные кислотные вещества легко взаимодействуют с поверхностью. 2.5 Влияние кислотных осадков на природу и человека. Кислотные осадки оказывают вредное воз­действие не только на отдельные предмет или живые сущест­ва, но и на их совокупность. В природе и в окружающей сре­де образовались сообщества растений и животных, между ко­торыми, как и между живыми и неживыми организмами, су­ществует постоянный обмен веществ. Эти сообщества, кото­рые можно также называть экологической системой, обычно состоят из четырех групп: неживые объекты, живые организ­мы, потребители и разрушители. Влияние кислотности в первую очередь сказывается на со­стоянии пресных вод и лесов. Обычно воздействия на сообще­ства бывают косвенными, т.е. опасность представляют не са­ми кислотные осадки, а протекающие под их влиянием про­цессы (например, высвобождение алюминия). В определен­ных объектах (почва, вода, ил и т.д.) в зависимости от кис­лотности могут возрасти концентрации тяжелых металлов, так как в результате изменения рН изменяется их раствори­мость. Через питьевую воду и животную пищу, например, через рыбу в организм человека также могут попасть токсич­ные металлы. Если под действием кислотности изменяются строение почвы, ее биология и химия, то это может привести к гибели растений (например, отдельных деревьев). Обычно эти косвенные воздействия не являются местными и могут влиять на расстоянии нескольких сотен километров от источ­ника загрязнения. 2.5.1 Косвенные воздействия. Воздействия на леса и пашни. Кислотные осадки воздействуют либо косвенным путем; через почву и корневую систему, либо непосредствен­но (главным образом на листву). Подкисление почвы опреде­ляется различными факторами. В отличие от вод почва обла­дает способностью к выравниванию кислотности среды, т.е. до определенной степени она сопротивляется усилению кис­лотности. Попавшие в почву кислоты нейтрализуются, что ведет к сохранению существенного закисления. Однако наря­ду с естественными процессами на почвы в лесах и на паш­нях воздействуют антропогенные факторы. Химическая стабильность, способность к выравниванию, склонность почв к закислению изменчивы и зависят от каче­ства подпочвенных пород, генетического типа почвы, способа ее обработки (возделывания), а также от наличия поблизости значительного источника загрязнений. Кроме того, способность почвы сопротивляться влиянию кислотности за­висит от химических и физических свойств подстилающих слоев. Косвенные воздействия проявляются по-разному. Напри­мер, осадки, содержащие соединения азота, некоторое время способствуют росту деревьев, так как снабжают почву пита­тельными веществами. Однако в результате постоянного по­требления азота лес им перенасыщается. Тогда увеличивается вымывание нитрата, что ведет к закислению почвы.
Во время выпадения осадков вода, стекающая с листьев, содержит больше серы, калия, магния, кальция и меньше нитрата и аммиака, чем вода осадков, что приводит к увели­чению кислотности почвы. В результате этого возрастают по­тери необходимых для растений кальция, магния, калия, что ведет к повреждению деревьев.
