Реферат по предмету "Физика"


Нейтронные звёзды

Нейтронные звезды, которые часто называют «мертвыми», являются удивительнейшими объектами. Их изучение в последние десятилетия превратилось в одну из самых увлекательных и богатых открытиями областей астрофизики. Интерес к нейтронным звездам обусловлен не только загадочностью их строения, но и колоссальной плотностью, и сильнейшими магнитными и гравитационными полями. Материя там находится в особом состоянии, напоминающем огромное атомное ядро, и эти условия невозможно воспроизвести в земных лабораториях.
РОЖДЕННАЯ НА КОНЧИКЕ ПЕРА. Открытие в 1932 году новой элементарной частицы — нейтрона заставило астрофизиков задуматься над тем, какую роль он может играть в эволюции звезд. Два года спустя было высказано предположение о том, что взрывы сверхновых звезд связаны с превращением обычных звезд в нейтронные. Затем были выполнены расчеты структуры и параметров последних, и стало ясно, что если небольшие звезды (типа нашего Солнца) в конце своей эволюции превращаются в белых карликов, то более тяжелые становятся нейтронными. В августе 1967 года радиоастрономы при изучении мерцаний космических радиоисточников обнаружили странные сигналы — фиксировались очень короткие, длительностью около 50 миллисекунд, импульсы радиоизлучения, повторявшиеся через строго определенный интервал времени (порядка одной секунды). Это было совершенно не похоже на обычную хаотическую картину случайных нерегулярных колебаний радиоизлучения. После тщательной проверки всей аппаратуры пришла уверенность, что импульсы имеют внеземное происхождение. Астрономов трудно удивить объектами, излучающими с переменной интенсивностью, но в данном случае период был столь мал, а сигналы — столь регулярны, что ученые всерьез предположили, что они могут быть весточками от внеземных цивилизаций. А потому первый пульсар получил название LGM-1 (от английского Little Green Men — «Маленькие Зеленые Человечки»), хотя попытки найти какой-либо смысл в принимаемых импульсах окончились безрезультатно. Вскоре были обнаружены еще 3 пульсирующих радиоисточника. Их период опять оказался много меньше характерных времен колебания и вращения всех известных астрономических объектов. Из-за импульсного характера излучения новые объекты стали называть пульсарами. Это открытие буквально всколыхнуло астрономию, и из многих радиообсерваторий начали поступать сообщения об обнаружении пульсаров. После открытия пульсара в Крабовидной Туманности, возникшей из-за взрыва сверхновой в 1054 году (эта звезда была видна днем, о чем упоминают в своих летописях китайцы, арабы и североамериканцы), стало ясно, что пульсары каким-то образом связаны с вспышками сверхновых звезд. Скорее всего, сигналы шли от объекта, оставшегося после взрыва. Прошло немало времени, прежде чем астрофизики поняли, что пульсары — это и есть быстро вращающиеся нейтронные звезды, которые они так долго искали. КРАБОВИДНАЯ ТУМАННОСТЬ Вспышка этой сверхновой звезды, сверкавшей на земном небосклоне ярче Венеры и видимой даже днем, произошла в 1054 году по земным часам. Почти 1 000 лет — это очень маленький срок по космическим меркам, и тем не менее за это время из остатков взорвавшейся звезды успела образоваться красивейшая Крабовидная туманность. Данное изображение является композицией двух картинок: одна из них получена космическим оптическим телескопом «Хаббл» (оттенки красного), другая — рентгеновским телескопом «Чандра» (голубой). Хорошо видно, что высокоэнергичные электроны, излучающие в рентгеновском диапазоне, очень быстро теряют свою энергию, поэтому голубые цвета превалируют только в центральной части туманности. Совмещение двух изображений помогает более точно понять механизм работы этого удивительнейшего космического генератора, излучающего электромагнитные колебания широчайшего частотного диапазона — от гамма-квантов до радиоволн. Хотя большинство нейтронных звезд было обнаружено по радиоизлучению, все же основное количество энергии они испускают в гамма- и рентгеновском диапазонах. Нейтронные звезды рождаются очень горячими, но достаточно быстро охлаждаются, и уже в тысячелетнем возрасте имеют температуру поверхности около 1 000 000 К. Поэтому только молодые