Реферат по предмету "Коммуникации и связь"


Побудова транспортної мережі на основі цифрового обладнання SL 16

Вступ 1. Загальна характеристика синхронної цифрової ієрархії 2. Принцип побудови SDH лінійних трактів 3. Функціональні модулі SDH технологій 4. Топології SDH мереж 5. Мережева модель SDH систем 6. Технічні параметри обладнання SL 16 v. 1, SRT 7. Розрахунок транспортної мережі (Ужгород-

Львів-Київ-Харків-Луганськ) 8. Розрахунок радіорелейної СПІ на основі обладнання SRT 1 Висновок Список використаної літератури Вступ Понад двісті років тому індустріалізація глибоко вплинула на світову економіку. Сьогоднішня інформатизація матиме всесвітній вплив значно більших розмірів і змінить долю компаній, країн і людей. Інформатизація змінює спосіб праці, життя розваг

і навчання, надає можливості, які ми тільки починаємо усвідомлювати. Ці зміни утворюють нову інформативну економіку, де технологія єднає кожного з усім, де домінують відкриті комунікації, відкриті стандарти і відкриті ринки. Інтенсивний розвиток нових інформаційних технологій стимулював розвиток цифрових методів передачі голосу і даних, що в кінцевому рахунку привело до створення не тільки технологій локальних

мереж, але й нових високошвидкісних транспортних технологій глобальних мереж. Найбільш цікавою транспортною технологією, що набула широкого застосування – є синхронна цифрова ієрархія SDH. Ця технологія прийшла на зміну імпульсно-кодовій модуляції РСМ і плезіохронній цифровій ієрархії PDH і стала інтенсивно запроваджуватися у результаті масового встановлення сучасних цифрових

АТС, що дозволяє оперувати потоками 2 Мбіт/с і утворення у регіонах локальних кілець SDH. При створенні Україною національної служби зв'язку її не обминули вищезгадані події і проблеми. Тому у нас технологія SDH знайшла місце для існування. Більше того, її симбіоз із цифровою комутацією, не тільки дає змогу інтегрування зі світом

і технічного переоснащення первинної мережі, але й поштовх до територіального реформування систем зв'язку України, яке являє собою поділ країни на чотири територіальні вузли – Центральний, Східний, Південний і Західний. 1. Загальна характеристика синхронних цифрових ієрархій Синхронна цифрова ієрархія дає змогу організувати універсальну транспортну систему, яка охоплює всі ділянки мережі й виконує функції передавання інформації контролю та керування.

Вона розрахована на транспортування сигналів плезіохронної цифрової ієрархії, а також усіх діючих і перспективних служб, у тому числі й широкосмугової цифрової мережі з інтеграцією служб B-ISDN, яка використовує асинхронний спосіб передавання АТМ. У синхронній цифровій ієрархії використано останні досягнення електроніки, системотехніки, обчислювальної техніки тощо. Її застосування уможливлює суттєве скорочення обсягу й вартості апаратури, експлуатаційних

витрат, а також тривалості монтажу й настроювання устаткування. Разом з тим її застосування значно підвищує надійність живучість і гнучкість мереж та якість зв'язку. Лінійні сигнали синхронної цифрової ієрархії організовані в синхронні транспортні модулі SТМ (табл. 1.1), перший з яких відповідає швидкості 155

Мбіт/с, а кожний наступний має швидкість у 4 рази вищу від попереднього й утворюється байтовим синхронним мультиплексуванням. Таблиця 1.1 – Ієрархія швидкостей SDH Рівень ієрархії SDH Швидкість 1 STM 1 155.520 Мбіт/с 4 STM 4 622.080 Мбіт/с 16 STM 16 2.488 Гбіт/с 64 STM 64 9.953 Гбіт/с 256 STM 256 39.81 Гбіт/с Як уже зазначалося, основним середовищем передавання сигналів для

SDH є ВОЛЗ, хоча можливе використання й радіоліній. якщо пропускна спроможність радіоліній недостатня для STM 1 застосовується субпервинний транспортний модуль STM-RR зі швидкістю передавання 52 Мбіт/с (що втричі менше, ніж у STM 1). Проте STM-RR не є рівнем синхронної цифрової ієрархії і не може використовуватись на інтерфейсах мережних вузлів.