Поступающие в почву ионы водорода могут замещаться находящимися в почве катионами, в результате чего проис­ходят либо выщелачивание кальция, магния и калия, либо их седиментация в обезвоженной форме. Далее возрастает также мобильность токсичных тяжелых металлов (марганец, медь, кадмий и др.) в почвах с низкими значениями рН. Растворимость тяжелых металлов также сильно зависит от рН. Растворенные и вследствие этого легко поглощаемые растениями тяжелые металлы являются ядами для растений и могут привести к их гибели. Широко известно, что алюми­ний, растворенный в сильнокислой среде, ядовит для живу­щих в почве организмов. Во многих почвах, например, в се­верных умеренных и бореальных лесных зонах, наблюдается поглощение более высоких концентраций алюминия по сравнению с концентрациями щелочных катионов. Хотя многие виды растений в состоянии выдержать это соотношение, од­нако при выпадении значительных количеств кислотных осадков отношение алюминий/кальций в почвенных водах настолько возрастает, что ослабляется рост корней и создает­ся опасность для существования деревьев. Происходящие в составе почвы изменения могут преобра­зовать состав микроорганизмов в почве, воздействовать на их активность и тем самым повлиять на процессы разложения и минерализации, а также на связывание азота и внутреннее закисление. Так, например, гибель лесов в Средней и Запад­ной Европе произошла главным образом под влиянием кос­венных воздействий. Почти полностью погибли леса на площа­ди в несколько сотен тысяч гектаров. Дальнейшую озабоченность вызывает то, что в результате гибели наиболее чувствительных к закислению существ (мик­роорганизмы почвы, грибы, дубы) в структуре материального и энергетического баланса живых сообществ могут произойти неблагоприятные изменения, и в конечном итоге сам человек также пострадает из-за происходящих при этом необратимых процессов. Закисление пресных вод. Собственно говоря, закисление прёсных вод - это потеря ими способности к нейтрализации. Закисление вызывают сильные кислоты, главным образом серная и азотная. На протяжении длительного периода более важную роль играют сульфаты, но во время эпизодических явлений (например, таяние снега) сульфаты и нитраты дейст­вуют совместно. На значительных территориях при повыше­нии определенных значений кислотности осадков поверхност­ные воды оказываются кислыми. Если почва теряет способ­ность нейтрализовать кислоты, то значение рН может сни­зиться на 1, 5, а в крайних случаях — даже на 2 или на 3. Частично закисление происходит непосредственно под дейст­вием осадков, но в большей мере - за счет веществ, смывае­мых с территории водного бассейна. Процесс закисления поверхностных вод состоит из трех фаз. 1. Убыль ионов гидрокарбоната, т.е. уменьшение способ­ности к нейтрализации при неизменяющемся значении рН. 2. Уменьшение рН при уменьшении количества ионов гидрокарбоната. Значение рН тогда падает ниже 5, 5. Наибо­лее чувствительные виды живых организмов начинают поги­бать уже при рН = 6, 5. 3. При рН = 4, 5 кислотность раствора стабилизируется. В этих условиях кислотность раствора регулируется реакцией гидролиза соединений алюминия. В такой среде способны жить только немногие виды насекомых, растительный и жи­вотный планктон, а также белые водоросли. Многие виды животных и растений начинают гибнуть уже при зачениях рН Гибель живых существ помимо действия сильноядовитого иона алюминия может быть вызвана и другими причинами. Под воздействием иона водорода, например, выделяются кад­мий, цинк, свинец, марганец, а также другие ядовитые тя­желые металлы. Количество растительных питательных ве­ществ, например, фосфора, начинает уменьшаться, так как в растворе ион алюминия образует с ионом ортофосфата нераст­воримый фосфат алюминия: , который осаждается в форме донного осадка. Гибель водных живых сообществ может приводить к закислению и выделению тяжелых металлов, а также к нару­шению экологического равновесия. Уменьшение рН воды идет параллельно с сокращением популяций или гибелью рыб, земноводных, фито- и зоопланктона, а также множества прочих живых организмов. Можно заметить характерные различия (во флоре и фауне) озер, вода которых имеет близ­кий состав питательных веществ и ионов, но различную кис­лотность. До определенных пределов млекопитающие, в том числе и человек, защищены от вредного влияния кислотно­сти, однако в организмах водных животных накапливаются ядовитые тяжелые металлы, которые могут попасть в пище­вую цепочку. 