нейтронные звезды сияют в рентгеновском диапазоне за счет чисто теплового излучения. ФИЗИКА ПУЛЬСАРА Пульсар — это просто огромный намагниченный волчок, крутящийся вокруг оси, не совпадающей с осью магнита. Если бы на него ничего не падало и он ничего не испускал, то его радиоизлучение имело бы частоту вращения и мы никогда бы его не услышали на Земле. Но дело в том, что данный волчок имеет колоссальную массу и высокую температуру поверхности, да и вращающееся магнитное поле создает огромное по напряженности электрическое поле, способное разгонять протоны и электроны почти до световых скоростей. Причем все эти заряженные частицы, носящиеся вокруг пульсара, зажаты в ловушке из его колоссального магнитного поля. И только в пределах небольшого телесного угла около магнитной оси они могут вырваться на волю (нейтронные звезды обладают самыми сильными магнитными полями во Вселенной, достигающими 1010—1014 гаусс, для сравнения: земное поле составляет 1 гаусс, солнечное — 10—50 гаусс). Именно эти потоки заряженных частиц и являются источником того радиоизлучения, по которому и были открыты пульсары, оказавшиеся в дальнейшем нейтронными звездами. Поскольку магнитная ось нейтронной звезды необязательно совпадает с осью ее вращения, то при вращении звезды поток радиоволн распространяется в космосе подобно лучу проблескового маяка — лишь на миг прорезая окружающую мглу. БЛИЖАЙШИЙ СОСЕД Данный пульсар находится на расстоянии всего 450 световых лет от Земли и является двойной системой из нейтронной звезды и белого карлика с периодом обращения 5,5 дня. Мягкое рентгеновское излучение, принимаемое спутником ROSAT, испускают раскаленные до двух миллионов градусов полярные шапки PSR J0437-4715. В процессе своего быстрого вращения (период этого пульсара равен 5,75 миллисекунды) он поворачивается к Земле то одним, то другим магнитным полюсом, в результате интенсивность потока гамма-квантов меняется на 33%. Яркий объект рядом с маленьким пульсаром — это далекая галактика, которая по каким-то причинам активно светится в рентгеновском участке спектра. ВСЕСИЛЬНАЯ ГРАВИТАЦИЯ Согласно современной теории эволюции массивные звезды заканчивают свою жизнь колоссальным взрывом, превращающим большую их часть в расширяющуюся газовую туманность. В итоге от гиганта, во много раз превышавшего размерами и массой наше Солнце, остается плотный горячий объект размером около 20 км, с тонкой атмосферой (из водорода и более тяжелых ионов) и гравитационным полем, в 100 млрд. раз превышающим земное. Его и назвали нейтронной звездой, полагая, что он состоит главным образом из нейтронов. Вещество нейтронной звезды — самая плотная форма материи (чайная ложка такого суперядра весит около миллиарда тонн). Очень короткий период излучаемых пульсарами сигналов был первым и самым главным аргументом в пользу того, что это и есть нейтронные звезды, обладающие огромным магнитным полем и вращающиеся с бешеной скоростью. Только плотные и компактные объекты (размером всего в несколько десятков километров) с мощным гравитационным полем могут выдерживать такую скорость вращения, не разлетаясь на куски из-за центробежных сил инерции. Нейтронная звезда состоит из нейтронной жидкости с примесью протонов и электронов. «Ядерная жидкость», очень напоминающая вещество из атомных ядер, в 1014 раз плотнее обычной воды. Это огромное различие вполне объяснимо — ведь атомы состоят в основном из пустого пространства, в котором вокруг крошечного тяжелого ядра порхают легкие электроны. Ядро содержит почти всю массу, так как протоны и нейтроны в 2 000 раз тяжелее электронов. Экстремальные силы, возникающие при формировании нейтронной звезды, так сжимают атомы, что электроны, вдавленные в ядра, объединяются с протонами, образуя нейтроны. Таким образом рождается звезда, почти полностью состоящая из нейтронов. Сверхплотная ядерная жидкость, если ее принести на Землю, взорвалась бы, подобно ядерной бомбе, но в нейтронной звезде она устойчива благодаря огромному гравитационному давлению. Однако во внешних слоях нейтронной звезды (как, впрочем, и всех звезд) давление и температура падают, образуя твердую корку толщиной около километра. Как полагают, состоит она в основном из ядер железа.
