Реферат по предмету "Программирование и компьютеры"


Применение метода частотных диаграмм в исследовании устойчивости систем с логическими алгоритмами управления

Применение метода частотных круговых диаграмм к исследованию устойчивости систем с логическими алгоритмами управления. На ранней стадии развития теории автоматического регулирования требование устойчивости работы системы было первым и обычно единственным и содержание большинства теоретических исследований сводилось к иследованию устойчивости.
“Термин “устойчивость” настолько выразителен, что он сам за себя говорит”,-отмечают в начале изложения теории устойчивости Ж. Ла Салль и С. Лефшец [1]. Это вполне справедливо, но, несмотря на это, неточности и нелогичности можно встретить как раз не в математических, а в смысловых понятиях и терминах. Устойчивостью любого явления в обиходе называю его способность достаточно длительно и с достаточной точностью сохронять те формы своего существования, при утрате которых явление перестает быть самим сабой. Однако не только в обиходе, но и в научной терминалогии устойчивым называют не явление, а систему, в корой оно наблюдается, хотя это не оправдывает логически. Устойчивы ли физические тела - шар или куб? Такой вопрос будет иметь смысл, если речь идет о материале, из которого они сделаны. (Металлический шар устойчив, шар из дыма нет.) Теорию управления интересует, однако, не эта прочнасная устойчивость. Подразумевается, что система управления как инженерная конструкция заведома устойчива, и в теории изучается устойчивость не самой системы, а ее состояний и функционирования. В одной и той же системе одни состояния или движения могут быть устойчивыми, а другие не устойчивыми. Более того, одно и то же жвижение может быть устойчивым относительно одной переменной и неустойцивым относительно другой - это отмечал еще А.М. Ляпунов [2]. Вращение ротора турбины устойчиво по отношению к угловой скорости и неустойчиво относительно угла поворота вала. Движение ракеты устойчиво относительно траектории и неустойчиво по отношению к неподвижной системе координат. Поэтому нужно оговаривать, устойчивость какого состояния или движения в системе и относительно каких переменных изучается. Так же есть много методов для оценки самой устойчивости. Мы рассмотрим как можно оценить устойчивость системы с логическим алгоритмом управления методом круговых диаграмм. Рассмотрим теоретическую часть и посмотрим что из себя представляет круговой критерий. Пусть дана система . x=Ax+bx, s=c’x, (1) где x и s - в общем случае векторы (и, следовательно, b и с - прямоугольные матрицы), а матрица А не имеет собственных значений на линейной оси. Предположим , что для некоторого m, £ m £ система (1), дополненая соотношением x=-ms, асимптотически усойчива. Для абсолютной экпоненциальной устойчивости системы (1) в классе М() нелинейностей x=j(s,t), удовлетворяющих условию £j(s,t)/s£ (2) достаточно, чтобы при всех w, -¥ Re{[1+w)][1+W(jw)]}>0. (3) Круговой критерий вытекает из квадратичного критерия для формы F(x,s)=(s-x)(x-s). Действительно, как было показано выше, форма F(jw,x) имеет вид F(jw,x)=-Re{[1+W(jw)][1+W(jw)]}|x| Из этой формулы после сокращения на |x| следует (3). В (3) ¹-¥ , ¹+¥. Случай, когда либо =-¥, либо =+¥ рассматривается аналогично. Круговой критерий представляет собой распространение линейных частотных критериев устойчивости Найквиста, Михайлова и других на линейные системы с одним линейным или нелинейным, стационарным или нестационарным блоком. Он получается из (3), если вместо передаточной матрицы использовать частотную характеристику линейной части W(jw). Обозначая комплексную переменную W(jw)=z, рассмотрим систему с одной нелинейностью, удовлетворяющей одному из следующих условий: Re[(1+z)(1+z)]£0, если ¹-¥ , ¹+¥. (4) Re[(1+z)z]£0, если ¹-¥ , ¹+¥. (5) Re[z(1+z)]£0, если ¹-¥ , ¹+¥. (6) Пусть С() - облость комплексной плоскости z, определяемая этими условиями. Граница В() области определяемая уравнениями получаемыми из (4)-(6) заменой знаков неравенств равенствами. Для (4) получаем окружность, проходящую через точки -1/, -1/ сцентром на оси абсцисс, причем область С будет внутренностью этой окружности, если >0, т.е. если нелинейные характеристики лежат в 1 и 3 квадрантах, и ее внешностью, если сектор () захватывает два смежных квадранта. Если одна из границ сектора совпадает с осью абсцисс, т.е. если =0 или =0 , то область С будет полуплоскостью, а ее граница - вертикальной прямой, проходящей соответственно через -1/ или -1/. На рисунке 1 показаны границы в плоскости z для различного расположения секторов () в плоскости s, x. Там же изображены кривые W(jw), w>0 для неособого случая, расположенные так, что возможна абсолютная устойчивость. Однако только приемлимого расположения хаоактеристик W(jw) еще недостаточно для суждения об абсолютной устойчивости : кроме этого, нужно еще потребовать, чтобы линейная замкнутоя система была асимптотически устойчивой.