2.5.2 Непосредственные (прямые) воздействия. Гибель растений. Непосредственная гибель растений в наибольшей степени ощущается вблизи от выбросов загрязнений, в радиусе нескольких десятков километров от их источника. Главной причиной является высокая концентрация двуокиси серы. Это соединение адсорбируется на поверхности растения, в ос­новном на его листьях, и оказывает на него вредное влияние. Двуокись серы, проникая в организм растения, принимает участие в различных окислительных процессах. Эти процессы протекают с участием свободных радикалов, образованных из двуокиси серы в результате химических реакций. Они окисляют нена­сыщенные жирные кислоты мембран, тем самым изменяя их проницаемость, что в дальнейшем отрицательно влияет на многие процессы (дыхание, фотосинтез и др.). Непосредственные воздействия на растения могут прини­мать различные формы: 1) генетические изменения; 2) видо­вые изменения; 3)нанесение прямого вреда растительности. Естественно, в зависимости от чувствительности вида и размеров нагрузки масштаб воздействия может простираться от восполнимого (обратимого) ущерба до полной гибели растения. В первую очередь погибают наиболее чувствительные ви­ды, например, отдельные лишайники, которые могут сохра­ниться только в самой чистой среде, поэтому их считают "ин­дикаторами" чистого воздуха. Обычно в сильнозагрязненных местах образуется "лишайная пустыня". В современном городе она су­ществует уже при средней концентрации двуокиси серы 100 мкг/м". Во внутренних его районах лишайник вообще отсутствует, а на окраинах его можно встретить очень редко. Впрочем, существуют также виды лишайника, хорошо переносящие нагрузки двуокиси серы, поэтому отдельные со­противляющиеся виды иногда занимают место погибших ви­дов лишайника. Однако кислотные атмосферные соединения, естественно, могут также оказывать прямое вредное воздействие и на рас­тения более высокого класса. Непосредственный вред, прино­симый двуокисью серы, зависит от многих факторов — мест­ного климата, вида деревьев, состояния почвы, способов обра­ботки леса, рН влажных осадков и др. Опасный уровень ат­мосферной двуокиси серы оказался гораздо ниже, чем счита­лось раньше, так как определенные физиологические и био­химические изменения могут происходить без каких-либо признаков гибели. Однако эта опасная граница становится еще ниже при воздействии двуокиси азота, озона, кислотного дождя и т.д.
Роль двуокиси серы в гибели лесов, таким образом, мож­но считать доказанной. Также доказано вредное влияние влажных кислотных осадков на рост деревьев. Однако эти осадки в первую очередь влияют косвенно — через почву и корневую систему. В наибольшей степени непосредственная гибель растений наблюдается в районах с сильнозагрязнен­ным воздухом, например, в Средней Европе. Масштабы гибе­ли растений и повышенные концентрации двуокиси серы в Европе распространены примерно одинаково. Трудно решить, кто же несет непосредственную ответст­венность за гибель леса — двуокись серы или оксиды азота. Кажется достаточно вероятным, что вредное воздействие ока­зывают совместно все агрессивные кислотные вещества, за­грязняющие воздух. Многие также придерживаются мнения, что при совместном воздействии вредных веществ влияние каждого из них еще больше усиливается (синергизм).
Более всего чув­ствительны к прямому загрязнению хвойные деревья, так как хвоя подвержена воздействию загрязняющих веществ на протяжении нескольких лет в отличие от деревьев, сбрасыва­ющих листву. Самые чувствительные породы — это ель, лист­венница и пихта. Однако многие деревья, сбрасывающие лис­тву, также с трудом переносят прямые воздействия вредных веществ (например, бук, граб). Необходимо подчеркнуть, что упомянутая здесь непосред­ственная гибель растений и косвенные воздействия на них не могут быть отделены друг от друга, так как обычно эти про­цессы происходят одновременно, и в зависимости от обстоя­тельств доминирует какой-либо из них. В любом случае, есте­ственно, вредные воздействия дополняют и усиливают друг друга. 2.5.3 Прямые воздействия на человека. Естественно, атмосфер­ные кислотные микроэлементы не щадят и человека. Однако здесь речь идет уже не только о кислотных дождях, но и о том вреде, который приносят кислотные вещества (двуокись серы, двуокись азота, кислотные аэрозольные частицы) при дыхании. Уже давно установлено, что существует тесная зависи­мость между уровнем смертности и степенью загрязнения района. При концентрации около 1 мг/м3 возрастает число смертельных случа­ев, в первую очередь среди людей старшего поколения и лиц, страдающих заболеваниями дыхательных путей. Статистиче­ские данные показали, что такое серьезное заболевание, как ложный круп, требующее моментального вмешательства вра­ча и распространенное среди детей, возникает по этой же причине. То же самое можно сказать и о ранней