ВСПЫШКА Колоссальная рентгеновская вспышка 5 марта 1979 года, оказывается, произошла далеко за пределами нашей Галактики, в Большом Магеллановом Облаке — спутнике нашего Млечного Пути, находящемся на расстоянии 180 тыс. световых лет от Земли. Совместная обработка гаммавсплеска 5 марта, зафиксированного семью космическими кораблями, позволила достаточно точно определить положение данного объекта, и то, что он находится именно в Магеллановом Облаке, сегодня практически не вызывает сомнений. Событие, случившееся на данной далекой звезде 180 тыс. лет назад, трудно представить, но вспыхнула она тогда, как целых 10 сверхновых звезд, более чем в 10 раз превысив светимость всех звезд нашей Галактики. Яркая точка в верхней части рисунка — это давно и хорошо известный SGR-пульсар, а неправильный контур — наиболее вероятное положение объекта, вспыхнувшего 5 марта 1979 года.
ПРОИСХОЖДЕНИЕ НЕЙТРОННОЙ ЗВЕЗДЫ Вспышка сверхновой звезды — это просто переход части гравитационной энергии в тепловую. Когда в старой звезде заканчивается топливо и термоядерная реакция уже не может разогреть ее недра до нужной температуры, происходит как бы обрушение — коллапс газового облака на его центр тяжести. Высвобождающаяся при этом энергия разбрасывает внешние слои звезды во все стороны, образуя расширяющуюся туманность. Если звезда маленькая, типа нашего Солнца, то происходит вспышка и образуется белый карлик. Если масса светила более чем в 10 раз превышает Солнечную, то такое обрушение приводит к вспышке сверхновой звезды и образуется обычная нейтронная звезда. Если же сверхновая вспыхивает на месте совсем большой звезды, с массой 20—40 Солнечных, и образуется нейтронная звезда с массой большей трех Солнц, то процесс гравитационного сжатия приобретает необратимый характер и образуется черная дыра. ВНУТРЕННЯЯ СТРУКТУРА Твердая корка внешних слоев нейтронной звезды состоит из тяжелых атомных ядер, упорядоченных в кубическую решетку, с электронами, свободно летающими между ними, чем напоминает земные металлы, но только намного более плотные. ОТКРЫТЫЙ ВОПРОС Хотя нейтронные звезды интенсивно изучаются уже около трех десятилетий, их внутренняя структура доподлинно неизвестна. Более того, нет твердой уверенности и в том, что они действительно состоят в основном из нейтронов. С продвижением вглубь звезды давление и плотность увеличиваются и материя может быть настолько сжата, что она распадется на кварки — строительные блоки протонов и нейтронов. Согласно современной квантовой хромодинамике кварки не могут существовать в свободном состоянии, а объединяются в неразлучные «тройки» и «двойки». Но, возможно, у границы внутреннего ядра нейтронной звезды ситуация меняется и кварки вырываются из своего заточения. Чтобы глубже понять природу нейтронной звезды и экзотической кварковой материи, астрономам необходимо определить соотношение между массой звезды и ее радиусом (средняя плотность). Исследуя нейтронные звезды со спутниками, можно достаточно точно измерить их массу, но определить диаметр — намного труднее. Совсем недавно ученые, используя возможности рентгеновского спутника «XMM-Ньютон», нашли способ оценки плотности нейтронных звезд, основанный на гравитационном красном смещении. Необычность нейтронных звезд состоит еще и в том, что при уменьшении массы звезды ее радиус возрастает — в результате наименьший размер имеют наиболее массивные нейтронные звезды. ЧЕРНАЯ ВДОВА Взрыв сверхновой звезды достаточно часто сообщает новорожденному