Введение
Вопросами теории измерений, средствами обеспечения их единства и способов достижения необходимой точности занимается специальная наука – метрология. В задачу метрологии входит установление единиц измерения, определение способов передачи размера единицы от эталонов до измеряемого объекта через ряд промежуточных звеньев.
Измерение давления необходимо практически в любой области науки и техники как при изучении происходящих в природе физических процессов, так и для нормального функционирования технических устройств и технологических процессов, созданных человеком. Давление определяет состояние веществ в природе (твердое тело, жидкость, газ).
Чрезвычайно многообразно применение давления в науке, технике и производстве. Энергетические возможности тепло- и гидроэлектростанций и атомных электростанций определяются давлением пара или воды на лопасти турбин, под действием давления по каналам и трубопроводам на тысячи километров транспортируется вода, нефть и газ. Давление приводит в движение автомобили и самолеты, геодезические ракеты и космические корабли, открывает и закрывает двери лифта, вагонов метропоездов, троллейбусов и автобусов, подает воду и газ в квартиры наших домов.
Посредством давления осуществляется работа разнообразных станков, механизмов и установок в различных отраслях производства.
По давлению контролируют состояние рабочих сред в различных технологических процессах нефтехимической промышленности, при производстве искусственных волокон и пр. Во многих отраслях науки при проведении физических, термодинамических и метрологических исследований (определение концентрации газов в твердых веществах, констант уравнений состояния различных веществ, эталонные температурные и линейные измерения) также требуется измерять давление [1].
Давление характеризует напряженное состояние жидкостей и газов в условиях всестороннего сжатия и определяется частным от деления нормальной к поверхности силы на площадь этой поверхности
, (1)
где р — давление; N — нормальная сила, действующая на поверхность; F — площадь поверхности.
При этом принимается, что нормальная сила равномерно распределена по поверхности, а в жидкости или газе отсутствуют касательные напряжения. Так как действующая сила всегда перпендикулярна к поверхности вне зависимости от ее расположения, то давление является скалярной величиной [2].
Понятие давления как физической величины во всех его проявлениях едино. Вместе с тем, во многих естественных природных явлениях и в различных технических устройствах и процессах определяющим является не само давление, а его значение относительно другого. Например, под действием разности двух давлений по магистральным трубопроводам транспортируются нефть и газ из Сибири.
При сравнении значений двух давлений одно из них принимается за начало отсчета их разности. По этому признаку различают следующие виды давлений.
Абсолютное давление — давление, значение которого при измерении отсчитывается от давления, равного нулю. Абсолютное давление воздушной оболочки Земли на ее поверхность называется атмосферным давлением.
С учетом специфики каждого из видов давления при измерениях применяются специальные средства измерений - манометры и измерительные преобразователи давления.
Манометр — измерительный прибор или измерительная установка для измерения давления или разности давлений с непосредственным отсчетом их значения.
Измерительный преобразователь давления (датчик) — первичный преобразователь, выходной сигнал которого функционально связан с измеряемым давлением или разностью давлений. Выходной сигнал датчика вторичными приборами преобразуется в показания значения давления или поступает в различные системы управления и регулирования [2].
В соответствии с видами измеряемого давления применяют следующие виды средств измерения давления: манометр абсолютного давления — манометр для измерения абсолютного давления; барометр — манометр для измерения атмосферного давления; манометр избыточного давления — манометр для измерения положительного избыточного давления; вакуумметр1) - манометр для измерения отрицательного избыточного давления: мановакуумметр — манометр, для измерения как положительного, так и отрицательного избыточного давления; дифференциальный манометр (дифманометр) — манометр для измерения разности двух давлений, каждое из которых отличается от атмосферного давления; микроманометр — дифференциальный манометр для измерения малых разностей двух давлений, каждое из которых существенно больше их разности.
Единицы измерения давления
Когерентной единицей Международной системы единиц (СИ) является паскаль (Па). По определению единица давления паскаль представляет собой отношение единицы силы Ньютона к единице площади квадратному метру:
1 Па= 1 Н/м2 = 1 кг/(м•с2)
Наиболее близка к СИ единица давления бар (бар), размер, которой очень удобен для практики (1 бар = 1•105 Па).
В применяемых до настоящего времени жидкостных манометрах мерой измеряемого давления является высота столба жидкости. Поэтому естественно применение единиц давления, определяемых высотой столба жидкости, т. е. основанных на единицах длины. В странах с метрическими системами мер получили распространение единицы давления миллиметр и метр водяного столба (мм вод. ст. и м вод. ст.) и миллиметр ртутного столба (мм рт. ст.).
Размеры этих единиц давления пересчитываются в единицы СИ на основании формулы
(2)
где Н - высота столба жидкости, м, р - плотность жидкости, кг/м3, g -ускорение свободного падения, м/с2.
1) Вакуумметрами часто называют манометры, предназначенные для измерения низких абсолютных давлений, существенно меньших, чем атмосферное давление (в вакуумной технике).
Методы и средства измерения давления
Методы измерения давления во многом предопределяют как принципы действия, так и конструктивные особенности средств измерений. В этой связи в первую очередь следует остановиться на наиболее общих методологических вопросах техники измерения давления.
Давление, исходя из самых общих позиций, может быть определено как путем его непосредственного измерения, так и посредством измерения другой физической величины, функционально связанной с измеряемым давлением.
В первом случае измеряемое давление воздействует непосредственно на чувствительный элемент прибора, который передает информацию о значении давления последующим звеньям измерительной цепи, преобразующим ее в требуемую форму. Этот метод определения давления является методом прямых измерений, и получил наибольшее распространение в технике измерения давления. На нем основаны принципы действия большинства манометров и измерительных преобразователей давления.
Во втором случае непосредственно измеряются другие физические величины или параметры, характеризующие физические свойства измеряемой среды, значения которых закономерно связаны с давлением (температура кипения жидкости, скорость распространения ультразвука, теплопроводность газа и т. д.). Этот метод является методом косвенных измерений давления и применяется, как правило, в тех случаях, когда прямой метод по тем или иным причинам неприменим, например, при измерении сверхнизкого давления (вакуумная техника) или при измерении высоких и сверхвысоких давлений [1].
Давление является производной физической величиной, определяемой тремя основными физическими величинами — массой, длиной и временем. Конкретная реализация значения давления зависит от способа воспроизведения единицы давления. При измерении по формуле (1) давление определяется силой и площадью, а по формуле (2) — длиной, плотностью и ускорением. Методы определения давления, основанные на измерении указанных величин, являются абсолютными (фундаментальными) методами и применяются при воспроизведении единицы давления эталонами грузопоршневого и жидкостного типа, а также позволяют, при необходимости, производить аттестацию образцовых средств измерений.
Относительный метод измерений, в отличие от абсолютного, основан на предварительном исследовании зависимости от давления физических свойств и параметров чувствительных элементов средств измерения давления при методах прямых, измерений или других физических величин и свойств измеряемой среды — при методах косвенных измерений. Например, деформационные манометры перед их применением для измерения давления должны быть сначала отградуированы по образцовым средствам измерений соответствующей точности.
Помимо классификации по основным методам измерений и видам давления, средства измерений давления классифицируют по принципу действия, функциональному назначению, диапазону и точности измерений.
Наиболее существенный классификационный признак — принцип действия средства измерения давления, в соответствии с ним и построено дальнейшее изложение.
Современные средства измерений давления представляют собой измерительные системы, звенья которых имеют различное функциональное назначение. Обобщенные блок-схемы манометров и измерительных преобразователей давления приведены соответственно на рис. 1, а и б. Важнейшим звеном любого средства измерения давления является его чувствительный элемент (ЧЭ), который воспринимает измеряемое давление и преобразует его в первичный сигнал, поступающий в измерительную цепь прибора. С помощью промежуточных преобразователей сигнал от ЧЭ преобразуется в показания манометра или регистрируется им, а в измерительных преобразователях (ИНД) - в унифицированный выходкой сигнал, поступающий в системы измерения, контроля, регулирования и управления. При этом промежуточные преобразователи и вторичные приборы во многих случаях унифицированы и могут применяться в сочетании с ЧЭ различных типов. Поэтому принципиальные особенности манометров и ИПД зависят, в первую очередь, от типа ЧЭ [1].