смертности новорожденных в Европе и Северной Америке, которая еже­годно исчисляется несколькими десятками тысяч. Кроме оксидов серы и азота опасны для здоровья челове­ка также аэрозольные частицы кислотного характера, содер­жащие сульфаты или серную кислоту. Степень их опасности зависит от размеров. Так, пыль и более крупные аэрозольные частицы задерживаются в верхних дыхательных путях, а мелкие (менее 1 мкм) капли серной кислоты или частицы сульфатов могут проникать в самые дальние участки легких. Физиологические исследования показали, что степень вредного воздействия прямо пропорциональна концентрации загрязняющих веществ. Однако существует пороговое значе­ние, ниже которого даже у самых чувствительных людей не обнаруживаются какие-либо отклонения от нормы. Напри­мер, для двуокиси серы среднесуточная пороговая концентра­ция для здоровых людей составляет приблизительно 400 мкг/м3. В настоящее время норма для состава воз­духа на незащищенных территориях почти соответствует это­му значению. На защищенных территориях нормативы, естественно, строже. В то же время ожидается, что в недалеком будущем установят еще более низкие нормативные значения. Однако опасная концентрация может оказаться еще ниже, если раз­личные кислотные загрязняющие вещества будут усиливать воздействие друг друга, т.е. проявится уже упомянутый синергизм. Также установлена зависимость между за­грязнением двуокисью серы и различными заболеваниями дыхательных путей (грипп, ангина, бронхит и т.д.). На от­дельных загрязненных территориях число заболева­ний было в несколько раз больше, чем на контрольных тер­риториях. Помимо первичного прямого воздействия, на человека косвенно влияет и закисление окружающей среды. В предыдущих главах мы видели, что косвенные воздействия в первую очередь оказывают ядовитые металлы (алюминий, тяжелые металлы). Эти металлы легко могут попасть в пище­вую цепочку, в конце которой стоит человек. Проведенные в Венгрии обследования показали, что содержание цинка в свинине и говядине, а также в мясных продуктах довольно часто превышает допустимый уровень(10%). Кадмий также встречается в говядине в концентрациях, превышающих до­пустимые. Медь и ртуть в безопасных концентрациях обнару­жены главным образом в мясе птицы. Кислотный дождь может также причинять вред метал­лам, различным зданиям и памятникам. В первую оче­редь подвержены опасности памятники, построенные из пес­чаника и известняка, а также расположенные под открытым небом скульптуры. В Италии, Греции и других странах сохранявшиеся на протяжении сотен и тысяч лет памятники старины и различ­ные предметы за последние десятилетия сильно разрушились в результате действия выброшенных в атмосферу загрязняющих веществ. 2.6 Мероприятия по снижению негативного воздействия кислотных дождей. Кислотные дожди могут оказывать как прямое, так и косвенное воздействие на живую и неживую природу. Из этого следует, что меры по частичному восполнению ущерба или предотвращению дальнейшего разрушения окружающей среды могут быть раз­личными. Наиболее эффективным способом защиты следует считать значительное сокращение выбросов двуокиси серы и окиси азота. Этого можно достичь несколькими методами, в том числе путем сокращения использования энергии и создания электростанций, не использующих минеральное топливо. Другие возможности уменьшения выброса загрязнений в ат­мосферу — удаление серы из топлива с помощью фильтров, регулирование процессов горения и другие технологические решения. Снижение содержания серы в различных видах топлива. Лучше всего было бы использовать топливо с низким содер­жанием серы. Однако таких видов топлива очень мало. По приближенным оценкам из известных в настоящее время ми­ровых запасов нефти только 20% имеют содержание серы ме­нее 0, 5%. Среднее содержание серы в используе­мой нефти увеличивается, так как нефть с низким со­держанием серы добывается ускоренными темпами. Так же обстоит дело и с углями. Угли с низким содержа­нием серы находятся практически только в Канаде и Австралии, но это только небольшая часть имеющихся залежей уг­ля. Содержание серы в углях колеблется от 0, 5 до 1, 0%. Таким образом, энергоносители с низким содержанием се­ры у нас имеются в ограниченном количестве. Если мы не хотим, чтобы содержавшаяся в нефти и угле сера попала в окружающую среду, необходимо принимать меры для ее уда­ления. Во время переработки (дистилляции) нефти остаток (ма­зут) содержит большое количество серы. Удаление серы из мазута — процесс очень сложный, а в результате удается ос­вободиться всего от 1/3 или 2/3 серы. К тому же процесс очистки мазута от серы требует от производителя больших капиталь­ных вложений.