пульсару немалую скорость. Такая летящая звезда с приличным собственным магнитным полем сильно возмущает ионизированный газ, заполняющий межзвездное пространство. Образуется своеобразная ударная волна, бегущая впереди звезды и расходящаяся широким конусом после нее. Совмещенное оптическое (сине-зеленая часть) и рентгеновское (оттенки красного) изображение показывает, что здесь мы имеем дело не просто со светящимся газовым облаком, а с огромным потоком элементарных частиц, испускаемых данным миллисекундным пульсаром. Линейная скорость Черной Вдовы равна 1 млн. км/ч, оборот вокруг оси она делает за 1,6 мс, лет ей уже около миллиарда, и у нее есть звезда-компаньон, кружащаяся около Вдовы с периодом 9,2 часа. Свое название пульсар B1957+20 получил по той простой причине, что его мощнейшее излучение просто сжигает соседа, заставляя «кипеть» и испаряться образующий его газ. Красный сигарообразный кокон позади пульсара — это та часть пространства, где испускаемые нейтронной звездой электроны и протоны излучают мягкие гамма-кванты. Результат компьютерного моделирования позволяет очень наглядно, в разрезе, представить процессы, происходящие вблизи быстро летящего пульсара. Расходящиеся от яркой точки лучи — это условное изображение того потока лучистой энергии, а также потока частиц и античастиц, который исходит от нейтронной звезды. Красная обводка на границе черного пространства вокруг нейтронной звезды и рыжих светящихся клубов плазмы — это то место, где поток релятивистских, летящих почти со скоростью света, частиц встречается с уплотненным ударной волной межзвездным газом. Резко тормозя, частицы испускают рентгеновское излучение и, потеряв основную энергию, уже не так сильно разогревают налетающий газ. СУДОРОГИ ГИГАНТОВ Пульсары считаются одной из ранних стадий жизни нейтронной звезды. Благодаря их изучению ученые узнали и о магнитных полях, и о скорости вращения, и о дальнейшей судьбе нейтронных звезд. Постоянно наблюдая за поведением пульсара, можно точно установить: сколько энергии он теряет, насколько замедляется, и даже то, когда он прекратит свое существование, замедлившись настолько, что не сможет излучать мощные радиоволны. Эти исследования подтвердили многие теоретические предсказания относительно нейтронных звезд. Уже к 1968 году были обнаружены пульсары с периодом вращения от 0,033 секунды до 2 секунд. Периодичность импульсов радиопульсара выдерживается с удивительной точностью, и поначалу стабильность этих сигналов была выше земных атомных часов. И все же по мере прогресса в области измерения времени для многих пульсаров удалось зарегистрировать регулярные изменения их периодов. Конечно, это исключительно малые изменения, и только за миллионы лет можно ожидать увеличения периода вдвое. Отношение текущей скорости вращения к замедлению вращения — один из способов оценки возраста пульсара. Несмотря на поразительную стабильность радиосигнала, некоторые пульсары иногда испытывают так называемые «нарушения». За очень короткий интервал времени (менее 2 минут) скорость вращения пульсара увеличивается на существенную величину, а затем через некоторое время возвращается к той величине, которая была до «нарушения». Полагают, что «нарушения» могут быть вызваны перегруппировкой массы в пределах нейтронной звезды. Но в любом случае точный механизм пока неизвестен. Так, пульсар Вела примерно раз в 3 года подвергается большим «нарушениям», и это делает его очень интересным объектом для изучения подобных явлений.