У мережі синхронної цифрової ієрархії використовується принцип контейнерних перевезень. Сигнали, що підлягають транспортуванню, попередньо розміщуються в стандартних контейнерах. Всі операції з контейнерами відбуваються незалежно від їхнього вмісту. Завдяки цьому досягається прозорість мережі синхронної цифрової ієрархії, тобто можливість транспортування сигналів плезіохронної цифрової

ієрархії, потоків АТМ або будь-яких нових сигналів. Найвищий шар утворює мережу каналів, якими обслуговуються кінцеві користувачі. Групи каналів об'єднуються в групові тракти різних порядків (середній шар), які організовуються в лінійні тракти, що належать до нижнього шару фізичного середовища передавання. Нижній шар поділяється на підшар секцій (мультиплексних

і регенераційних) та підшар фізичного середовища. Існують контейнери чотирьох рівнів (табл. 1.2, в якій не наведено швидкість 8 Мбіт/с європейської плезіохронної цифрової ієрархії, тому що контейнер С2 призначений для нових сигналів з неієрархічними швидкостями). Важливою особливістю мережі синхронної цифрової ієрархії є поділ її на функціональні шари та підшари. Кожен нижчий шар обслуговує вищий

і має заміняти його. Незалежність кожного шару дає змогу впроваджувати, модернізовувати або заміняти його, не торкаючись інших шарів. Таблиця 1.2. – Швидкості стандартних каналів доступу Рівень Контейнер Швидкість транспортування сигналів PDH Мбіт/с 1 С11 С12 1.544 2.048 2 С2 8.448 3 С3 34.368 4 С140 Найвищий шар утворює мережу каналів, якими обслуговуються кінцеві користувачі.

Групи каналів об'єднуються в групові тракти різних порядків (середній шар), які організовуються в лінійні тракти, що належать до нижнього шару фізичного середовища передавання Нижній шар поділяється на підшар секцій (мультиплексних і регенераційних) та підшар фізичного середовища. Ієрархія SDH включає декілька рівнів STM. Як приклад використання рівнів в мережі

SDH на Рис. 1 показана первинна мережа SDH, що включає кільця магістральної мережі, побудованої на потоках STM 16, регіональних мереж, побудованих на потоках STM 4, і локальних мереж з потоками STM 1. Рис. 1. Приклад первинної мережі, побудованої на технології SDH Рис. 2. Приклад комбінованої первинної мережі PDH/SDH

В процесі упровадження технології SDH на першому етапі вірогідна поява комбінованих мереж SDH/PDH. Технологія SDH упроваджується звичайно у вигляді «островів», об'єднаних каналами існуючої первинної мережі (Рис. 2). На другому етапі «острови» об'єднуються в первинну мережу на основі SDH. В результаті на сучасному етапі необхідно не тільки розглядати технологію SDH, але і орієнтуватися на вивчення комбінованих мереж

і процесів взаємодії SDH і PDH. 2. Принцип побудови SDH лінійних трактів. Загальні особливості побудови синхронної ієрархії Розглянемо загальні особливості побудови синхронної цифрової ієрархії SDH. Не дивлячись на переваги мереж SDH перед мережами PDH, вони б не мали такого успіху, якщо б не сприйняття та підтримка стандартів

PDH. При розробці технології SONET забезпечувалась прийняття американської, а при розробці SDH – європейської ієрархії PDH. В кінцевому варіанті стандарти SONET/ SDH підтримували дві попередні ієрархії. Це виразилось в тому, що термінальні мультиплексори та мультиплексори вводу / виводу мереж SONET/SDH, через які створювався доступ в мережі були розраховані на підтримку лише тих вхідних каналів, або каналів доступу, швидкість передачі яких відповідала об’єднаному

стандартному ряду американської і європейської ієрархії PDH (1.5, 2, 6, 8, 34, 45, 140 Мбіт/с). Цифрові сигнали каналів доступу, швидкість яких відповідала вказаному ряду, будемо називати трибами PDH, а сигнали, швидкість передачі яких відповідає стандартному ряду швидкостей SDH – трибами SDH. Першою особливістю ієрархії SDH – підтримка вхідних сигналів каналів доступу лишу трибів

PDH і SDH. Другою особливістю є процедура формування структури фрейма. При присутності ієрархії структур, структура верхнього рівня будується із структур нижнього рівня, декілька структур цього рівня можуть бути об’єднані в більш загальну структуру. Інші правила відтворюють специфіку технології. Наприклад, на вході мультиплексора доступу маємо триби PDH, які повинні бути упаковані в оболонку фрейму так, щоб

їх можна було б легко ввести і вивести в потрібному місці за допомогою мультиплексора вводу / виводу. Для цього сам фрейм достатньо представити у вигляді контейнера стандартного розміру (в силу синхронності мережі його розміри не повинні мінятись), маючи супроводжуючу інформацію – заголовок, де зібрані всі необхідні для управління та маршрутизації контейнера поля-параметри і внутрішню ємність для розміщення корисного навантаження, де повинні розміщуватись однотипні контейнери

меншого розміру, які також повинні мати якийсь заголовок та корисне навантаження за методом послідовних вкладень, або інкапсуляцій. Для реалізації цього методу було запропоновано використання поняття контейнер, в який запаковувались триби. По типу і розмірі контейнери ділились на чотири рівні, відповідно рівням PDH. На контейнер повинен наклеюватись ярлик, який має управляючу інформацію для збору статистики проходження контейнера.

