На прошлой лекции было показано, что исходное поле k можно расширить добавляя элементы из некоторого большего поля. В случае простого алгебраического расширения добавляется единственный элемент U, являющийся корнем некоторого неприводимого многочлена над k степени n. Это приводит к полю k(U), которое будет расширением степени n исходного поля k.
Оказывается, что конструкцию присоединения можно провести “изнутри”, не выходя в большее поле K. Идея этого построения раскрывается в следующей теореме.
Теорема.
Пусть pk[x] - неприводимый многочлен над k, U - его корень в некотором большем поле K, (p) =pk[x] k[x] - главный идеал с образующим элементом p. Тогда k(U) k[x]/(p).
Доказательство.
Определим отображение :k[x] k(U) формулой (q)=q(U). Поскольку каждый элемент Vk(U) может быть записан в виде многочлена от U, сюръективно. По теореме о гомоморфизме k(U) k[x]/Ker. Остается доказать, что Ker = (p). Если q=pd, то q(U)=p(U)d(U) = 0 и таким образом (p) Ker. Обратно, если q(U) = 0 то поскольку p неприводим и p(U) = 0 , p | q и значит Ker (p).
Следствие.
Если и корни одного неприводимого над k многочлена, то поля k() и k() изоморфны, причем при этом изоморфизме каждый элемент поля k отображается на себя.
Замечание.
Поле F = k[x]/(p), для своего построения не требует знания большего поля K, в котором лежит корень неприводимого многочлена p. Поле F содержит k. Рассмотрим естественный гомоморфизм t: k[x] F и определим элемент U поля F равенством U= t(x). Тогда, очевидно, p(U) =0 . Теперь только что доказанная теорема позволяет утверждать, что Fk(U). Такой способ присоединения новых элементов к полю называется формальным. Отметим, что именно так было построено поле C комплексных чисел исходя из поля вещественных чисел R: мнимую единицу i мы присоединили, как корень (неприводимого над R) многочлена . Присоединение было формальным в вышеуказанном смысле, так как находясь в области вещественных чисел, мы не можем указать корень этого многочлена.
Примеры.
1. Пусть k = Q, U =. Тогда p= имеет корни U, U, U, где - кубический корень из 1. Согласно только что сформулированному следствию, поля k=k(U) и k=k(U) изоморфны, хотя они и состоят из элементов различной природы: все числа из поля k действительные, а для k это уже не так.
2. Рассмотрим k = GF(2) и неприводимый многочлен p= +x+1 над этим полем. Нам неизвестно никакое большее поле K, в котором следует искать корни этого многочлена. В соответствии с только что доказанной теоремой рассмотрим поле K=k[x]/(p). Всякий его элемент можно записать в виде a+bU, где a , bGF(2), причем +U+1 = 0 . Поле K поэтому содержит 4 элемента: 0 = 0+0U; 1=1+0U; U =0+1U; V = 1+1U. Поле K является расширением поля GF(2) и потому имеет характеристику 2. С учетом этого обстоятельства его элементы складываются очевидным образом. Что касается умножения, то (как и во всяком поле) (a+bU)(c+dU) = ac+(ad+bc)U+bdи остается воспользоваться равенством =U+1. Например, U(U+1) = +U =1 так что элементы U и U+1 взаимно обратны. Поле K обозначается GF(4). В нем многочлен p имеет корень U. Другим корнем p в том же поле будет V = U+1. Значит в поле GF(4) многочлен p раскладывается на множители первой степени: p = (x+U)(x+U+1).
Поле разложения многочлена.
Пусть pk[x] произвольный многочлен степени n. Разложим его в произведение неприводимых многочленов: p =. Присоединяя к k корень многочлена p построим новое поле, в котором p = (x-a) , где многочлены неприводимы над. Теперь присоединим к корень многочлена и так далее. В результате не более чем через n шагов мы придем к полю K в котором многочлен p распадается, то есть раскладывается в произведение многочленов первой степени: p=
Определение.
Построенное таким образом поле K называется полем разложения многочлена p. Это - наименьшее поле, содержащее k и все корни многочлена p: K = k().
Примеры.
1. У нас уже появлялись поля разложения. Так мы видели,что Q() -поле разложения многочлена Q[x], Q() - поле разложения многочлена Q[x], GF(4) - поле разложенияGF(2)[x].