МАГНЕТАРЫ Некоторые нейтронные звезды, названные источниками повторяющихся всплесков мягкого гамма-излучения — SGR, испускают мощные всплески «мягких» гамма-лучей через нерегулярные интервалы. Количество энергии, выбрасываемое SGR при обычной вспышке, длящейся несколько десятых секунды, Солнце может излучить только за целый год. Четыре известные SGR находятся в пределах нашей Галактики и только один — вне ее. Эти невероятные взрывы энергии могут быть вызваны звездотрясениями — мощными версиями землетрясений, когда разрывается твердая поверхность нейтронных звезд и из их недр вырываются мощные потоки протонов, которые, увязая в магнитном поле, испускают гамма- и рентгеновское излучение. Нейтронные звезды были идентифицированы как источники мощных гамма-всплесков после огромной гаммавспышки 5 марта 1979 года, когда было выброшено столько энергии в течение первой же секунды, сколько Солнце излучает за 1 000 лет. Недавние наблюдения за одной из наиболее «активных» в настоящее время нейтронных звезд, похоже, подтверждают теорию о том, что нерегулярные мощные всплески гамма- и рентгеновского излучений вызваны звездотрясениями. В 1998 году внезапно очнулся от «дремоты» известный SGR, который 20 лет не подавал признаков активности и выплеснул почти столько же энергии, как и гамма-вспышка 5 марта 1979 года. Больше всего поразило исследователей при наблюдении за этим событием резкое замедление скорости вращения звезды, говорящее о ее разрушении. Для объяснения мощных гамма и рентгеновских вспышек была предложена модель магнетара — нейтронной звезды со сверхсильным магнитным полем. Если нейтронная звезда рождается, вращаясь очень быстро, то совместное влияние вращения и конвекции, которая играет важную роль в первые несколько секунд существования нейтронной звезды, может создать огромное магнитное поле в результате сложного процесса, известного как «активное динамо» (таким же способом создается поле внутри Земли и Солнца). Теоретики были поражены, обнаружив, что такое динамо, работая в горячей, новорожденной нейтронной звезде, может создать магнитное поле, в 10 000 раз более сильное, чем обычное поле пульсаров. Когда звезда охлаждается (секунд через 10 или 20), конвекция и действие динамо прекращаются, но этого времени вполне достаточно, чтобы успело возникнуть нужное поле.
Магнитное поле вращающегося электропроводящего шара бывает неустойчивым, и резкая перестройка его структуры может сопровождаться выбросом колоссальных количеств энергии (наглядный пример такой неустойчивости — периодическая переброска магнитных полюсов Земли). Аналогичные вещи случаются и на Солнце, во взрывных событиях, названных «солнечными вспышками». В магнетаре доступная магнитная энергия огромна, и этой энергии вполне достаточно для мощи таких гигантских вспышек, как 5 марта 1979 и 27 августа 1998 годов. Подобные события неизбежно вызывают глубокую ломку и изменения в структуре не только электрических токов в объеме нейтронной звезды, но и ее твердой коры. Другим загадочным типом объектов, которые испускают мощное рентгеновское излучение во время периодических взрывов, являются так называемые аномальные рентгеновские пульсары — AXP. Они отличаются от обычных рентгеновских пульсаров тем, что излучают только в рентгеновском диапазоне. Ученые полагают, что SGR и AXP являются фазами жизни одного и того же класса объектов, а именно магнетаров, или нейтронных звезд, которые излучают мягкие гамма-кванты, черпая энергию из магнитного поля. И хотя магнетары на сегодня остаются детищами теоретиков и нет достаточных данных, подтверждающих их существование, астрономы упорно ищут нужные доказательства. КАНДИДАТЫ В МАГНЕТАРЫ Астрономы уже так основательно изучили нашу родную галактику Млечный