Круговой критерий обеспечивает также абсолютную устойчивость для системы с любым блоком, вход s и выход x которого удовлетворяют для всех t неравенству (s-x)(x-s)³0 (7)
Рисунок 1, а. Рассмотрим систему, приведенную на рис. 2. А Х Y У (P) Z (-) G(p) g Рисунок 2. Здесь W(p) - оператор линейной части системы, которая может иметь в общем случае следущий вид: W(p)=; (8) W(p)=; Алгоритм регулятора имеет вид: y=Yx, при gx>0 Y= (9) - при gx g=( В форме уравнений Коши рассматриваемая система имеет вид: =, =-, (10) k при g>0 где = - k при g g=c+; =. Соответствие записей системы на рис. 2 достигается, когда при W(p)= в уравнениях (10) имеем: (11) а при W(p)= имеем: (12) Причем для обоих случаев (11) и (12) имеет место соотношение (13) В соответствии с изложенным одинаково справедливо рассматривать в виде структурной схемы на рис. 2 с известным линейными операторами - и G(p) или в виде формы Коши (10). Дополнительно отметим, что структурная интерпритация рассматриваемой системы на рис. 2 имеет еще одну структурную схему описания, приведенную на рис. 3. |x|=c l g y z
(-) x G(p) W(p)
Рисунок 3. Это означает, что аналитической записи (10) соответствуют два структурных представления исследуемой СПС, причем второе позволяет рассматривать систему (10) как релейную систему с изменяемым ограничение, когда |x| - var. Далее перейдем к анализу нашего метода. Согласно частотной теоремы (10), для абсолютной устойчивости системы на рис. 3 лостаточно, чтобы при всех w, изменяющихся от - ¥ до + ¥, выполнялось соотношение: Re{[1+w)][1+W(jw)]}>0, а гадографmW(jw)+1 при соответствовал критерию Найквиста. Для исследуемой системы условие (3) удобнее записать в виде (4) и (5). На рис. 4 приведенны возможные нелинейные характеристики из класса М() и годографы W(jw), расположенные таким образом, что согласно (4) и (5) возможна абсолютная устойчивость. y ^ y=g () |x| y=g (при =0) > 0 “а” “б” “в” “г” Рисунок 4. В рассматриваемом случае (10) при W(p)=, когда W(p)= W(p)G(p), G(p)=p+1, годограф W(jw) системы на рис. 5. j W(jw) w=¥ > = w=0 Рисунок 5. В случае (10) справедливы графические формы на рис. 4 в,г, т.е. исследуемая система абсолютно устойчива в смысле кругового критерия (3) или (5) при > (14) Интересно заметить, что достаточные условия абсолютной устойчивости по Ляпунову а > 0 , y(t) > 0 и a > c для рассматриваемого случая совпадают с достаточными условиями абсолютной устойчивости, полученными для кругового критерия (14), если выполняется требование y(t) > 0 (15) поскольку, согласно (11) и (13) a=a=. Докажем это, используя условия существования скользящего режима -k£y(t)=ck
т.е. подставим сюда вместо коэфициентов а,с, и k их выражения через , , , тогда получим
-£y(t)= £ (16) Согласно рис. 5 и условия (16) получаем: 1) при = , y(t)=0 2) при > , y(t)>0 3) при , y(t) что и требовалось доказать. Теперь рассмотрим нашу систему с логическим алгоритмом управления, ее логическая схема приведена на рис. 6. |x|=c l g s z (-) x G(p) (p) Рисунок 6. В данном случае считаем что: - варьируемая величина, =0.5, =0.1 (анализ поведения системы при изменении данного параметра исследуется в работе ст-та Новикова, мы берем оптимальное значение), =0.1,1 (коэффициент обратной связи), =10,100. Рассмотрим теперь саму функцию: W(p)=G(p)W(p), где G(p) - функция корректора, W(p)= (p)W(p), где (p)=, а W(p) в свою очередь будет: W(p)=, где , соответственно вся функция имеет вид: W(p)=; Теперь заменяем p на jw и имеем вид: ; Для построения гадогрофа выведем формулы для P(w), jQ(w) которые имеют вид: P(w)=; jQ(; Графики можно посмотреть в приложении N 2. Учитывая , что добротность x должна быть ³ 0.5¸0.7 мы можем определить добротность нашей системы, она примерно равна 0.5. Отсюдо видно, что из-за увеличения и , x уменьшается, можно сделать вывод, что колебательность звена увеличиться. Это можно наблюдать на графиках 1.13 - 1.16 в приложении N 2.