Рис. 1. Структурные блок-схемы:
а — манометра; б — измерительного преобразователя давления; р — измеряемое давление; 1 — чувствительный элемент (первичный преобразователь) ; 2 — промежуточные преобразователи; 3 — показания; 4 — регистрация; 5 — выходной сигнал; → к системам: I — измерения и контроль; II - регистрации; III — регулирования; IV – управления
По принципу действия ЧЭ средства измерения давления можно разделить на следующие основные группы.
1. Средства измерения давления, основанные на прямых абсолютных методах: поршневые манометры и ИПД, в том числе и грузопоршневые манометры, манометры с нецилиндрическим неуплотненным поршнем, колокольные, кольцевые и жидкостные манометры.
В первых трех манометрах метод измерений реализуется уравнением (1), основанным на определении величины давления по отношению силы к площади; в жидкостных манометрах - уравнением (2) , основанным на уравновешивании давления столбом жидкости.
2. Средства измерения давления, основанные на прямых относительных методах: деформационные манометры и ИПД, в том числе и с силовой компенсацией; полупроводниковые манометры и ИПД; манометры других типов, основанные на изменении физических свойств ЧЭ под действием давления.
3. Средства измерения давления, основанные на методах косвенных измерений: установки и приборы для определения давления по результатам измерения других физических величин; установки и приборы для определения давления по результатам измерения параметров физических свойств измеряемой среды (термопарные и ионизационные вакуумметры, ультразвуковые манометры, вязкостные вакуумметры и др.).
Следует отметить, что абсолютные методы измерений, заложенные в поршневых и жидкостных манометрах, во многих случаях на практике не реализуются. Например, жидкостные манометры, исключая первичные эталоны, градуируются и поверяются не абсолютным, а относительным методом, путем их сличения с образцовыми средствами измерений соответствующей точности.
Глава 1. Методы прямых измерений давления
1.1. Жидкостные манометры
Вопросы водоснабжения для человечества всегда были очень важными, а особую актуальность приобрели с развитием городов и появлением в них различного вида производств. При этом все более актуальной становилась проблема измерения давления воды, т. е. напора, необходимого не только для обеспечения подачи воды через систему водоснабжения, но и для приведения в действие различных механизмов. Честь первооткрывателя принадлежит крупнейшему итальянскому художнику и ученому Леонардо да Винчи (1452-1519 гг.), который впервые применил пьезометрическую трубку для измерения давления воды в трубопроводах.
Дальнейшее развитие науки и техники привело к появлению большого количества жидкостных манометров различных типов, применяемых до настоящего времени во многих отраслях: метеорологии, авиационной и электровакуумной технике, геодезии и геологоразведке, физике и метрологии и пр. Однако, в силу ряда специфических особенностей принципа действия жидкостных манометров их удельный вес по сравнению с манометрами других типов относительно невелик и, вероятно, будет уменьшаться и в дальнейшем. Тем не менее при измерениях особо высокой точности в области давлений, близких к атмосферному давлению, они пока незаменимы. Не потеряли своего значения жидкостные манометры и в ряде других областей (микроманометрии, барометрии, метеорологии, при физико-технических исследованиях).
1.1.1. Основные типы жидкостных манометров и принципы их действия
Принцип действия жидкостных манометров можно проиллюстрировать на примере U-образного жидкостного манометра (рис. 2, а), состоящего из двух соединенных между собой вертикальных трубок 1 и 2, наполовину заполненных жидкостью.
Рис. 2. Основные типы жидкостных манометров
В соответствии с законами гидростатики при равенстве давлений р1 и р2 свободные поверхности жидкости (мениски) в обеих трубках установятся на уровне I-I. Если одно из давлений превышает другое (р1 >р2), то разность давлений вызовет опускание уровня жидкости в трубке 1 и, соответственно, подъем в трубке 2, вплоть до достижения состояния равновесия. При этом на уровне II-II уравнение равновесия примет вид:
Δр=р1 -р2 = Н - р • g , (3)
т. е. разность давлений определяется давлением столба жидкости высотой Н с плотностью р.
Уравнение (2) с точки зрения измерения давления является фундаментальным, так как давление, в конечном итоге, определяется основными физическими величинами - массой, длиной и временем. Это уравнение справедливо для всех без исключения типов жидкостных манометров. Отсюда следует определение, что жидкостный манометр - манометр, в котором измеряемое давление уравновешивается давлением столба жидкости, образующегося под действием этого давления. Важно подчеркнуть, что мерой давления в жидкостных манометрах является высота столба жидкости. Именно это обстоятельство привело к появлению единиц измерений давления мм вод. ст., мм рт. ст. и других которые естественным образом вытекают из принципа действия жидкостных манометров.
Чашечный жидкостный манометр (рис. 2, б) состоит из соединенных между собой чашки 1 и вертикальной трубки 2, причем площадь поперечного сечения чашки существенно больше, чем трубки. Поэтому под воздействием разности давлений Δр изменение уровня жидкости в чашке гораздо меньше, чем подъем уровня жидкости в трубке: Н1 = Н2 • f/F, гае Н1 - изменение уровня жидкости в чашке.; Н2 - изменение уровня жидкости в трубке; f - площадь сечения трубки; F - площадь сечения чашки.
Отсюда высота столба жидкости, уравновешивающей измеряемое давление
Н = Н1 + Н2 = Н2 (1 + f/F), (4)
а измеряемая разность давлений
р1-p2=Н2•g(1+f/ F), (5)
Поэтому при известном коэффициенте k = 1 + f/F разность давлений может быть определена по изменению уровня жидкости в одной трубке, что упрощает процесс измерений.
Двухчашечный манометр (рис. 2, в) состоит из двух соединенных при помощи гибкого шланга чашек 1 и 2, одна из которых жестко закреплена, а вторая может перемещаться в вертикальном направлении. При равенстве давлений pl и р2 чашки, а следовательно, свободные поверхности жидкости находятся на одном уровне I-I. Если р1 > р2, то чашка 2 поднимается вплоть до достижения равновесия в соответствии с уравнением (3).
Единство принципа действия жидкостных манометров всех типов обусловливает их универсальность с точки зрения возможности измерения давления любого вида — абсолютного и избыточного и разности давлений.
К важной метрологической характеристике средств измерения давления относится чувствительность измерительной системы, которая во многом определяет точность отсчета при измерениях и инерционность. Для манометрических приборов под чувствительностью понимается отношение изменения показаний прибора к вызвавшему его изменению давления (п =ΔН/Δр).
Диапазоны измерений жидкостных манометров в соответствии с (2) определяются высотой столба жидкости, т. е. размерами манометра и плотностью жидкости. Наиболее тяжелой жидкостью в настоящее время является ртуть, плотность, которой р = 1,35951 • 104 кг/м . Столб ртути высотой 1 м развивает давление около 136 кПа, т. е. давление, не из много превышающее атмосферное давление. Поэтому при измерении давлений порядка 1 МПа размеры манометра по высоте соизмеримы с высотой трехэтажного дома, что представляет существенные эксплуатационные неудобства, не говоря о чрезмерной громоздкости конструкции. Тем не менее, попытки создания сверхвысоких ртутных манометров предпринимались. Мировой рекорд был установлен в Париже, где на базе конструкций знаменитой Эйфелевой башни был смонтирован манометр высотой ртутного столба около 250 м, что соответствует 34 МПа. В настоящее время этот манометр разобран в связи с его бесперспективностью.
1.1.2. Жидкостно-поршневые манометры
Очень часто к жидкостным манометрам относят приборы, измерительная система которых хотя и содержит в качестве одного из элементов жидкость, но по принципу действия в корне отличается от жидкостных манометров. К таким приборам относится дифференциальный манометр типа „кольцевые весы" (рис. 3), состоящий из тороидального корпуса 1, внутренняя полость которого в верхней части разделена перегородкой 2, а нижняя часть до половины заполнена жидкостью 4. Таким образом, корпус имеет две измерительные камеры А и Б, в которые через гибкие шланги подаются измеряемые давления pl и р2. Корпус может поворачиваться относительно опоры 3, расположенной в его геометрическом центре. К нижней части корпуса прикреплен противовес 5.