Путь, что им ничего не стоит изобразить ее вид сбоку, обозначив на нем положение наиболее замечательных из нейтронных звезд. Ученые полагают, что AXP и SGR — это просто две стадии жизни одного и того же гигантского магнита — нейтронной звезды. Первые 10 000 лет магнетар— это SGR — пульсар, видимый в обычном свете и дающий повторяющиеся вспышки мягкого рентгеновского излучения, а последующие миллионы лет он, уже как аномальный пульсар AXP, исчезает из видимого диапазона и попыхивает только в рентгеновском. САМЫЙ СИЛЬНЫЙ МАГНИТ Анализ данных, полученных спутником RXTE (Rossi X-ray Timing Explorer, NASA) при наблюдениях необычного пульсара SGR 1806-20, показал, что этот источник является самым мощным из известных на сегодняшний день магнитов во Вселенной. Величина его поля была определена не только на основании косвенных данных (по замедлению пульсара), но и практически прямо — по измерению частоты вращения протонов в магнитном поле нейтронной звезды. Магнитное поле вблизи поверхности этого магнитара достигает 1015 гаусс. Находись он, например, на орбите Луны, все магнитные носители информации на нашей Земле были бы размагничены. Правда, с учетом того, что его масса примерно равна Солнечной, это было бы уже неважно, поскольку даже если бы Земля и не упала на эту нейтронную звездочку, то вертелась бы вокруг нее как угорелая, делая полный оборот всего за час. АКТИВНОЕ ДИНАМО Все мы знаем, что энергия любит переходить из одной формы в другую. Электричество легко превращается в тепло, а кинетическая энергия — в потенциальную. Огромные конвективные потоки электропроводящей магмы плазмы или ядерного вещества, оказывается, тоже могут свою кинетическую энергию преобразовать во что-нибудь необычное, например в магнитное поле. Перемещение больших масс на вращающейся звезде в присутствии небольшого исходного магнитного поля могут приводить к электрическим токам, создающим поле того же направления, что и исходное. В результате начинается лавинообразное нарастание собственного магнитного поля вращающегося токопроводящего объекта. Чем больше поле, тем больше токи, чем больше токи, тем больше поле — и все это из-за банальных конвективных потоков, обусловленных тем, что горячее вещество легче холодного, и потому всплывает БЕСПОКОЙНОЕ СОСЕДСТВО Знаменитая космическая обсерватория «Чандра» обнаружила сотни объектов (в том числе и в других галактиках), свидетельствующих о том, что не всем нейтронным звездам предназначено вести жизнь в одиночестве. Такие объекты рождаются в двойных системах, которые пережили взрыв сверхновой, создавший нейтронную звезду. А иногда случается, что одиночные нейтронные звезды в плотных звездных областях типа шаровых скоплений захватывают себе компаньона. В таком случае нейтронная звезда будет «красть» вещество у своей соседки. И в зависимости от того, насколько массивная звезда составит ей компанию, эта «кража» будет вызывать разные последствия. Газ, текущий с компаньона, массой, меньшей, чем у нашего Солнца, на такую «крошку», как нейтронная звезда, не сможет сразу упасть из-за слишком большого собственного углового момента, поэтому он создает вокруг нее так называемый аккреционный диск из «украденной» материи. Трение при накручивании на нейтронную звезду и сжатие в гравитационном поле разогревает газ до миллионов градусов, и он начинает испускать рентгеновское излучение. Другое интересное явление, связанное с нейтронными звездами, имеющими маломассивного компаньона, — рентгеновские вспышки (барстеры). Они обычно длятся от нескольких секунд до нескольких минут и в максимуме дают звезде светимость, почти в 100 тысяч раз превышающую светимость Солнца. Эти вспышки объясняют тем, что, когда водород и гелий переносятся на нейтронную звезду с