Контейнер з таким ярликом використовується для переносу інформації (являється логічним, а не фізичним об’єктом, тому його називають віртуальним контейнером). Наступна особливість ієрархії SDH – триби повинні бути запаковані в стандартно розташовані контейнери, розміри яких визначаються рівнем трибу в ієрархії PDH. Віртуальні контейнери можуть об’єднуватись в групи двома різними способами.

Контейнери нижніх рівнів можуть, наприклад, мультиплексуватись (складатись разом) і використовуватись в якості корисного навантаження контейнерів верхнього рівня (більшого розміру), які, в свою чергу, служать корисним навантаженням найвищого рівня (найбільшого розміру) – фрейма STM 1. Таке групування може відтворюватись за жорсткою синхронною схемою, при якій місце окремого контейнера в полі для розміщення строго фіксованого навантаження.

З іншої сторони, з декількох фреймів можуть бути створені нові (більш великі) утворення мультифреймів. Із можливих різновидів в типі складових фрейм контейнерів і не передбачених часових затримок в процесі завантаження фрейму положення контейнерів в середині мультифрейму може бути, строго говорячи, не фіксованою, що може привести до помилки при вводі/виводі контейнера, враховуючи загальну нестабільність синхронізації в мережі.

Для встановлення фактичний адрес початку контейнера на карті поля, відведеного під корисне навантаження. Вказівник дає контейнеру деяку степінь волі (можливість «плавати» під дією непередбачених часових флуктуацій), але при цьому дає гарантію, що не буде загубленим. Третьою особливістю ієрархії SDH – положення віртуального контейнера може приділятись з допомогою вказівників, які дозволяють встановити проти значне з фактом синхронності обробки

і можливості зміни положення контейнера в середині поля корисного навантаження. Хоча розміри контейнерів різні і ємність контейнерів верхніх рівнів достатньо велика, може з’ясуватись таке, що або вона все одно недостатня, або під навантаженням краще виділити декілька (в тому числі і з дрібною частиною) контейнерів меншого розміру. Для цього в SDH технології передбачена можливість скріплення чи конкатенації контейнерів.

Складаний контейнер відрізняється відповідним індексом від основного і розглядається (з точки зору розміщення навантаження) як один великий контейнер. Вказана можливість дозволяє з однієї сторони оптимізувати використання дану номенклатуру контейнерів, з іншої сторони дозволяє легко пристосувати технологію з новими типами навантаження, не відомої на момент розробки. Четверта особливість ієрархії SDH – декілька контейнерів одного рівня можуть бути зчеплені

разом і розглядатись як один неперервний контейнер, використовуваний для розміщення нестандартного корисного навантаження. П’ята особливість ієрархії SDH полягає в тому, що в ній передбачено формування окремого (нормальної для технології пакетної обробки в локальних мережах) поля заголовків розміром 9×9=81 байт. Хоча перенавантаження загальним заголовком не є велике і становить 3.33%, він достатньо великий, щоб розмістити всю необхідну керуючу

і контрольну інформацію і відвести частину байта для організації необхідних службових каналів передачі даних. Враховуючи, що передача кожного байта в структурі фрейму еквівалентна потоку даних зі швидкістю 64 кбіт/с, передача вказаного заголовку відповідає організації потоку службової інформації еквівалентного 5.184 Мбіт/с. Звичайно, що при побудові любої ієрархії повинен бути визначений або ряд стандартних швидкостей цієї

ієрархії, або правило його формування і певний (породжуючий) член ряду. Якщо для PDH значення DSO (64 кбіт/с) визначалось достатньо просто, то для SDH значення першого члена можна було дістати лише після визначення структури фрейму і його розміру. Схема логічних міркувань достатньо проста. По-перше, поле його корисного навантаження повинно було вміщати максимальний по розміру віртуальний

контейнер, сформований при інкапсуляції трибу 140 Мбіт/с. По-друге, його розмір: 9×261=2349 байт і визначив розмір поля корисного навантаження STM 1, а додане до нього поле заголовків визначило розмір синхронно транспортного модуля STM 1: 9×261+9×9=24730 байт, або 2430×8=19440 біт, що при частоті повторення 8000 Гц дозволяє визначити і породжуючий член ряду для ієрархії

SDH: 19440×8000=155.52 Мбіт/с. Узагальнена схема мультиплексування потоків SDH. Стандартна схема інкапсуляції PDH трибів в контейнери і їх послідовного мультипликсування при формуванні модуля STM 1 представлена на рисунку 3. Рис. 3. Схема мультиплексування PDH трибів в технології SONET SDH В даній схемі мультиплексування використовуються наступні скорочення:

C-n – контейнери рівня n (n= 1,2,3,4); VC-n – віртуальні контейнери рівня n (n= 1,2,3,4); TU-n – трибні блоки рівня n (n=1,2,3); TUG-n – групові трибні блоки рівня n (n=2,3); AU-n – адміністративні блоки рівня n (n=3,4); AUG-n – групові адміністративні блоки, STM-N – синхронний транспортний модуль. Контейнери C-n призначені для інкапсуляції (розміщення з ціллю послідовного переносу) відповідних сигналів каналів

доступу, або трибів, які живлять їхні входи. Слово «інкапсуляція» більше підкреслює фізичний сенс процесу, тоді коли логічно проходить відображення структури фрейма відповідного трибу на структуру інкапсулюючого його контейнера. Рівні контейнера n відповідають рівням PDH ієрархії (n=1,2,3,4), а кількість типорозмірів контейнерів N повинно бути рівним кількості членів об’єднаного стандартного ряду.

Ці числа узгоджені так як четвертий рівень PDH за стандартом мають лише в ЕС ієрархії. C 4 інкапсулює Е4, а контейнери C – 1,2,3 повинні бути розбиті кожен на два підрівні, для інкапсуляції відповідних трибів АС і ЕС ієрархій. T-n, E-n – стандартні канали доступу, або триби рівня n (в термінології зв’язківців – «компонентні сигнали») – вихідні потоки (або входи) SDH мультиплексора, відповідні об’єднаному стандартному ряду

АС і ЕС ієрархій SDH. C-n – контейнер рівня n – елемент SDH, який вміщує триби T-n, несучі в собі інформаційне навантаження відповідного рівня ієрархії PDH, контейнери рівня n розбиваються на наступні контейнери підрівнів C-nm: С 1 – розбивається на контейнер С 11, інкапсулюючий триб Т 1=1.5 Мбіт/с і контейнер С 12, інкапсулюючий триб

Е1 = 2 Мбіт/с; С 2 – розбивається на контейнер С 21, інкапсулюючий триби Т2 =6 Мбіт/с і контейнер С 22, інкапсулюючий триб Е2 =8 Мбіт/с; С 3 – розбивається на контейнер С 31, інкапсулюючий триби Е3=6 Мбіт/с і контейнер С 32, інкапсулюючий триб Т3 =45 Мбіт/с; С 4 – ці контейнери не мають підрівнів

і інкапсулюють триби Е4=140 Мбіт/с. У першому стандарті G.708 контейнери С-n були призначені не лише для інкапсуляції PDH трибів, а й інших (тоді ще не контейнерованих) широкосмугових сигналів. Контейнери можна розглядати в якості перших елементів в номенклатурі елементів SDH ієрархії. До контейнера (як і до любого пакету підданому відправці за деяким маршрутом) добавляється

маршрутний заголовок. В результаті він перетворюється у віртуальний контейнер VC рівня n. В номенклатурі елементів SDH ієрархії існують такі віртуальні контейнери: VC -1, VC 2 – віртуальні контейнери нижніх рівнів; VC 3, VC 4 – віртуальні контейнери верхніх рівнів. Структура контейнерів достатньо проста і визначається за формулою:

РОН + PL, де РОН – маршрутний заголовок (в термінології зв’язківців – трактовий заголовок), PL – корисне навантаження. Віртуальні контейнери VC – 1,2,3 рівнів 1,2,3, також як і контейнери С – 1,2,3 розбиваються на віртуальні контейнери підрівнів nm, а саме: VC – 1 розбиваються на VC – 11, VC – 12; VC – 2 розбиваються на VC – 21, VC – 22; VC – 3 розбиваються на VC – 31, VC – 32;

Поля PL і РОН формату віртуального контейнера як логічного елемента мають вигляд: - PL – поле різних розмірів (в залежності від типу віртуального контейнера), формат якого має двовимірну структуру по типу фрейму виду 9хm (9 стрічок і m стовпців). Це поле формується або з контейнерів відповідного рівня (наприклад, для віртуальних контейнерів VC – 1,2 воно формується із контейнерів С – 1,2 відповідно), або

із інших відповідних елементів структури мультиплексування SDH. - РОН – поле, розміром не більше 9 байт, формат якого має двовимірну структуру виду 1×n (наприклад, формат 1×9 для VC -4, або VC -32 і формат 1×6 байт для VC – 31). Це поле складається із різних за призначенням байтів. TU-n – трибні блоки рівня n (n=1,2,3) (в термінології зв’язківців

субблоки) – елементи структури мультиплексування SDH, формат яких простий і визначається формулою: PTR +VC, де PTR – показник трибного блока (TU-n PTR), який відноситься до відповідного віртуального контейнера, наприклад, TU 1 = (TU 1 PTR) + VC 1. Трибні блоки рівня n, як віртуальні контейнери діляться



Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.