При равенстве давлений в камерах А и Б корпус прибора располагается в соответствии с рис. 4, а. Если одно из давлений больше другого, например, р1 > р2 то под действием разности давлений Δр = p1 – р2, воздействующей на перегородку, корпус повернется на определенный угол α, а уровни жидкости внутри корпуса займут положения, соответствующие рис. 4, б. При этом уравнения равновесия измерительной системы принимают вид
, (6)
Рис. 3. Дифференциальный манометр типа „Кольцевые весы"
где F — площадь перегородки (внутренняя площадь поперечного сечения тороида); r1 — средний радиус тороида; R2 — расстояние от оси вращения до центра тяжести противовеса; т — масса противовеса; g — ускорение свободного падения; α — угол поворота корпуса.
Таким образом, давление определяется массой противовеса, геометрическими параметрами прибора и углом поворота корпуса, а роль заполняющей измерительную систему жидкости сводится к созданию жидкостного затвора между камерами А и Б. Поэтому по виду первичного преобразования - давления в силу, действующую на перегородку, - прибор аналогичен поршневым манометрам.
Еще в большей мере сказанное относится к колокольным манометрам, применяемым в качестве образцовых и эталонных приборов. Основные элементы измерительной системы манометра (рис. 4) : наполовину заполненный водой сосуд 5, цилиндрический колокол 3, подвеска 2 с чашкой 6 для наложения грузов 7, рычаг 1 весового компаратора с указателем положения равновесия 8 и подвески 9 с тарировочным грузом 10. Измеряемое давление подводится под колокол трубкой 4.
Измерительной камерой прибора является внутренняя полость колокола, ограниченная дном и внутренней поверхностью цилиндрической части колокола и свободной поверхностью жидкости в его нижней части. При проведении измерений камера предварительно сообщается с атмосферным давлением и вес частично погруженного в жидкость колокола уравновешивается тарировочным грузом 10.
Рис. 4. Измерительная система манометра
Тогда при подаче в камеру измеряемого давления для сохранения положения равновесия на чашку 6 необходимо наложить грузы 7, вес которых и является мерой измеряемого давления. При этом давление в камере будет уравновешиваться противодавлением столба жидкости в кольцевом зазоре между наружной поверхностью колокола и внутренней поверхностью сосуда 5. Таким образом, роль жидкости так же, как и в вышеописанном приборе, ограничивается созданием жидкостного затвора для удержания давления в измерительной камере, так как составляющими сил давления на боковую поверхность колокола в вертикальном направлении при условии соблюдения технологии его изготовления можно пренебречь.
1.2. Поршневые манометры
Поршневые манометры появились позже жидкостных. Впервые поршневой манометр был применен для измерения давления в 1833 г. Парротом и Ленцем (Российская Академия наук) при изучении сжимаемости воздуха и других свойств газов, причем значение давления для того времени было очень большим (10 МПа). Дальнейшее развитие поршневой манометрии шло, в основном, в сторону увеличения точности и верхних пределов измерений, а, начиная с тридцатых годов текущего столетия поршневые манометры стали вытеснять жидкостные и при точных измерениях давлений, близких к атмосферному давлению.
Большой вклад в развитие поршневой манометрии внесли проф. М.К. Жохов-ский, который впервые разработал целостную теорию приборов с неуплотненным поршнем, П.В. Индрик, В.Н. Граменицкий и многие другие их последователи.
В настоящее время в нашей стране и за рубежом поршневые манометры играют ведущую роль при поверке и испытаниях манометрических приборов в широком диапазоне давлений от 1 кПа до десятков тысяч МПа и находят все большее применение в качестве национальных государственных эталонов давления.
1.2.1. Принцип действия, основы теории и типы поршневых манометров
На рис.5 изображен простейший поршневой манометр, который состоит из цилиндрического поршня 1, притертого к цилиндру 2 с минимально возможным зазором. Если на нижний торец поршня действует измеряемое давление р, то для его уравновешивания к поршню должна быть приложена сила Р. Уравнение равновесия с учетом силы трения на боковую поверхность поршня, возникшей при протекании жидкости или газа через зазор между поршнем и цилиндром под действием измеряемого давления, имеет вид
рF = P-T, (7)
где F — геометрическая площадь поперечного сечения поршня; Т — сила жидкостного трения на боковую поверхность поршня.
Рис. 5. Простейший поршневой манометр
Наиболее часто измеряемое давление уравновешивают весом грузов, что явно предпочтительно с точки зрения достижения высокой точности измерений, хотя и представляет известные неудобства в эксплуатации.
Благодаря высокой стабильности эффективной площади, которая определяется в основном геометрическими размерами пары поршень - цилиндр, а также возможности учета внешних влияний расчетными методами, поршневые манометры являются идеальными преобразователями давления в силу.
Наиболее существенное достоинство поршневых манометров состоит в том. что они непосредственно воспроизводят давление по определению: давление равно силе, деленной на площадь поршня. Этот метод так же, как и метод уравновешивания давления столбом жидкости, является фундаментальным, т. е. измерение давления в конечном итоге сводится к измерению массы, длины и времени. Вышеизложенное позволяет сформулировать следующее определение.
Поршневой манометр — манометр, в котором действующее на поршень измеряемое давление преобразуется в силу и определяется по значению силы, необходимой для ее уравновешивания. В наиболее распространенных поршневых манометрах давление уравновешивается весом грузов. Такие манометры называются грузопоршневыми.
Одно из обязательных условий, обеспечивающих возможность выполнения измерения — сохранение постоянства измеряемого давления при его измерении. В жидкостно-поршневых манометрах это достигается уравновешиванием измеряемого давления гидростатическим давлением столба жидкости. Например, в колокольном манометре столб образуется в кольцевом пространстве между боковыми поверхностями колокола и сосуда, в которой залита разделительная жидкость (гидростатический затвор). В отличие от этого в поршневых манометрах постоянство давления в измерительной камере поддерживается благодаря гидравлическому сопротивлению протекания жидкости через зазор между поршнем и цилиндром (гидродинамический затвор). При этом ввиду малости зазора (1-2 мкм) гидравлическое сопротивление позволяет поддерживать постоянство давления с допускаемыми отклонениями. Не обеспечивая полную герметичность, гидродинамический затвор обладает очень важным преимуществом - измеряемое давление практически не влияет на размеры прибора, в то время как во всех жидкостных манометрах высота столба жидкости, необходимая для уравновешивания, прямо пропорциональна измеряемому давлению.
Измерительные системы поршневых манометров могут быть классифицированы по различным признакам: форме и конструкции поршневых пар, уравновешенности собственного веса поршня и способам его уравновешивания, видам измеряемой среды, способам уравновешивания измеряемого давления, назначению поршневого манометра, виду измеряемого давления и пр.
Основные конструктивные формы цилиндрических поршневых пар, представленные на рис. 6, позволяют осуществить преобразование измеряемого давления в силу или в давление другого назначения.
Различные формы поршневых пар при их применении в поршневых манометрах для измерения различных видов давления имеют свои преимущества и недостатки.
Рис. 6. Формы цилиндрических поршневых пар
При измерении избыточного давления наиболее предпочтительны одноступенчатые поршневые пары (рис. 6, а), которые обеспечивают максимальную конструктивную простоту манометров и технологичность их изготовления. При этом масса грузов, которые, как правило, применяются для уравновешивания измеряемого давления, при измерении избыточного давления (рабс > ратм) прилагается непосредственно к верхнему торцу 2 поршня; а при измерении отрицательного избыточного давления (рабс При измерении абсолютного давления и разности применение одноступенчатой поршневой пары приводит к существенному усложнению конструкции поршневого манометра и методики выполнения измерений. Так, при измерении абсолютного давления пространство над верхним торцом 2 поршня должно быть вакуумировано, что приводит к необходимости герметизации верхней части прибора, а это существенно усложняет процесс наложения уравновешивающих грузов при измерении давления. В данном случае более предпочтительно применение трехступенчатой поршневой пары (рис. 6, в), которая позволяет подводить измеряемое и опорное давления непосредственно в замкнутые измерительные камеры 2 и 3. При этом обеспечивается свободный доступ к верхнему торцу 4 поршня при наложении уравновешивающихся грузов.