2. Построим поле разложения для p = Q[x]. Заметим, что поле=Q() таковым не является; в этом поле p = и второй множитель q неприводим даже над R, поскольку его дискриминант меньше нуля. Поле разложения K получится, если мы присоединим к полю один из корней уравнения q(x) = 0, то есть величину, где - кубический корень из 1. Впрочем, поскольку, достаточно присоединить. Первое расширение имеет базис 1, ,. Второе - 1, . По теореме о строении составного расширения, базис K над Q составляют элементы: 1, ,,,, и [K:Q] =6. Заметим, что = K, хотя в отдельности ни i ни не входят в K.
Замечание.
Можно доказать ( мы этого делать не будем), что поле разложения данного многочлена определено однозначно с точностью до изоморфизма.
Строение конечных полей.
Теорема о количестве элементов конечного поля.
Пусть K расширение конечного поля k степени n. Если k содержит q элементов, то K содержит элементов.
Доказательство.
Пусть - базис расширения. Любой элемент поля K однозначно записывается в виде:, гдеk. Отсюда и вытекает наше утверждение.
Следствие.
Количество элементов конечного поля k характеристики p равно. В самом деле, kGF(p).
Как нам известно, над полем GF(p) существуют неприводимые многочлены любой степени . Присоединяя ( формально) к GF(p) корень такого многочлена степени n, мы получим расширение KGF(p) степени n. Итак, имеем следующее утверждение.
Теорема существования для конечных полей
Для всякого натурального n и простого p существует конечное поле из элементов.
Рассмотрим теперь многочлен t =, где q = над полем GF(p). Пусть K какое либо поле, содержащее все корни этого многочлена, так что в K . Отметим, что среди элементов нет одинаковых. В самом деле, , так что ОНД(t, ) = 1 и t не имеет кратных корней.
Теорема.
Множество T = {}K является полем из q элементов.
Доказательство. Надо проверить, что и 1. , Но . Значит,
2. .
Следствие.
Поле T из элементов является полем разложения многочлена над GF(p).
Поскольку поле разложения многочлена определено однозначно с точностью до изоморфизма, мы вправе ввести для него специальное обозначение. Это поле называется полем Галуа в честь французского математика Эвариста Галуа и обозначается GF().
Пусть теперь K любое поле из элементов. Как нам известно, группа K* - циклическая порядка q-1. Поэтому для любого, а потому для всех без исключения элементов K. Таким образом всякий элемент xK удовлетворяет уравнению =0 и KGF(q). Поскольку они состоят из одинакового числа элементов, мы получаем:
Теорема.
Любое конечное поле изоморфно GF().
Следствие.
Всякий неприводимый над GF(p) многочлен s степени n является делителем многочлена d =.
В самом деле, присоединяя к GF(p) корень многочлена s, мы получаем поле из элементов. Следовательно, этот корень содержится в GF() и неприводимый многочлен s делит d.
Отметим, что после этого присоединения получается поле разложения многочлена s.
Следствие.
Поле разложения любого неприводимого многочлена s степени n над GF(p) получается в результате присоединения одного единственного корня этого многочлена и изоморфно GF(). Многочлен s не имеет корней в полях GF() при l
Теорема о подполях конечных полей.
Если kGF(), то kGF(), причем m | n. Обратно, для всякого делителя m числа n в поле GF() существует единственное подполе из элементов.
Доказательство.
Поскольку k имеет характеристику p оно состоит из q = элементов. Поле GF() можно рассматривать как расширение степени l поля k и, следовательно оно состоит из элементов, так что n = ml. Обратно, поскольку kGF(), всякий его элемент удовлетворяет уравнению = x. Это уравнение имеет не более корней в поле GF(), и значит если такое подполе существует, его элементы определяются однозначно. Остается доказать, что при n = ml уравнение = x имеет ровно корней в GF(). Проверим, что. Обозначим и заметим, что число целое. Имеем: .Так как y =1 корень числителя, то деление выполняется нацело. Поскольку в поле GF() многочлен распадается, то же верно и для его делителя и потому этот многочлен имеет корней.
Теорема о действии автоморфизма Фробениуса.
Автоморфизм Фробениуса Ф: циклически переставляет корни любого неприводимого многочлена степени n над GF(p).
Доказательство.
Пусть s заданный многочлен и a один из его корней. Тогда Ф Достаточно проверить, что все элементы a, Ф(a), , Ф попарно различны. Допустим, что Ф(a)= Ф(a), то есть, где i, получаем: . Таким образом a содержится в поле разложения многочлена, то есть в GF(). Поскольку v