Сера в угле находится частично в неорганической, а час­тично в органической форме. Во время очистки, когда удаля­ют несгораемые части, удаляется также часть пирита. Однако таким способом даже при самых благоприятных условиях можно освободиться только от 50% общего содержания серы в угле. С помощью химических реакций могут быть удалены как органические, так и неорганические серосодержащие сое­динения. Но в связи с тем, что процесс идет при высоких температурах и давлениях, этот способ оказался гораздо до­роже предыдущего.
Очистка угля и нефти от серы, таким образом, представ­ляет собой достаточно сложный и малораспространенный про­цесс, причем затраты на него весьма высоки. Кроме того, да­же после очистки энергоносителей в них остается приблизи­тельно половина первичного содержания серы. Поэтому очи­стка от серы является не самым лучшим решением проблемы кислотных дождей. Применение высоких труб. Это один из наиболее спорных способов. Сущность его заключается в следующем. Перемеши­вание загрязняющих веществ в значительной степени зави­сит от высоты дымовых труб. Если мы используем низкие трубы (здесь в первую очередь необходимо вспомнить трубы электростанции), то выбрасываемые соединения серы и азота перемешиваются в меньшей степени и быстрее выпадают в осадок, чем при наличии высоких труб. Поэтому в ближай­шем окружении (от нескольких километров до нескольких десятков километров) концентрация оксидов серы и азота бу­дет высокой и, естественно, эти соединения будут причинять больше вреда. Если труба высокая, то непосредственные воз­действия уменьшаются, но возрастает эффективность переме­шивания, что означает большую опасность для отдаленных районов (кислотные дожди) и для всей атмосферы в целом (изменение серы в газах, образующихся во время горения топлива химического состава атмосферы, изменение кли­мата). Таким образом, строительство высоких труб, несмотря на распространенное мнение, не решает проблемы загрязне­ния воздуха, зато в значительной степени увеличивает "экс­порт" кислотных веществ и опасность выпадения кислотных дождей в отдаленных местах. Следовательно, увеличение высоты трубы сопровождается тем, что непосредственные воз­действия загрязнений (гибель растений, коррозия зданий и т.п.) уменьшаются, однако косвенные воздействия (влияние на экологию удаленных районов) увеличиваются. Технологические изменения. Известно, что в процессе го­рения топлива азот и кислород воздуха образуют окись азота NO, которая в значительной степени способствует повыше­нию кислотности осадков. Выше было указано, что в целом в мире горение топлива дает две трети всех антропогенных вы­бросов. Количество оксида азота NO, который образуется при го­рении, зависит от температуры горения. Выявлено, что чем меньше температура горения, тем меньше возникает оксида азота, к тому же количество NO зависит от времени нахож­дения топлива в зоне горения и от избытка воздуха. Та­ким образом, соответствующим изменением технологии можно сократить количество выбрасываемого загрязняющего вещества. Сокращения выброса двуокиси серы можно также достичь очисткой конечных газов от серы. Наиболее распространен­ный метод — мокрый процесс, когда конечные газы барботируют через раствор известняка, в результате чего образуются сульфит или сульфат кальция. Таким способом удаляется большая часть серы. Этот способ еще не получил широкого распространения. Известкование. Для уменьшения закисления в озера и в почву добавляют щелочные вещества (например, карбонат кальция). Эта операция называется известкованием. Известь, попадая в воду, быстро растворяется, а образующаяся в результате гидролиза щелочь сразу же нейт­рализует кислоты. Известкование применяют для обработки кислых почв с целью их нейтрализации. Наряду с преимуществами известкование имеет ряд недостатков: - в проточной и быстро перемешивающейся воде озер нейт­рализация проходит недостаточно эффективно; - происходит грубое нарушение химического и биологиче­ского равновесия вод и почв; - не удается устранить все вредные последствия закис­ления; С помощью известкования нельзя удалять тяжелые ме­таллы. Эти металлы во время уменьшения кислотности пере­ходят в труднорастворимые соединения и осаждаются, однако при добавлении новой дозы кислот снова растворяются, пред­ставляя таким образом постоянную потенциальную опасность для озер. Кроме описанных выше известно еще множество способов защиты от загрязнений. Например, погибшие популяции животных и растений заменяют новыми, которые лучше пе­реносят закисление. Памятники культуры с целью предотв­ращения дальнейшего их разрушения обрабатывают специ­альной глазурью. Рассмотренные здесь способы имеют одно общее свойство — их использование до сих пор не привело к суще­ственному уменьшению выбросов оксидов серы и азота. Не достигнуты заметные успехи и в предотвращении вредных воздействий, вызываемых кислотными дождями. 3. Описание взаимосвязей между блоками системы. Как уже было упомянуто выше, основной причиной образования кислотных осадков в атмосфере является выброс соединений серы и азота. Эти соединения, имея за собой природное или антропогенное происхождение, взаимодействуют в атмосфере с различными веществами и превращаются в серную и азотную кислоты. Эти кислоты вместе с осадками выпадают на поверхность земли нанося при этом вред природе и человеку. Заключение. Несколько десятилетий назад выражения “кислотные осадки” и “кислотные дожди” были известны лишь исключительно ученым, посвященным в определенных, специализированных областях экологии и химии атмосферы. За последние несколько лет эти выражения стали повседневными, вызывающими беспокойство во многих странах мира. Проблема кислотных дождей стала одной из экологических проблем глобального масштаба. Кислотные осадки являются проблемой, которая в случае ее бесконтрольного развития, может вызвать и уже в некоторых регионах вызывает существенные экономические и социальные издержки. Имитационная модель возникновения кислотных дождей в атмосфере может быть использована для решения этой проблемы. Из этой модели видно, что основной причиной кислотных дождей является антропогенная деятельность. Меж­дународный исследовательский институт прикладного систем­ного анализа (IIASA) проводит изучение моделей с целью ус­тановления возможной кислотности почв, вод и т.п. через де­сятки лет. Результаты говорят о том, что почвы и леса в Европе могут быть спасены от дальнейшего закисления только путем значительного сокращения выбросов. Эти выбросы должно само­стоятельно регулировать каждое государство. Для уменьшения эмиссии загрязняю­щих веществ в атмосферу существует ряд способов: - сильное сокращение использования энергии; - ввод новых технологий, установка фильтрующего обору­дования; - использование слабозагрязняющих либо совсем незагряз­няющих источников энергии. Подобное решение звучит довольно нереально. Ни одно государство не согласится уменьшить масштабы потребления энергии и тем самым ухудшить уровень жизни. Ввод новых технологий и установка фильтрующего обору­дования также представляют собой экономическую проблему. Тем не менее единственным решением проблемы кислотных дождей видится в сокращении потребления энергии, улучшении контроля над выбросами или разработке альтернативных методов производства электроэнергии, таких, как использование ядерной энергии.
Список использованной литературы. 1. Агаджанян Н.А. «Человек и биосфера», Москва, изд-во Знание, 1996г. 2. Акимушкин И.И. Невидимые нити природы. - М.: Мысль, 1985. - 287 c. 3. Баландин Р.К., Бондарев Л.Г. Природа и цивилизация. – М, 1998. – 391 с. 4. Банников А.Г., Рустамов А.К., Вакулин А.А. Охрана природы : Учеб. для с.-х. учеб. заведений. - М.: Агропромиздат, 1995. - 287 c.
5. Беттен Л. Г. «Погода в нашей жизни», Издательство «Мир», Москва, 1985г. 6. Ермаков А.Н., Пурмаль А.П. Физическая химия кислотных дождей // Энергия. — 1998. 7. Дедю И.И. Экологический энциклопедический словарь. – Кишинев,1990. - 406 с 8. Дрейер О.К., Лось В.А. Развивающийся мир и экологические проблемы. - М.: Знание, 1991. - 64 c. 9. Новиков Ю.В. Природа и человек. – М.: Просвещение, 1991. – 223 с. 10. Проблемы экологии России. – М., 1993. – 348 с. 11. Л.Хорват «Кислотный дождь», Москва, Стройиздат, 1990г.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.