компаньона, они образуют плотный слой. Постепенно этот слой становится настолько плотным и горячим, что начинается реакция термоядерного синтеза и выделяется огромное количество энергии. По мощности это эквивалентно взрыву всего ядерного арсенала землян на каждом квадратном сантиметре поверхности нейтронной звезды в течение минуты. Совсем другая картина наблюдается, если нейтронная звезда имеет массивного компаньона. Звезда-гигант теряет вещество в виде звездного ветра (исходящего от ее поверхности потока ионизированного газа), и огромная гравитация нейтронной звезды захватывает часть этого вещества себе. Но здесь вступает в свои права магнитное поле, которое заставляет падающее вещество течь по силовым линиям к магнитным полюсам. Это означает, что рентгеновское излучение прежде всего генерируется в горячих точках на полюсах, и если магнитная ось и ось вращения звезды не совпадают, то яркость звезды оказывается переменной — это тоже пульсар, но только рентгеновский. Нейтронные звезды в рентгеновских пульсарах имеют компаньонами яркие звезды-гиганты. В барстерах же компаньонами нейтронных звезд являются слабые по блеску звезды малых масс. Возраст ярких гигантов не превышает нескольких десятков миллионов лет, тогда как возраст слабых звезд-карликов может насчитывать миллиарды лет, поскольку первые гораздо быстрее расходуют свое ядерное топливо, чем вторые. Отсюда следует, что барстеры — это старые системы, в которых магнитное поле успело со временем ослабеть, а пульсары — относительно молодые, и потому магнитные поля в них сильнее. Может быть, барстеры когда-то в прошлом пульсировали, а пульсарам еще предстоит вспыхивать в будущем. С двойными системами связывают и пульсары с самыми короткими периодами (менее 30 миллисекунд) — так называемые миллисекундные пульсары. Несмотря на их быстрое вращение, они оказываются не молодыми, как следовало бы ожидать, а самыми старыми.
Возникают они из двойных систем, где старая, медленно вращающаяся нейтронная звезда начинает поглощать материю со своего, тоже уже состарившегося компаньона (обычно красного гиганта). Падая на поверхность нейтронной звезды, материя передает ей вращательную энергию, заставляя крутиться все быстрее. Происходит это до тех пор, пока компаньон нейтронной звезды, почти освобожденный от лишней массы, не станет белым карликом, а пульсар не оживет и не начнет вращаться со скоростью сотни оборотов в секунду. Впрочем, недавно астрономы обнаружили весьма необычную систему, где компаньоном миллисекундного пульсара является не белый карлик, а гигантская раздутая красная звезда. Ученые полагают, что они наблюдают эту двойную систему как раз в стадии «освобождения» красной звезды от лишнего веса и превращения в белого карлика. Если эта гипотеза неверна, тогда звезда-компаньон может быть обычной звездой из шарового скопления, случайно захваченной пульсаром. Почти все нейтронные звезды, которые известны в настоящее время, найдены или в рентгеновских двойных системах, или как одиночные пульсары. И вот недавно «Хаббл» заметил в видимом свете нейтронную звезду, которая не является компонентом двойной системы и не пульсирует в рентгеновском и радиодиапазоне. Это дает уникальную возможность точно определить ее размер и внести коррективы в представления о составе и структуре этого причудливого класса выгоревших, сжатых гравитацией звезд. Эта звезда была обнаружена впервые как рентгеновский источник и излучает в этом диапазоне не потому, что собирает водородный газ, когда движется в пространстве, а потому, что она все еще молода. Возможно, она является остатком одной из звезд двойной системы. В результате взрыва сверхновой эта двойная система разрушилась и бывшие соседи начали независимое путешествие по Вселенной.