Но это не подходит по требованию нашей задачи. Так как > , то можно сделать вывод, что коректор будет влиять только на высоких частотах, а на низких будет преобладать , что можно наблюдать на графиках 1.1 - 1.4. На графиках 1.5 - 1.8 можно наблюдать минемальные значения , это значит что, при этих значениях будет максимальные значения полки нечувствительности релейного элемента.
Минемальные значения полки нечуствительности можно наблюдать на графиках 1.9 - 1.12, особенно при минемальном значении . Приложение N 1. Программа для построения годографов на языке программирования СИ ++. #include #include #include #include #include #include #include #include void Godograf(float Tpr, float Ko, float Kos, int Color, int Xc, int Yc, int x, int y, int z, int err); void Osi(int Xc, int Yc, int kol); int xmax, ymax; float Kos[]={0.1,1.0}, Ko[] ={10.0,100.0}, Tpr[]={0.01,0.09,0.2,0.5}; void main(void) { float P_w, Q_w, w; int driver, mode, err; driver = DETECT; initgraph(&driver,&mode,""); err = graphresult(); if (err!=grOk) {cout getch();} else { xmax = getmaxx(); ymax = getmaxy(); int Xc=(int)(xmax/2), Yc=(int)(ymax/2); for(int i=0;i cleardevice(); setviewport(0,0,xmax,ymax,0); Osi((int)(xmax/2),(int)(ymax/2),i+j+k); Godograf(Tpr[k],Ko[j],Kos[i],15,(int)(xmax/2),(int)(ymax/2),k,j,i,1); setcolor(7); setlinestyle(1,0,1); rectangle(Xc-18,Yc-15,Xc+18,Yc+15); setlinestyle(0,0,1); rectangle(10,Yc+5,250,Yc+205); setcolor(15); setviewport(10,(int)(ymax/2)+5,250,(int)(ymax/2)+205,1); setfillstyle(1,0); floodfill(5,5,7); line(10,100,230,100); line(125,10,125,190); Godograf(Tpr[k],Ko[j],Kos[i],15,125,100,k,j,i,0);}; closegraph(); } } void Godograf(float Tpr, float Ko, float Kos, int Color, int Xc, int Yc, int x, int y, int z, int err) { float P_w1=0.0, Q_w1=0.0, P_w, Q_w, To=0.5, Tg=0.1, P_w_min=0.0; for(float w=0;w if(((Kos*Ko-(To+Tpr)*w*w)*(Kos*Ko-(To+Tpr)*w*w)+ (w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w))!=0){ P_w = (Ko*w*Tg*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)+ (Kos*Ko*Ko-(To+Tpr)*Ko*w*w))/ ((Kos*Ko-(To+Tpr)*w*w)*(Kos*Ko-(To+Tpr)*w*w)+ (w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)); Q_w = (Tg*(Kos*Ko*Ko*w-(To+Tpr)*Ko*w*w)- Ko*(w+Tpr*Kos*Ko*Ko*w-Ko*To*Tpr*w*w*w))/ ((Kos*Ko-(To+Tpr)*w*w)*(Kos*Ko-(To+Tpr)*w*w)+ (w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)); if (abs(P_w)>abs(P_w1)) P_w1=P_w; if (abs(Q_w)>abs(Q_w1)) Q_w1=Q_w; if (P_w if (P_w1==0) P_w1=P_w1+0.01; if (Q_w1==0) Q_w1=Q_w1+0.01; }; }; float KmasX =(float)(xmax-Xc-100)/P_w1, KmasY =(float)(ymax-Yc-100)/Q_w1; if (KmasX if (KmasX>=220) KmasX=150; if (KmasY>=140) KmasY=100; if (err==0) {KmasX=KmasX*4; KmasY=KmasY*4;}; w = 0; if(((Kos*Ko-(To+Tpr)*w*w)*(Kos*Ko-(To+Tpr)*w*w)+ (w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w))!=0){ P_w = KmasX*(Ko*w*Tg*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)+ (Kos*Ko*Ko-(To+Tpr)*Ko*w*w))/ ((Kos*Ko-(To+Tpr)*w*w)*(Kos*Ko-(To+Tpr)*w*w)+ (w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)); Q_w = KmasY*(Tg*(Kos*Ko*Ko*w-(To+Tpr)*Ko*w*w)- Ko*(w+Tpr*Kos*Ko*Ko*w-Ko*To*Tpr*w*w*w))/ ((Kos*Ko-(To+Tpr)*w*w)*(Kos*Ko-(To+Tpr)*w*w)+ (w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)); moveto(Xc+P_w,Yc-Q_w); }; setcolor(Color); setcolor(9); line(Xc+P_w_min*KmasX,10,Xc+P_w_min*KmasX,ymax-10); gotoxy(2,5); printf("K2="); printf("%f",(-1/P_w_min)); setcolor(15); for(w=0;w if(((Kos*Ko-(To+Tpr)*w*w)*(Kos*Ko-(To+Tpr)*w*w)+ (w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w))!=0){ P_w = KmasX*(Ko*w*Tg*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)+ (Kos*Ko*Ko-(To+Tpr)*Ko*w*w))/ ((Kos*Ko-(To+Tpr)*w*w)*(Kos*Ko-(To+Tpr)*w*w)+ (w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)); Q_w = KmasY*(Tg*(Kos*Ko*Ko*w-(To+Tpr)*Ko*w*w)- Ko*(w+Tpr*Kos*Ko*Ko*w-Ko*To*Tpr*w*w*w))/ ((Kos*Ko-(To+Tpr)*w*w)*(Kos*Ko-(To+Tpr)*w*w)+ (w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)*(w+Tpr*Kos*Ko*w-To*Tpr*w*w*w)); lineto(Xc+P_w,Yc-Q_w); }; }; setcolor(13); circle(Xc-KmasX,Yc,2); circle(Xc-KmasX,Yc,1); putpixel(Xc-KmasX,Yc,13); outtextxy(Xc-KmasX-7,Yc-12,"-1"); setcolor(15); if (err==1){ if (x==0) outtextxy(10,10,"Tpr = 0.01"); if (x==1) outtextxy(10,10,"Tpr = 0.09"); if (x==2) outtextxy(10,10,"Tpr = 0.2"); if (x==3) outtextxy(10,10,"Tpr = 0.5"); if (y==0) outtextxy(10,30,"Ko = 10"); if (y==1) outtextxy(10,30,"Ko = 100"); if (z==0) outtextxy(10,50,"Koc = 0.1"); if (z==1) outtextxy(10,50,"Koc = 1.0");} else { char ch=' '; while(ch!=27&&ch!=13) if (kbhit()!=0) ch=getch();}; }; void Osi(int Xc, int Yc, int kol) { setcolor(15); rectangle(0,0,xmax,ymax); line(Xc,10,Xc,ymax-10); line(10,Yc,xmax-10,Yc); line((int)(xmax/2)-3,15,(int)(xmax/2),10); line((int)(xmax/2),10,(int)(xmax/2)+3,15); line(xmax-15,(int)(ymax/2)-3,xmax-10,(int)(ymax/2)); line(xmax-15,(int)(ymax/2)+3,xmax-10,(int)(ymax/2)); settextstyle(2,0,5); outtextxy((int)(xmax/2)+7,10,"jQ(w)"); outtextxy(xmax-35,(int)(ymax/2)+7,"P(w)"); settextstyle(2,0,4); outtextxy((int)(xmax/2)-8,(int)(ymax/2)+1,"0"); settextstyle(0,0,0); if (kol==5) outtextxy(5,ymax-15,"'Esc' - exit"); else outtextxy(5,ymax-15,"'Enter' - next "); setcolor(15); }; Приложение N 2. Рисунок N 1.1 Рисунок N 1.2
Рисунок 1.3 Рисунок 1.4 Рисунок 1.5
Рисунок 1.6 Рисунок 1.7 Рисунок 1.8 Рисунок 1.9 Рисунок 1.10 Рисунок 1.11 Рисунок 1.12 Рисунок 1.13 Рисунок 1.14 Вставка 1.15 Рисунок 1.16 Литература: 1. Емильянов С.В., Системы автоматического управления с переменной структурой. - М.: Наука, 1967. 2. Воронов А.А.,Устойчивость управляемость наблюдаемость, Москва “Наука”, 1979. 3. Хабаров В.С. Сранительная оценка методов исследования абсолютной устойчивости СПС: Научн.-исслед. работа. 4. Хабаров В.С. Нелинейные САУ: Курс лекций/ Записал В.Л.Смык,-1997. Список постраничных ссылок: 1. Ла Салль Ж., Лефшец С. Исследование устойчивости прямым методом Ляпунова.-М.: Мир, 1964.-168 с. 2. Ляпунов А.М. Общая задача об устойчивости движения. - Собр. соч.- М.: Изд-во АН СССР, 1956, т. 2, с. 7-271.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.