Двухступенчатые (дифференциальные) поршневые пары (рис. 6. б) наиболее часто применяются для многократного уменьшения измеряемого давления при измерении высоких избыточных давлений или увеличения измеряемого давления при измерении низких давлений.
Показания поршневых манометров, как и любых других приборов, зависят от условий, в которых проводятся измерения. Поэтому, несмотря на то, что поршневые манометры являются наиболее стабильными по сравнению с манометрами других типов, в их показания при измерениях высокой точности необходимо вводить соответствующие поправки, учитывающие влияние условий измерений, k ним относятся влияние температуры окружающей среды, деформации поршня и цилиндра под действием измеряемого давления, а для поршневых манометров, в которых измеряемое давление определяется по весу уравновешивающих его грузов, необходимо учитывать местное ускорение свободного падения и потерю массы грузов в воздухе.
Перспективы развития поршневых манометров тесно связаны с общим развитием науки и техники. Здесь, в первую очередь, следует отметить достижения в создании новых материалов поршневых пар, повышающих точность их изготовления, прочностные характеристики и износостойкость, а также достижения в развитии микроэлектроники, представляющие новые возможности автоматизации поршневых манометров.
Повышение качества изготовления поршневых пар — одна из важнейших задач в развитии поршневой манометрии. Применение в качестве материалов поршневых пар сверхтвердых сплавов на основе карбида вольфрама, прочностные характеристики которых (твердость, модуль упругости) существенно выше, чем у обычно применяемых легированных сталей, а температурный коэффициент линейного расширения ниже, позволяет соответственно снизить влияние измеряемого давления и температуры на постоянство эффективной площади поршня и ее стабильность в период эксплуатации манометра.
1.3. Деформационные манометры
По мере развития промышленности, особенно в связи с появлением паровых машин и железных дорог, потребовались более удобные, чем жидкостные манометры приборы.
Первый деформационный манометр с трубчатым чувствительным элементом был изобретен случайно. Рабочий, при изготовлении змеевика для дистилляционного аппарата, сплющил поперечное сечение цилиндрической трубки, изогнутой по спирали. Тогда, чтобы восстановить форму трубки, один конец ее заглушили, а в другой конец насосом дали давление воды. При этом часть трубки с деформированным сечением приняла цилиндрическую форму, а спираль на этом участке разогнулась. Этот эффект был использован немецким инженером Шинцем, который в 1845 г. применил трубчатый чувствительный элемент для измерения давления.
Простота и компактность деформационных манометров, возможность их применения в различных условиях эксплуатации очень быстро поставили их на первое место в технике измерения давления практически во всех отраслях народного хозяйства.
Диапазон измерений деформационных манометров охватывает почти 10 порядков, простираясь от 10 Па (1 мм вод.ст.) до 1-2 ГПа (более 10000 кгс/см2). При этом достигается высокая точность измерений, в отдельных случаях погрешности измерений не превышают 0,02-0,05 %.
1.3.1. Основные принципы преобразования давления деформационным манометром
Принципиальное отличие деформационных манометров от жидкостных и поршневых состоит в применении упругого чувствительного элемента (УЧЭ) в качестве первичного преобразователя давления. Чувствительный элемент, воспринимающий измеряемое давление, представляет собой упругую оболочку, которая обычно выполняется в форме тела вращения, причем толщина стенки оболочки существенно меньше ее внешних размеров. Под действием измеряемого давления упругая оболочка деформируется так, что в любой точке оболочки возникают напряжения, уравновешивающие действующее на нее давление.
Понятие „деформационный манометр" в общем виде может быть сформулировано следующим образом. Деформационный манометр- манометр, в котором измеряемое давление, действующее на упругую оболочку УЧЭ, уравновешивается напряжениями, которые возникают в материале упругой оболочки. Таким образом УЧЭ преобразует давление, являющееся входной величиной, в выходную величину, несущую измерительную информацию о значении давления. Для УЧЭ естественно выбрать в качестве выходной величины в зависимости от принципа действия деформационного манометра: перемещение заданной точки УЧЭ; напряжение в материале заданной точки и усилие, развиваемое УЧЭ под действием давления.
Выбор того или иного выходного сигнала УЧЭ определяет способы его дальнейшего преобразования для получения результатов измерения давления, а, следовательно, и принцип действия деформационного манометра. В технике измерения давления нашли применение два основных метода: метод прямого преобразования и метод уравновешивающего преобразования (рис.7).
По методу прямого преобразования (рис. 7, а) все преобразования информации о значении давления проводятся в направлении от УЧЭ через посредство промежуточных преобразователей П1, П2, . . ., Пn к устройству И, представляющему результаты измерений давления в требуемой форме. При этом суммарная погрешность преобразования определяется погрешностями всех преобразователей, входящих в измерительный канал.
Рис. 7. Методы измерения давления
Метод уравновешивающего преобразования (рис. 7, б) характеризуется тем, что используются две цепи преобразователей: цепь прямого преобразования, состоящая из цепи промежуточных преобразователи П1, П2, . . ., Пn, выходной сигнал которой Увых поступает на указатель результата измерений И и, одновременно на цепь обратного преобразования, состоящей из преобразователя ОП. Метод уравновешивания состоит в том, что усилие N, развиваемое УЧЭ, уравновешивается усилием Nоп, создаваемым обратным преобразователем ОП выходного сигнала Iвых цепи прямого преобразования. Поэтому на вход последней поступает лишь отклонение заданной точки УЧЭ от положения равновесия. В отличие от предыдущего метода суммарная погрешность преобразования в данном случае почти полностью определяется погрешностью обратного преобразователя. Однако применение метода уравновешивания приводит к усложнению конструкции деформационного манометра В зависимости от назначения и принципа действия отдельные звенья измерительных цепей деформационных манометров могут конструктивно выполняться в виде самостоятельных блоков. Во многих случаях, например, при жестких эксплуатационных условиях на объекте измерения (повышенная или пониженная температура, высокий уровень вибрации труднодоступность места подключения и пр.) целесообразно свести к минимуму количество звеньев, находящихся непосредственно на объекте Конструктивная совокупность этих измерительных элементов с обязательным включением в нее УЧЭ называется датчиком. В то же время указатель результата измерений должен находиться в месте, с более благоприятными условиями, удобном для наблюдателя. Это же касается и остальной части измерительной цепи. Блочный принцип построения целесообразен также и с точки зрения изготовления манометров на разных предприятиях при массовом производстве.
В этой связи следует остановиться на часто применяемом понятии "измерительный преобразователь давления" (ИПД). В принципе, ИПД — это составная часть измерительной цепи многих современных деформационных манометров, включающая промежуточный преобразователь с унифицированным выходным сигналом. Поэтому выделение ИПД в самостоятельный раздел нецелесообразно из-за неизбежности повторов при их описании. В то же время ИПД по функциональным возможностям имеет более широкое применение, чем манометры.
1.3.2. Упругие чувствительные элементы деформационных манометров (УЧЭ)
Исторически первыми получили развитие деформационные манометры, в которых мерой давления является деформация УЧЭ (перемещение заданной точки его упругой оболочки). Эти манометры широко применяются и в настоящее время благодаря относительной простоте преобразования перемещения в информацию об измеряемом давлении. Вместе с тем, широкое распространение получили деформационные манометры, основанные на непосредственном преобразовании в информацию об измеряемом давлении напряжений (методы прямого преобразования), а также способы силовой компенсации измеряемого давления (методы уравновешивания). Однако во всех случаях применяются одни и те же типы УЧЭ. Основные типы УЧЭ: мембраны, мембранные коробки, сильфоны и трубчатые пружины (рис. 8).
Мембрана (рис. 8, а) представляет собой упругую пластину в форме диска, жестко закрепленную по наружному контуру, прогиб которой определяется действующим на нее давлением.
Рис. 8. Основные типы УЧЭ
Мембранная коробка (рис. 8, б) состоит из двух гофрированных мембран, герметично соединенных по наружному контуру, что соответственно увеличивает ее прогиб под действием давления.
Сильфон (рис. 8, в) имеет форму тонкостенного цилиндра, боковая поверхность которого гофрирована с целью увеличения его прогиба под действием давления. При большой глубине вытяжки гофр сильфона становится идентичным батарее последовательно соединенных мембранных коробок.
Трубчатая пружина (рис. 8, г) представляет собой тонкостенную трубку, ось которой искривлена по дуге окружности. В отличие от предыдущего трубчатая пружина под действием давления разгибается, а ее свободный конец перемещается по дуге.
При преобразовании давления в перемещение основными метрологическими характеристиками УЧЭ являются: упругая характеристика, нелинейность упругой характеристики, чувствительность и жесткость, гистерезис и постоянство упругой характеристики.
1.3.3. Индуктивные и трансформаторные (взаимоиндуктивные) электромагнитные преобразователи
Индуктивными преобразователями называются преобразователи, преобразующие перемещение в изменение индуктивности магнитной цепи. Принцип действия преобразователя заключается в следующем (рис. 9). Преобразователь содержит магнитопроводы 1и 2 с катушками Z1 и Z2, между которыми помещен жесткий центр 3 мембраны. Катушки питаются напряжением переменного тока и включены в индуктивный мост, два дополнительных плеча которого составляют постоянные сопротивления Z3 и Z4. В равновесном положении мост сбалансирован и сила тока Iк в диагонали моста равна нулю. При воздействии на мембрану давления жесткий центр сместится, что приведет к увеличению магнитного сопротивления магнитопровода 1 и уменьшению сопротивления магнитопровода 2, а вместе с тем и их полных электрических сопротивлений Z1 и Z2. В результате разбаланса моста по диагонали последнего потечет ток Iк, пропорциональный перемещению центра мембраны, а следовательно, давлению.
Рис. 9. Принцип действия индуктивного преобразователя
Дифференциальная схема индуктивного преобразователя, выходным параметром которой является разность Z1 - Z2, расширяет линейный участок до
∆δ = ± (0,3-0,4) δ0, а также существенно повышает чувствительность преобразователя, которая позволяет фиксировать 0,1 мкм по перемещению жесткого центра.
По принципу действия индуктивные преобразователи пригодны для измерения любого вида давления: абсолютного, избыточного и разности давлений. При этом достоинством индуктивных преобразователей является отсутствие механических устройств для вывода выходного сигнала УЧЭ к промежуточным преобразователям, что обусловливает отсутствие потерь на трение в передаточном механизме. Поэтому индуктивные преобразователи пригодны для измерения небольших разностей давлений при высоком статическом давлении с хорошими динамическими характеристиками.
1.3.4. Резистивные деформационные манометры
Резистивные манометры основаны на изменении активного электросопротивления проводников при их механической деформации. Впервые этот эффект (тензоэффект) был рассмотрен английским физиком В. Томпсоном (лорд Кельвин) в 1856 г. Экспериментальные исследования тензоэффекта для различных металлов и сплавов были впервые проведены при давлениях до 300 МПа Лизелом (1903 г.), а затем при давлениях до 1300 МПа Бриджменом (1911г.). Однако широкое внедрение тензоресторной техники в промышленность началось со времен второй мировой войны.
Принципиальное отличие тензометрического метода измерения давления состоит в том, что мерой давления является не перемещение заданной точки УЧЭ в осевом направлении, а деформации поверхности УЧЭ или поверхности связанного с ним тела. Измерительный преобразователь, который преобразует деформации поверхности твердого тела в изменение его электросопротивления, называется тензорезистором,
Обычно выделяют следующие основные группы тензорезисторов: проволочные, фольговые, тонкопленочные и полупроводниковые. При этом находят применение два основных вида преобразования давления:
1. давление, воспринимаемое УЧЭ, вызывает деформацию его поверхности (растягивающую или сжимающую), которая преобразуется в изменение электросопротивления тензорезистора;
2. давление, воспринимаемое УЧЭ, преобразуется в сосредоточенную силу, которая деформирует упругое твердое тело с жестко связанным с ним тензорезистором; иногда производится промежуточное преобразование силы в момент сил.
Аппаратура, содержащая промежуточные преобразователи различного назначения, а также источники питания, усилитель выходного сигнала и вторичные приборы для индикации и регистрации давления, требует существенно больших затрат на изготовление, чем УЧЭ с вмонтированными в него тензорезисторами, которые, как правило, включаются в мостовую схему и составляют вместе с УЧЭ единый блок (датчик).
Тензорезисторы обычно включаются во все четыре плеча мостовой схемы, причем для повышения чувствительности одна пара тензорезисторов работает на растяжение, а другая на сжатие. Иногда два тензорезистора располагаются на участках УЧЭ, подверженных деформации, а два других „холостых" (не подвергаются растяжению или сжатию) предназначены для температурной компенсации мостовой схемы. Для датчиков высокой точности требуются также уравновешивающие и компенсационные элементы для корректировки нуля и диапазона измерений и пр.
Первыми были разработаны проволочные тензопреобразователи (проволочные тензорезистивные манометры), предназначенные для измерения высоких давлений, которые в отличие от указанных выше методов преобразования основаны на всестороннем сжатии проводника непосредственно давлением окружающей среды без применения УЧЭ, т. е. функции УЧЭ и тензорезистора совмещены в одном элементе.
В качестве материала проволочного сопротивления до настоящего времени применяется манганин (сплав меди, марганца и никеля), эффективность которого при создании тензоэффекта была выявлена исследованиями Лизела и Бриджмена еще в начале нашего века.
Манганиновый манометр (рис. 10) содержит катушку сопротивления 6, каркас которой с помощью двух металлических стержней 1 прикреплен к втулке 3, и корпус 7 с штуцером для подключения измеряемого давления. Для уплотнения стержней в их средней части имеются кольцевые утолщения, с двух сторон которых помещены прокладки 4. Предварительное уплотнение производится с помощью гайки 2, а затем под действием давления верхние прокладки самоуплотняются. Для электрической изоляции стержней, предназначенных для включения катушки сопротивления в мостовую схему, стержни отделены от металлических деталей воздушными зазорами, которые обеспечиваются центровкой стержней посредством изолирующих втулок 5 и уплотнений 4.
Рис. 10. Манганиновый манометр
Диапазон давлений, измеряемых манганиновыми манометрами, составляет от 100 МПа (1000 кгс/см2) до 4 ГПа (40000 кгс/см2), погрешность измерений от 0,4 до 2,5 % (рабочие средства измерений) и от 0,2 до 0,6 % (образцовые средства измерений). Долговременная стабильность (5-10 лет) и воспроизводимость показаний хорошо изготовленных манганиновых манометров составляют ±0,2 % каждая. Влияние температуры определяется изменением электросопротивления, которое в среднем составляет 0,01 % на 1°С.
Манометры сопротивления практически не применимы при давлениях менее 50 МПа из-за относительно низкого тензоэффекта при всестороннем сжатии проводника. Поэтому при измерении малых и средних давлений производится предварительное преобразование давления в деформацию УЧЭ, которая создает в материале тензорезистора требуемые растягивающие или сжимающие усилия. При этом уменьшение давления компенсируется увеличением геометрических размеров УЧЭ и уменьшением толщины его стенок.
На этом принципе основано подавляющее большинство проволочных тензорезистивных манометров. Находят применение как наклеиваемые на поверхность УЧЭ проволочные тензорезисторы, так и „свободные" тензорезистивные преобразователи, в которых деформации подвергаются ненаклеенные проволочные нити.
Общий недостаток конструкций с наклеиваемыми проволочными тензорезисторами — нестабильность закрепления последних на деформируемой поверхности, особенно при воздействии повышенных температур. С этой точки зрения предпочтительнее „свободные" тензорезистивные преобразователи, которые почти полностью совмещают функции упругого элемента и тензорезистора, обеспечивая высокую собственную частоту и хорошую стабильность нуля, так как жесткость других упругих элементов (мембраны, сильфона и пр.) в этом случае выбирается существенно меньшей.
Одним из существенных недостатков проволочных тензорезисторов является небольшая теплоотдача материала проволоки, так как площадь теплоотдачи составляет половину цилиндрической поверхности проволоки. Поэтому возможности миниатюризации ограничиваются допускаемым уменьшением диаметра проволоки, который обычно составляет не менее 20-30 мкм. Гораздо большие возможности предоставляет техника изготовления тензорезисторов из металлической фольги, которая к настоящему времени достаточно хорошо испытана и отработана. Типичная конструкция фольгового тензорезистора (рис. 11, а) состоит из тонкой металлической фольги 1, выполненной в виде петлеобразной решетки, которая специальным клеем закреплена на подложке 2 из
изоляционного материала.
Рис. 11. Фольговый тензорезистор
К расширенным концам решетки припаиваются проволочные токосъемники 3, а сверху на решетку наносится изоляционное покрытие 4 для защиты от воздействия окружающей среды. Сопротивление резистора определяется базой l, числом последовательно соединенных полосок фольги и их поперечным сечением. В качестве материала фольги обычно применяют константан, подложки — бакелитовую или эпоксидную смолу. Для изготовления фольговых тензорезисторов и их закрепления на поверхности УЧЭ используются в зависимости от условий работы (температуры, влажности, агрессивности среды) различные клеящие составы, затвердевающие в горячем состоянии.
Тензорезисторы закрепляются непосредственно на поверхности УЧЭ или на упругую балочку, связанную с УЧЭ жестким стержнем, и включаются в мостовую схему. Манометры, основанные на указанном принципе, позволяют измерять давление с высокой точностью. Так, цифровой манометр „Diptron 2" фирмы „Wallance & Tiernan" (ФРГ) предназначен для измерения давления с погрешностью 0,05 %. Манометр (рис. 11, б) содержит сильфон 1, преобразующий измеряемое давление р в усилие, которое с помощью стержня 2 изгибает упругую балку 4. Пропорциональная давлению деформация воспринимается тензорезисторами 3, включенными в мостовую схему, причем два резистора работают на растяжение, а два других — на сжатие. Усилителем 1 (рис. 11, в) выходной сигнал усиливается и после преобразований поступает на цифровое табло указателя 2. Одновременно происходит преобразование в аналоговый и кодовый выходные сигналы.
Несмотря на ряд очевидных достоинств (высокая точность, хорошая долговременная стабильность, высокая собственная частота, применимость для изготовления небольших серий) фольговые тензорезисторы имеют также и недостатки: относительную дороговизну, в связи с жесткими допусками на изготовление; невысокую тензочувствительность, свойственную всем металлическим тензорезисторам (k ≈ 2), что требует соответствующего усиления; ограниченные диапазон температур и возможности миниатюризации.
Тонкопленочные тензорезисторы. Дальнейшие возможности развития тензорезистивных манометров предоставила тонкопленочная техника, получившая в последнее время распространение в различных областях микроэлектроники, в которой, в отличие от фольговой техники, перед нанесением на подложку проводящего материала тензорезисторов на поверхность УЧЭ наносится изоляционный слой, толщиной в несколько мкм, затем низкоомные проводники монтажной схемы и, в последнюю очередь, сам тензорезистор. При этом применяются методы напыления в вакууме, плазменной активации паров требуемых химических веществ и пр., которые позволяют наносить не только металлические пленки, но и поликристаллические материалы с повышенным коэффициентом тензочувствительности (k=30-50). Все это позволяет существенно уменьшить размеры УЧЭ при одновременном уменьшении диапазона измерений. Однако сложность технологии изготовления требует значительных затрат на оборудование. Поэтому изготовление тонкопленочных тензорезисторов рентабельно только при условии их массового производства
В отличие от металлических тензорезисторов, сопротивление которых изменяется вследствие деформации поперечного сечения, в полупроводниковых тензорезисторах чувствительным к натяжению является удельное сопротивление, которое занимает очень широкий диапазон значений. Если удельное сопротивление проводников находится в диапазонах от 10-5 до 10-8 Ом.м, а диэлектриков от 1010 до 1010 Ом.м., то диапазон удельных сопротивлений полупроводников простирается от 10-5 до 104, т. е. охватывает почти 10 порядков. Помимо этого сопротивление полупроводников существенно зависит от содержания в них примесей, подбором которых можно изменять сопротивление в нужном на правлении. Примеси, которые создают в полупроводнике свободные электроны, называют донорными, а сам полупроводник называют n-типа (от „негатив” — отрицательный). Примеси, которые захватывают валентный электрон и при этом у одного из атомов полупроводника возникает „дырка”, называют акцепторными (принимающим), а проводимость про водника р-типа (от „позитив” — положительный). Количество свободных носителей зарядов (электронов и дырок) определяет проводимость, а, следовательно, и удельное сопротивление полупроводника. При этом чувствительность удельного сопротивления полупроводникового тензорезистора к его деформации существенно выше, чем изменение сопротивления под влиянием изменения поперечного сечения.
Конструктивное выполнение полупроводниковых тензорезисторов аналогично тонкопленочным тензорезисторам (рис. 11, а). Те же технологические приемы применяются и при изготовлении полупроводниковых тензорезисторов. При этом используются два основных способа:
1. полупроводниковый кремниевый тензорезистор наносится на изолирующую сапфировую подложку (КНС структура);
2. полупроводниковый кремниевый тензорезистор с р-проводимостью наносится на кремниевую подложку с n-проводимостью (КНК структура).
В зависимости от конструктивного исполнения полупроводниковые тензорезистивные преобразователи применяются для измерения абсолютного и избыточного давления (разряжения) и разности давлений.
Преимуществами тензорезистивных полупроводниковых преобразователей является: высокий коэффициент тензочувствительности; возможность миниатюризации чувствительного элемента; непосредственное применение достижений современной микроэлектроники.
К недостаткам полупроводниковых преобразователей относятся: сложность технологии изготовления ЧЭ, что неприемлемо при мелкосерийном производстве; хрупкость ЧЭ, что ограничивает их применение в условиях сотрясений, скачков давления; относительно большое влияние температуры на коэффициент тензочувствительности. Последнее особенно важно для тензорезисторов, основанных на КНК структурах, максимальная температура эксплуатации которых ограничена 120°С.
Манометры с силовой компенсацией
Все рассмотренные выше деформационные манометры основаны на методе прямого преобразования давления (см. рис. 7, а). Метод уравновешивающего преобразования давления (см. рис. 7, б), хотя и менее распространен в технике измерения давления, но продолжает сохранять заметную роль в некоторых отраслях промышленности, в которой находят применение манометры с силовым уравновешиванием двух типов: уравновешивание измеряемого давления пневматическим давлением (пневматическая силовая компенсация); уравновешивание измеряемого давления электромагнитными силами (электромагнитная силовая компенсация).
При этом во время уравновешивания силы, возникающей в первичном ЧЭ под действием измеряемого давления, силой, развиваемой цепью обратной связи, происходит незначительное перемещение первичного ЧЭ, независимо от его жесткости, что позволяет в широких пределах варьировать чувствительность измеряемой системы.
1.3.5. Перспективы развития деформационных манометров
По принципу действия деформационные манометры требуют для своей градуировки применения методов и средств, основанных на абсолютных методах воспроизведения давления. Повышение их точности, в принципе, ограничено точностью применяемых при градуировке жидкостных и поршневых эталонов, которая характеризуется погрешностями порядка 1 • 10-5 - 5 • 10-5. Это позволило уже в настоящее время создать образцовые деформационные манометры, погрешности которых не превышают 2,5• 10-4 - 5 • 10-4 (0,025—0,05 %).
Одно из важнейших направлений развития точных деформационных манометров — разработка портативных образцовых переносных манометров, пригодных для контроля рабочих средств измерений на месте их эксплуатации.
Переносной манометр содержит переключатели единиц измерений и диапазонов измерений, ручной насос, регулятор объема, корректор нуля и штуцер для подключения измеряемого давления. Питание прибора осуществляется от батареек напряжением 12В или от внешнего источника питания.
Однако основное назначение деформационных манометров состоит в удовлетворении потребностей различных отраслей промышленности в измерении давления, так как в каждой отрасли существуют свои требования к условиям эксплуатации, формам представления информации, точности и надежности, необходимым габаритным размерам и массе, стоимости приборов и пр. Все это требует совершенствования различных параметров и свойств деформационных манометров, специфика которых определяется их назначением и принципом действия.
Деформационные манометры, основанные на электрических методах преобразования (индуктивные, емкостные и др.), обеспечивая достаточно высокую точность, нуждаются в совершенствовании методов защиты их электрических цепей от воздействия внешних электрических и магнитных полей, особенно при необходимости размещения на расстоянии УЧЭ и электроники.
Дальнейшее развитие получают металлические и полупроводниковые тензорезистивные деформационные манометры.
Технология изготовления кремниевых полупроводниковых тензодатчиков в настоящее время отработана достаточно хорошо и ее совершенствование будет продолжаться по мере развития микроэлектроники, Однако при температуре выше 200°С полупроводниковый кремний теряет свою тензочувствительность, превращаясь в обычный проводник, что не допускает их применение в условиях высоких температур (внутри работающих автомобильных и реактивных двигателей, в буровых установках глубокого бурения и пр.). Весьма перспективна для этих целей замена кремния на карбид кремния (карборунд). В настоящее время уже созданы транзисторы из карбида кремния на подложке из его окислов, нанесенной на металлическую мембрану. Полупроводниковые свойства такого тензорезистора при температуре 650°С аналогичны свойствам обычного кремниевого тензорезистора при температуре 20°С.
В настоящее время проводятся также разработки полупроводниковых тензорезисторов, предназначенных для работы в условиях низких температур (сверхпроводящие магнитные системы термоядерных установок, криогенные накопители энергии, реактивные двигатели на сжиженном водороде и пр.) в диапазоне от 2 до 100К (от -271 до -173° С). В этих условиях чистые полупроводники превращаются в диэлектрики. Введение в кремний примесей позволяет сохранить тензочувствительность, хотя она существенно снижается. В нашей стране разработан датчик такого типа.
Глава 2. МЕТОДЫ КОСВЕННЫХ ИЗМЕРЕНИЙ ДАВЛЕНИЯ
В отличие от методов прямых измерений давления, на которых основаны рассмотренные ранее жидкостные, поршневые и деформационные манометры, методы косвенных базируются на измерении физических величин (температуре, объеме), значения которых связаны с давлением известными физическими закономерностями, или на изменении физических свойств измеряемой среды под действием давления (теплопроводности, вязкости, электропроводности и пр.).
Косвенные методы, как правило, находят применение в тех случаях, когда прямые методы измерения давления трудно осуществимы, например, при измерении весьма малых давлений (вакуумные измерения) или при измерениях сверхвысоких давлений.
2.1. Косвенные методы, основанные на уравнении состояния идеального газа
Связь между важнейшими термодинамическими параметрами газа определяется соотношением
pV = const, (8)
T
где р — абсолютное давление газа; Т — абсолютная температура газа; V — объем, занимаемый газом.
Соотношение (8) называется объединенным газовым законом и формулируется следующим образом: при постоянной массе газа произведение объема на давление, деленное на абсолютную температуру газа, есть величина, одинаковая для всех состояний этой массы газа.
Уравнение состояния для произвольной массы идеального газа (уравнение Клайперона-Менделеева) имеет вид
pV= m • RT, (9)
μ
где т — масса газа; μ — масса одного киломоля газа; R — универсальная газовая постоянная.
Для упрощения процесса измерения давления один из параметров состояния (Т или V) сохраняется постоянным. Тогда давление однозначно определяется по результатам измерения V или Т. Например, при измерении изменений атмосферного давления в баронивелировании нашли применение газовые барометры, принцип действия которых основан на использовании уравнения состояния газа (8) при постоянной температуре, т. е. при постоянной массе газа и неизменной температуре давление обратно пропорционально занимаемому газом объему.
Принципиальная схема газового барометра конструкции Штриплинга изображена на рис. 8. Прибор состоит из двух камер, одна из которых 2 может быть сообщена с атмосферным давлением, а другая 3 замкнута. Обе камеры связаны между собой капилляром, в середине которого находится капля масла 1, выполняющая роль указателя нуля. При равенстве давлений в камерах капля устанавливается на нулевой отметке.
Рис. 8. Принципиальная схема газового барометра
Равенство давлений достигается изменением объема камеры 3 посредством перемещения сильфона 4 с помощью винта и червячной передачи с отсчетом числа оборотов червяка по цифровому счетчику. При погрешности термостатирования 0,001°С изменения давления фиксируются с погрешностью менее 0,5 Па.
В дифференциальном газовом барометре системы Д.И. Менделеева (рис. 9) изменение атмосферного давления определяется комбинированным методом. Барометр состоит из замкнутого сосуда 1, соединенного с давлением окружающего воздуха при помощи V-образного жидкостного манометра 2.
Рис. 9. Дифференциальный газовый барометр
Барометр основан на уравновешивании изменений атмосферного давления как столбом жидкости, так и сжатием (расширением) газа в замкнутом сосуде по закону Бойля-Мариотта. Как и ранее, необходимо тщательное термостатирование сосуда 1 или введение температурной поправки, равной 0,37 % на 1°С.
Следует отметить, что рассмотренные выше газовые барометры в связи с появлением высокоточных деформационных барометров аналогичного назначения в настоящее время практически не применяются. В отличие от этого в области вакуумных измерений указанный принцип находит широкое применение. Компрессионные („компрессия" — сжатие) и экспансионные („экспансия" - расширение) манометры являются основными средствами воспроизведения к передачи единицы давления в области вакуумных измерений в диапазоне от 10-3 до 103 Па (10-5 -10 мм рт. ст.).
2.2. Косвенные методы, основанные на фазовых переходах
Известно, что любое вещество в зависимости от давления и температуры может находиться в различных агрегатных состояниях (твердой, жидкой и газообразной фазах). Типовая диаграмма состояний в координатах р и Т представлена на рис. 10. Кривыми линиями изображены границы между различными фазами (кривые равновесия фаз), соответствующие давлениям и температурам, при которых из одной фазы в другую переходит одинаковое число молекул.
Рис. 10. Типовая диаграмма состояний
При этом кривая СК выражает зависимость от температуры давления насыщенного пара над жидкостью; кривая АС - давления насыщенного пара над твердым телом, кривая ВС - температуры плавления от давления. Например, при давлении р1 и температуре Т1, будет наблюдаться равновесие твердой 1 и газообразной 2 фаз. Если при той же температуре Т1, давление понизить, то начнется переход твердой фазы в газообразную. Этот процесс называется возгонкой или сублимацией („сублимаре" — возносить). Аналогично на границе ВС происходит плавление твердой фазы (кристаллизация жидкой фазы 3), а на границе СК - кипение жидкой фазы (конденсация газообразной фазы). Необходимо отметить также две особые точки. Тройная точка С, находящаяся на пересечении всех трех кривых равновесия фаз, характеризует состояние вещества, когда находятся в равновесии одновременно твердая, жидкая и газообразная фазы. Критическая точка К соответствует критической температуре Тк и критическому давлению рк, при которых теряется всякое различие между жидкостью и ее паром, а граница между ними исчезает.
Указанные выше кривые равновесия фаз и тройная точка используются в косвенных методах определения давления по результатам измерения температуры в равновесных точках (в области температурных измерений, наоборот, температура определяется по результатам измерения давления).
Диаграмма состояний дает наглядное представление о выборе того или иного фазового перехода в зависимости от определяемого давления. Кривая плавления ВС немного отклоняется от вертикали к оси абсцисс, т. е. температура плавления имеет небольшую чувствительность к давлению. Так, температура плавления льда изменяется на 1 К при изменении давления на 13 МПа (следует отметить, что в отличие от большинства веществ температура плавления льда понижается при повышении давления - штриховая линия СВ на рис 10) , Поэтому кривые плавления используются в косвенных методах определения высоких и сверхвысоких давлений. Процесс сублимации (кривая АС) происходит, как правило, при низких температурах и давлениях, что позволяет его использовать при определении давления в области вакуумных измерений. И, наконец, фазовый переход жидкость—пар (кривая СК) наиболее удобен для области средних давлений помимо указанного, пои выборе того или иного фазового перехода необходимо учитывать физические свойства применяемого вещества.
В области измерения высоких и сверхвысоких давлений его значение воспроизводится по кривой плавления ртути, полуэмпирическое уравнение которой получают по результатам исследований сравнением с эталонным поршневым манометром. Это позволяет построить непрерывную шкалу давлений, по которой градуируются средства измерений высоких и сверхвысоких давлений низшей точности.
В области средних давлений, где успешно применяются высокоточные средства измерений, основанные на прямых методах, использование косвенных методов нецелесообразно. Однако представляет интерес, получивший распространение в первой половине нашего века простой способ измерения атмосферного давления, основанный на фазовых переходах „жидкость—пар" (кривая СК на рис. 10), который легко может быть продемонстрирован в любой, даже школьной, лаборатории.
2.3. Косвенные методы, основанные на изменении физических свойств измеряемой среды
Для определения давления находят также применение методы, основанные на зависимости от давления различных физических свойств жидкостей и газов и протекающих в них процессах. При этом были использованы результаты исследований влияния давления на плотность и вязкость, диэлектрическую проницаемость, скорость распространения ультразвука, теплопроводность и другие свойства измеряемой среды.
В области высоких и средних давлений указанные методы широкого распространения не получили в связи с их относительной сложностью и трудоемкостью по сравнению с другими методами (применение манганинового манометра сопротивления в области высоких давлений, прямые методы измерений в области средних давлений).
В области вакуумных измерений указанные методы применяются практически повсеместно. Зависимость теплопроводности разреженного газа от давления используется в тепловых и термопарных манометрах; зависимость тока положительных ионов от измеряемого давления — в ионизационных манометрах. Используется также зависимость от давления вязкости газа, кинетической энергии молекул, концентрации молекул и пр.
Наибольшее распространение в вакуумной технике (около 70 %) получили термопарные и ионизационные манометры.
Термопарный манометр (рис. 11, а) так же, как и тепловой, основан на зависимости теплопроводности разреженного газа от давления. Манометр содержит стеклянную или металлическую колбу 3, в которой помещены нагреватель 1 к впаянная в него термопара 2. Нагреватель питается от источника переменного тока, и его температура, а следовательно, и температура термопары, определяется теплоотдачей в окружающий разреженный газ. Чем меньше давление газа, тем меньше его теплопроводность и тем больше температура, а следовательно, ЭДС на выходе термопары, которая и является мерой измеряемого давления. Шкала прибора 4 для измерения ЭДС градуируется, как правило, в единицах давления. Данный принцип наиболее эффективен при давлениях от 0,1 до 100 Па. При давлениях, меньших 0,1 Па, все большая доля тепла передается излучением, а при давлениях, больших 100 Па, увеличение теплопроводности газа резко замедляется. В обоих случаях существенно уменьшается чувствительность прибора. Погрешность измерений составляет 10—30 %. На градуировочную характеристику существенно влияет состав газа. Поэтому для уточнения показаний термопарного манометра необходима индивидуальная градуировка.
Принцип действия ионизационного манометра основан на зависимости от давления тока положительных ионов, образованных в результате ионизации разреженного газа. Ионизация газа осуществляется электронами, ускоряемыми электрическим или магнитным полями, а также посредством излучения радиоизотопов. При одном и том же количестве электронов, пролетающих через газ, или постоянной мощности излучения степень ионизации газа пропорциональна концентрации его молекул, т. е. измеряемому давлению
Рис. 11. Термопарный манометр
В простейшем случае наиболее употребим ионизационный манометр с горячим катодом (рис. 11 ,б), содержащий стеклянную колбу 2, в которую впаяны анод 1 и катод 3. Благодаря разогреву катода источником постоянного тока 4, его поверхность испускает электроны, которые разгоняются напряжением Uа между катодом и анодом и ионизируют находящийся между ними газ. Сила тока положительных ионов, измеряемая гальванометром 5, является мерой измеряемого давления
p=k ·i+/i-, (10)
где k — постоянная, зависящая от конструкции прибора и состава газа. Для увеличения степени ионизации между катодом и анодом помещена сетка, на которую подается напряжение, сообщающее дополнительное ускорение потоку электронов. Манометры этого типа охватывают диапазон от 10-7 до 1 Па, дополняя диапазон измерений термопарного манометра. Погрешности измерений составляют также 10—30 %.
Глава 3.Датчик для измерения избыточного давления Метран-43-ДИ
(Модель 3163)
• Измеряемая среда: жидкость
• Верхний предел измерения 16 МПа
• Характеристика - линейная
• Предел допускаемой основной
приведенной погрешности ±0,25;±0,5%
• Питание от источника постоянного тока
• Температура окружающей среды -30 .+500С
• Степень защиты датчика от воздействия пыли и воды
IP55 по ГОСТ 14254
• Виброустойчивое исполнение V1 и V2 по ГОСТ 12997
• Коррозионностойкие материалы
• Диапазоны измерений перенастраиваются
• Контроль выходного сигнала без разрыва сигнальной цепи
• Внесен в Госреестр в качестве средства измерения под № 13576-93
Датчик для измерения избыточного давления Метран-43-ДИ предназначен для преобразования избыточного давления в стандартный токовый выходной сигнал дистанционной передачи в системах автоматического контроля, регулирования и управления технологическими процессами.
Датчик обеспечивает:
- высокую точность преобразования,
- стойкость к вибро- и гидроударам,
- долговременную стабильность сигнала.
Характеристика - линейная возрастающая или линейная убывающая.
Наибольшее отклонение действительной допускаемой основной приведенной погрешности
характеристики от номинальной статической характеристики ± γ 0,2; 0,4 для предела допускаемой
основной приведенной погрешности ±0,25%; ±0,5% соответственно.
Вариация (гистерезис) не превышает абсолютного значения
предела допускаемой основной приведенной погрешности (γ).
Дополнительная погрешность датчика, вызванная изменением температуры окружающего воздуха в рабочем диапазоне температур на каждые 10ºС, не превышает:
γ = 0,2+0,05· Рmax , %
Р1
- для датчиков с пределом допускаемой основной приведенной погрешности γ = ±0,25%;
γ = 0,4+0,1· Рmax , %
Р1
- для датчиков с пределом допускаемой основной приведенной погрешности γ = ±0, 5%;
Рmax - максимальный верхний предел измерений для данной модели датчика;
Р1 – действительное значение верхнего предела измерений
Пульсация выходного сигнала не более 0,25% от диапазона изменения выходного сигнала.
Электрическое питание датчика осуществляется напряжением (36±0,72) В постоянного тока.
Мощность, потребляемая датчиком, не более 1,0 В. А.
Детали измерительного блока изготовлены из стали 12X18Н1 ОТ по ГОСТ 5632.
Материал мембраны - сплав 36НХТЮ по ГОСТ 5632; уплотнительных колец - специальная резина, фторопласт.
Корпус преобразователя электронного изготовлен методом литья под давлением из алюминиевого сплава, не содержащего медь. Защитное покрытие: эмаль МЛ-12 ГОСТ 9754.
Датчики снабжены устройством, позволяющим перенастраивать их на любой из пределов измерений для данной модели.
Масса датчика модели 3163 – 2,5 кг. Не более.
Схема датчика:
Принцип действия:
Давление рабочей среды воздействует на разделительную мембрану 1 и через жидкость 2 вызывает деформацию чувствительного элемента, прочно скрепленного с мембраной тензопреобразователя 3 . Чувствительный элемент -кристалл сапфира с кремниевыми пленочными тензорезисторами (структура КНС). Тензорезисторы соединены в мостовую схему 4. Деформация измерительной мембраны приводит к пропорциональному изменению сопротивления тензорезисторов и разбалансу мостовой схемы. Электрический сигнал с выхода мостовой схемы поступает в дифференциальный усилитель электронного блока 5. Встроенный в усилитель регулятор коэффициента усиления обеспечивает перенастройку диапазонов измерений. Усиленный сигнал преобразуется в унифицированный токовый в преобразователе 6 . Питание всех звеньев электрической схемы датчика осуществляется через узел питания 7. Устройство термокоррекции 8 компенсирует влияние температурных воздействий на тензомост.