МАЛЮТКА — ПОЖИРАТЕЛЬ ЗВЕЗД Как камни падают на землю, так и большая звезда, отпуская по кусочку свою массу, постепенно перемещается на маленького да удаленького соседа, имеющего огромное гравитационное поле вблизи своей поверхности. Если бы звезды не крутились вокруг общего центра тяжести, то газовая струя могла бы просто течь, как поток воды из кружки, на маленькую нейтронную звезду. Но поскольку звезды кружатся в хороводе, то падающая материя, прежде чем она окажется на поверхности, должна потерять большую часть своего момента импульса. И здесь взаимное трение частиц, двигающихся по различным траекториям, и взаимодействие ионизированной плазмы, образующей аккреционный диск, с магнитным полем пульсара помогают процессу падения материи успешно закончиться ударом о поверхность нейтронной звезды в области ее магнитных полюсов. ЗАГАДКА 4U2127 РАЗГАДАНА Эта звезда более 10 лет морочила голову астрономам, проявляя странную медленную изменчивость своих параметров и вспыхивая каждый раз по-разному. Только новейшие исследования космической обсерватории «Чандра» позволили разгадать загадочное поведение этого объекта. Оказалось, что это не одна, а две нейтронные звезды. Причем обе они имеют компаньонов — одну звезду, похожую на наше Солнце, другую — на небольшую голубую соседку. Пространственно эти пары звезд разделены достаточно большим расстоянием и живут независимой жизнью. А вот на звездной сфере они проецируются почти в одну точку, поэтому так долго их и считали одним объектом. Находятся эти четыре звездочки в шаровом скоплении М15 на расстоянии 34 тыс. световых лет. ОТКРЫТЫЙ ВОПРОС Всего на сегодняшний день астрономы обнаружили около 1 200 нейтронных звезд. Из них более 1 000 являются радиопульсарами, а остальные — просто рентгеновскими источниками. За годы исследований ученые пришли к выводу, что нейтронные звезды — настоящие оригиналы. Одни — очень яркие и спокойные, другие — периодически вспыхивающие и видоизменяющиеся звездотрясениями, третьи — существующие в двойных системах. Эти звезды относятся к самым загадочным и неуловимым астрономическим объектам, соединяющим в себе сильнейшие гравитационные и магнитные поля и экстремальные плотности и энергии. И каждое новое открытие из их бурной жизни дает ученым уникальные сведения, необходимые для понимания природы Материи и эволюции Вселенной. ВСЕЛЕНСКИЙ ЭТАЛОН Послать что-нибудь за пределы Солнечной системы очень даже непросто, поэтому вместе с направившимися туда 30 лет назад космическими кораблями «Пионер-10 и -11» земляне отправили и послания братьям по разуму. Нарисовать нечто такое, что будет понятно Внеземному Уму, — задача не из простых, более того, еще нужно было указать обратный адрес и дату отправки письма . Насколько доходчиво все это сумели сделать художники, человеку понять трудно, но сама идея использования радиопульсаров для указания места и времени отправки послания гениальна. Прерывистые лучи различной длины, исходящие из точки, символизирующей Солнце, указывают направление и расстояние до ближайших к Земле пульсаров, а прерывистость линии — это не что иное, как двоичное обозначение периода их обращения. Самый длинный луч указывает на центр нашей Галактики — Млечный Путь. В качестве единицы времени на послании принята частота радиосигнала, испускаемого атомом водорода при смене взаимной ориентации спинов (направление вращения) протона и электрона. Знаменитые 21 см или 1420 МГц должны знать все разумные существа во Вселенной. По этим ориентирам, указывающим на «радиомаяки» Вселенной, можно будет отыскать землян даже через много миллионов лет, а сравнив записанную частоту пульсаров с текущей, можно будет прикинуть, когда эти мужчина и женщина благословляли в полет первый космический корабль, покинувший пределы Солнечной системы. СПИСОК ИСТОЧНИКОВ. - www.ioffe.ru - nauka.by.ru - www.astro.umd.edu - www.vokrugsveta.ru - nauka.by.ru - sai.msu.su


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :