Реферат по предмету "Геология"


Трещиноватость горных пород, её влияние на изменения физико-механических свойств пород на примере месторождения Нойон-Тологой

Содержание Введение 1. Теоретические положения 1.1 Значение трещиноватости в горном деле и геологии 1.2 Основные понятия
1.2.1 Типы трещин в горных породах 2. Сведения об объекте изучения 2.1 Инженерно – геологические условия месторождения 3. Влияние трещиноватости на изменение физико-механических свойств горных пород Приложение Заключение Список используемой литературы Введение Развитие горно-промышленного комплекса невозможно без всестороннего изучения и учета геологических условий при открытой и подземной разработке месторождений полезных ископаемых, при опенке участков подземного строительства, при ведении буровзрывных работ и т.д. Среди геологических условий одно из наиболее важных мест занимает трещиноватость горных пород. Изучение трещиноватости горных пород не предусмотрено учебной программой в качестве самостоятельной лабораторной работы. Полученные теоретические знания по трещиноватости горных пород студенты горных специальностей закрепляют при прохождении учебной геологической практики, где одним из заданий является изучение и характеристика трещиноватости конкретного обнажения. В теоретических положениях работы изложены данные, касающиеся происхождения, классификации и влияние трещин на физико-механические свойства горных пород. 1. Теоретические положения 1.1 Значение трещиноватости в горном деле и геологии Ориентировка, частота, тип и вид трещин оказывают существенное влияние на важнейшие физико-механические свойства пород, определяющих устойчивость горных выработок, условия их обводнения (гидрогеологический режим рудничных вод), разрабатываемость месторождения. Поэтому трещиноватость является одним из главных показателей пород, определяющих организацию горно-технического производства. Детальное изучение трещиноватости способствует повышению безопасности и производительности труда. Трещиноватость может иметь положительное значение при разработке месторождений. В частности, она облегчает выемку углей из пластов. Рациональная ориентировка шпуров по отношению к трещинам при буро-взрывных работах способствует повышению коэффициента использования шпуров (КИШ). Однако, в большинстве случаев трещиноватость способствует развитию вредных для горного производства горно-геологических процессов и явлений (сдвижение пород, горные удары, обвалы и т.п.). В качестве примера рассматривается случай влияния трещиноватости на характер проявления вывалов горных пород в призабойном пространстве. Вывал - это локальное обрушение глыб пород в горную выработку преимущественно из кровли выработки. По взаимоотношению кровли выработки и систем трещин вывалы подразделяются на безупорные, упорные и полуупорные (рисунок 1). Вывалы упорного типа менее опасны, т.к. кровля выработки в этом случаи более устойчива. Рисунок 2.1 – Схемы образования вывалов безупорного (а), упорного (б) и полуупорного (в) типов в подземных выработках В процессе формирования месторождений полезных ископаемых значение трещиноватости состоит в том, что она определяет пространственную ориентировку и форму рудных столбов, рудных тел, влияет на особенности их внутреннего строения - распределение полезного компонента по рудному телу, распределение технологических и минералогических типов руд и др. Трещины служат путями миграции рудоносных растворов и вмещают рудную минерализацию, формируя месторождения полезных ископаемых жильного типа. Трещины служат путями миграции и являются коллекторами подземных вод, газа, нефти - более половины мировой добычи нефти производят из коллекторов нефти трещинного типа. Трещины используются для выявления и изучения складок, разломов, восстановления древних и современных полей тектонических напряжений. Трещиноватость горных пород может возникнуть при образовании самих горных пород (первичная трещиноватость) или под воздействием более поздних экзогенных или эндогенных процессов. В осадочных горных породах первичные трещины образуются при диагенезе, сопровождаемом уплотнением и обезвоживанием осадка. В магматических горных породах возникают первичные контракционные трещины, компенсирующие уменьшение объёма охлаждающихся магматических тел. При экзогенных процессах развиваются трещины выветривания, трещины, связанные с расширением пород при снятии с них нагрузки (на склонах и в днищах речных долин и оврагов), трещины, сопровождающие образование оползней, обвалов и провалов. При эндогенных процессах образуются трещины отрыва и скалывания. По степени проявления трещины могут быть открытые, закрытые и скрытые. Блоки и глыбы, на которые горные породы делятся трещинами, называются отдельностями. По положению в пространстве различают вертикальные, наклонные и горизонтальные трещины. В слоистых толщах пород по отношению к слоистости трещины могут быть поперечными, диагональными или параллельными. Трещины отрыва развиваются в направлении максимальных нормальных растягивающих напряжений, перпендикулярно к растяжению пород или в направлении их сжатия; они коротки, имеют неровные шероховатые поверхности и широко распространены в замках складок на сводах куполов, крыльях разрывов. Трещины скалывания возникают в направлении максимальных касательных напряжений под углом около 45° к оси сжатия или растяжения; они ровные, прямые, нередко со следами притирания, вытянутые на десятки и сотни м на земной поверхности и в глубину. Особым видом трещин скалывания является кливаж. Существует несколько классификаций горных пород по трещиноватости, в основу которых положены генетические, морфологические, горнотехнические и другие признаки. В настоящее время при определении горного давления, расчетах крепи, определении удельного расхода взрывчатых веществ в горном деле пользуются классификацией, представленной в табл. 2.0 Таблица 2.0 Классификация пород по трещиноватости Межведомственного Совета. Категории по трещиноватости Степень трешиноватости (блочности) массива Среднее расстояние между трещинами, м Цельная трешиноватость, м -1 1 Чрезвычайно трещиноватые (мелкоблочные) До 0,1 Более 10 II Сильнотрещиноватые (среднеблочные) 0,1-0,5 10-2 III Среднетрещиноватые (крупноблочные) 0,5-1 2-1 IV Малотрещиноватые (весьма крупноблочные) 1-1,5 1-0,65 V Практически монолитные Свыше 1,5 До 0,65 1.2 Основные понятия Трещина - это разрыв сплошности горных пород, перемещение по которому" либо отсутствует, либо имеет незначительную величину. Форма трещин отличается от формы других полостей в породах (пор, каверн и др.) резким преобладанием протяженности во всех направлениях стенок трещин над расстоянием между стенками. Трещины образуются при действии на породу сил, превышающих предел прочности породы. Эти силы возникают в результате различных эндогенных, экзогенных геологических и антропогенных процессов и могут быть как внешними для породы (тектонические, гравитационные и др. силы), так и внутренними, возникающими при изменении температуры, влажности, плотности породы.
Трещиноватость или сеть трещин - это совокупность всех трещин, совместно развитых в конкретном объеме горной породы. Система трещин - это совокупность трещин, совместно развитых в конкретном объеме породы и имеющих близкую пространственную ориентировку. Как правило, одновременно бывает развито несколько систем трещин. Но встречаются массивы горных пород с одной системой трещин (рисунок 2) или бессистемной (хаотичной) трещиноватостью. Отдельность - это характерная форма блоков (глыб, кусков) горной породы, образующаяся при раскалывании породы. Размеры блоков различны - от нескольких сантиметров до сотен метров в поперечнике. Отдельность обусловлена наличием пересекающихся систем трещин. Поэтому вид отдельности и размеры блоков пород определяются ориентировкой, интенсивностью и частотой систем трещин (рисунок 3). В осадочных породах и. в частности, в угленосных толщах распространены кубическая, параллелепипедальная. плитчатая, призматическая, сферическая, чешуйчатая отдельности. Рисунок 2.2 – Трещиноватость горных пород в обнажении Рисунок 2.3 – Матрицевидная (а), плитчатая (б), шаровая (в) отдельность (начало рисунка) Рисунок 2.3 – Матрицевидная (а), плитчатая (б), шаровая (в) отдельность (продолжение рисунка) Зона трещиноватости – это линейно вытянутый участок земной коры, в пределах которого трещины развиты более интенсивно, чем в окружающих породах. Образуются обычно на небольшой глубине. Зона дробления (брекчировання) - это линейно вытянутый участок земной коры (независимо от размеров), в пределах которого горные породы разбиты трещинами на небольшие блоки, смещенные и повернутые относительно первоначального залегания. Образуются в условиях небольших глубин. Кливаж - способность породы раскалываться на отдельные элементы размером до 1 см в поперечнике по густо развитой системе параллельных поверхностей, секущих слоистость или согласных с ней. Кливаж возникает за счет ориентировки минералов или образуется независимо от такой ориентировки по сети параллельных трещин. 1.2.1 Типы трещин в горных породах Существуют различные классификации трещин: геометрические, генетические и специальные. Все они характеризуют трещины с различных точек зрения и потому не исключают, а дополняют друг друга: а) По степени открытости и проявленности различают скрытые (микротрещины, не видимые невооруженным глазом и обнаруживающиеся лишь при раскалывании породы, которая ломается по этим трещинам), закрытые (хорошо заметные, но с плотно прижатыми стенками) и открытые (обладающие некоторой полостью) трещины. б) По размерам выделяют малые или внутрипластовые трещины, когда они не выходят за пределы одного пласта, и большие трещины, секущие несколько пластов; абсолютная длина большинства трещин - метры и десятки метров, но она может колебаться от миллиметров до сотен метров. в) По форме выделяют прямые, дуговидные, кольцевые, изломанные трещины с гладкими или неровными краями. г) Угол падения трещин может изменяться от 0° до 90°. По углу падения выделяют горизонтальные (0-5°), пологие (5-20°), слабонаклонные (20-45°), крутые (45-80°). вертикальные (80-90°). д) По отношению к залеганию слоев трещины могут быть продольными (параллельные простиранию породы), поперечные (рассекающие породу в направлении падения), косые (рассекающие породу в любом промежуточном направлении), согласные (следующие параллельно слоистости и сланцеватости) (рисунок 4). На округлых складках могут быть выделены радиальные и концентрические трещины. 1- поперечная; 2- согласная; 3 – косая; 4 – продольная. Рисунок 2.4 – Трещины в осадочных породах е) По отношению к оруденению выделяют дорудные. внутрирудные и послерудные трещины. ж) По характеру действия сил. приведших к возникновению тектонических трещин, все трещины горных пород, независимо от источника сил. делятся на трещины отрыва и трещины скалывания. Трещины отрыва (раскола) образуются в плоскости, параллельной сжимающим силам и перпендикулярной растягивающим силам, когда величина последних превышает предел прочности породы на отрыв (рисунок 5). В момент образования эти трещины открыты. Вдоль стенок трещин отрыва наблюдаются только небольшие смешения, т.к. перемещение в породе направлено перпендикулярно к стенкам трещины (рисунок 6). Размеры трещин отрыва колеблются в широких пределах - от микроскопических (не видимых глазом) до нескольких десятков и сотен метров в длину, при ширине открытия от мм до м. Рисунок 2.5 – Трещины отрыва образующиеся при сжатии (а), растяжении (б) и сдвиге (в). Р- внешние силы; Стрелки – смещения блоков породы относительно трещин отрыва К трещинам отрыва часто приурочены дайки магматических пород, рудные и нерудные жилы (рисунок 7). Они могут быть коллекторами нефти и газа, подземных вод. Открытые трещины отрыва часто водоносны и нередко они обуславливают большой приток подземных вод к горным выработкам, а также большие потери воды на фильтрацию из каналов, водохранилищ, из-под тела плотин. Рисунок 2.6 – Конусообразный ряд трещин отрыва в природе 1-углистые сланцы; 2- граниты; 3- кварц-касситеритовые жилы; 4- метаморфические сланцы; 5- гранит – аллиты; 6 – простирание оси антиклинали Рисунок 2.7 – Схема строения оловянного месторождения, приуроченного к системе трещин отрыва Морфологические признаки трещин отрыва. Трещины отрыва легко отличаются от трещин скалывания по изогнутой, непрямолинейной форме. Стенки их неровные, шероховатые, рваные. Ориентировка трещин отрыва зависит от физико-механических свойств пород: эти трещины обычно огибают участки более твердых пород (например, гальку в конгломерате (рисунок 8). часто меняют ориентировку при переходе из одного вида породы в другой или совсем затухают. По простиранию и падению трещины отрыва быстро выклиниваются. Жилы, приуроченные к трещинам отрыва, имеют неправильную форму с раздувами и пережимами.
Рисунок 2.8 – Трещины отрыва (1) и скалывания (2) в конгломерате 1.2.1.2 Трещины скалывания Трещины скалывания возникают вдоль плоскостей, в которых действуют максимальные скалывающие напряжения, когда величина последних превышает предел прочности породы на сдвиг. Эта трещины теоретически располагаются под углом 45° к сжимающим и растягивающим силам, образуя сопряженные системы трещин скалывания. В верхней части земной коры этот угол меньше 45° и колеблется в пределах 35 - 45° к оси сжатия. Эта особенность используется для реконструкции направления сжимающих сил (ось сжатия располагается в остром углу между трещинами скалывания. В момент образования трещины скатывания были закрытыми. Вдоль стенок трещин скалывания при их образовании происходит некоторое смещение блоков пород, о чем свидетельствуют следы перемещения на стенках трещин: глинка трения (продукт тонкого перетирания породы), штрихи, борозды, ступени скольжения (они ориентированы в направлении скольжения), зеркала скольжения. В результате перемещения вдоль трещины может возникнуть тектоническая брекчия, могут смешаться геологические границы. Трещины скалывания часто имеют большую протяженность и обычно образуют системы трещин.
Трещины скалывания, как правило, не водоносны или слабо водоносны, водопроницаемость по ним небольшая. При разработке горных пород, вскрытии их подземными и глубокими открытыми выработками по трещинам скола могут возникать значительные деформации - отслаивание и смешение больших масс пород. В процессе рудообразования и магматизма сколовые трещины могут приоткрываться и вмешать рудные жилы и дайки магматических пород. Морфологические признаки трещин скалывания. Типичные трещины скалывания, в отличие от трещин отрыва, прямолинейны, стенки их ровные, притертые, часто как бы отполированные. Их ориентировка не зависит от физико-механических свойств пород - они срезают зерна минералов, гравий, гальку и другие включения в породе. По трещинам скола фиксируются смешения соседних блоков пород. Если к таким трещинам приурочены жилы или дайки, то они имеют форму пластин более или менее постоянной мощности. Необходимо иметь в виду, что механизм образования трещин отрыва и скалывания одинаков, как для микротрещин, так для крупных трещин и даже разломов. Источник сил для образования трещин отрыва и скалывания может быть самым различным: тектонические силы, метеоритный удар, удар молотком по породе и т.д. 2. Сведение об объекте изучения Рис. 3.1 Обзорная карта района работ. Масштаб 1:500 000 - контур месторождения Нойон-Тологой Нойон-Тологойское месторождение полиметаллических руд расположено на территории Александрово-Заводского района Забайкальского края Российской Федерации. В орографическом отношении район месторождения охватывает северо-западные отроги Кличкинского хребта, а также область межгорья между ними и юго-восточными отрогами Нерчинского хребта. Рельеф низко среднегорный с абсолютными высотными отметками от 650 до 1050 м. Крутизна склонов до 25-30º. Климат района сухой, резко континентальный с большими колебаниями годовых и суточных температур. Наиболее холодными месяцами являются декабрь-январь (-40º-45º), в летний период температура колеблется от +20º до +35º, иногда достигает +44º. Среднегодовая температура -3º. Осадков в районе выпадает не более 400 мм, основное их количество приходится на июль-август месяцы. Устойчивый снежный покров образуется в ноябре, его высота не превышает 25 см, снег окончательно сходит в апреле. Многолетняя мерзлота в районе отсутствует, сезонная, мощностью до первых метров держится до мая-июня месяца. В весенне-осеннее время характерны сильные (до 18 м/сек) ветры, преимущественно северных румбов. Открытие полиметаллического месторождения Нойон-Тологой относится к 1964 году, когда при проведении геолого-съемочных работ масштаба 1:50000 (И.К. Абрамов, 1964 г.), в осевой части выявленной геохимической аномалии двумя канавами была вскрыта зона дробления с лимонитовыми охрами, с повышенным содержанием свинца (до 5%), цинка (0,3 0,5%) и сопутствующих элементов. 2.1 Инженерно-геологические условия месторождения Предварительная характеристика инженерно-геологических условий Нойон-Тологойского месторождения выполнена на основе анализа материалов, полученных по данным документации геологоразведочных и гидрогеологических скважин, результатов определений физико-механических свойств вмещающих пород и руд с привлечением данных по месторождениям-аналогам. По гидрогеологической и инженерно-геологической типизации месторождений твердых полезных ископаемых Нойон-Тологойское месторождение классифицируется как месторождение IV типа – месторождения в массивах вулканогенно-осадочных, метаморфических и литифицированных осадочных (скальных и полускальных) пород с трещинными, трещинно-пластовыми и трещинно-жильными водами. По сложности изучения оно может быть отнесено к месторождениям средней сложности. К факторам, осложняющим условия освоения и эксплуатации данного месторождения, наряду с интенсивной тектонической нарушенно-стью пород, необходимо отнести достаточно сложные гидрогеологические условия. Пространственно месторождение приурочено к зоне сопряжения разно ориентированных долгоживущих зон разломов северо-восточного замыкания крупной Западно-Урулюнгуевской депрессионной структуры. В геологическом строении его принимают участие юрские эффузивные и осадочные образования, а также комплексы субвулканических пород. Восточная часть месторождения сложена осадочными образованиями верхнегазимурской свиты (J2vg), смятыми в складки северо-восточной ориентировки. В существенно конгломератовой толще встречаются прослои песчаников мощностью от 1-2 до 15-20 м. В центральной части месторождения на осадочные отложения с местным несогласием залегают базальтоиды покровных фаций залгатуйской свиты (J2zl), выполняющие северо-восточное крыло Мулинской мульды. Эта сложно построенная толща представлена чередованием базальтов, андезито-базальтов от стекловатых до крупнопорфировых разностей, массивной, флюидальной и миндалекаменной текстур, перемежающихся с горизонтами лавобрекчий, туфов, песчаников, конгломератов. Залегание вулканитов с падением от бортов к оси мульды под углами 15-30 и общем погружении на юго-запад. Стратифицированные отложения прорываются дайками и мелкими телами сиенит-порфиров, андезито-базальтов, базальтов, разнообразных по структурной приуроченности и составу, но обычно незначительных по размерам. Наиболее крупным субвулканическим телом является лакколит сиенит-порфиров, внедрившийся в толщу базальтов на Центральном участке и выходящий на дневную поверхность. В плане он имеет субизометричные очертания, а в разрезе форму согласной линзы мощностью до 200 м и протяженностью до 1200 м.
Вулканогенные и терригенные породы на площади месторождения перекрыты чехлом четвертичных делювиальных, аллювиально-пролювиальных и аллювиальных отложений, представленных суглинками и глинами с примесью обломочного материала, а также разнозернистыми песками и гравийно-галечными образованиями. Мощность четвертичных отложений в нижних частях склонов и пойменной части пади Залгатуй составляет 25-38 метров.
Инженерно-геологические условия месторождения в значительной мере определяются тектоническими условиями и широким развитием процессов метасоматического изменения эффузивных и интенсивно литифицированных осадочных горных пород, вмещающих рудные тела. Многолетнемерзлые породы на площади месторождения не встречены. В литологическом отношении основное оруденение развивается в породах базальтового ряда, в меньшей мере оно связано с терригенными осадками и сиенит-порфирами. В зависимости от морфологии вмещающих тектонических элементов, рудоносные зоны и залежи имеют пластообразную, штокверковую или жильную форму. Наиболее крупными тектоническими нарушениями на площади Нойон-Тологойского месторождения являются крутопадающие разломы северо-восточного (20-40) и северо-западного простирания, являющимися основными рудоконтролирующими структурами. По характеру смещений данные нарушения относятся к сбросам или сбросо-сдвигам и нередко выполнены дайками различного состава. Кроме того, по стратиграфическим границам пород достаточно широкое распространение получили пологозалегающие зоны межпластовых срывов сбросового, иногда надвигового типов и являющимися одними из основных рудовмещающих элементов. На Юго-Восточном участке зона пологого срыва между терригенными породами и перекрывающими их базальтами является основной рудовмещающей структурой. Она выходит на поверхность по северо-западному контуру участка и имеет северо-восточное простирание (40-60) при юго-восточном падении под углами 20-25. Протяженность зоны составляет 1100 м. По падению минерализованная зона прослеживается на 280-400 м от дневной поверхности до глубины 250-270 м. Рудное тело представлено выдержанным пластом мощностью от 0,5 до 10,7 м. Оруденение развито неравномерно, наряду с рядовыми прожилково-вкрапленниковыми рудами отмечаются сливные сульфидные жилы, чаще встречаемые во внутренних участках рудной залежи. Смешанные руды зоны окисления распространены вдоль выхода основного пласта под наносы в виде полосы длиной 650 м и шириной 30-80 м. Наряду с отмеченными основными пологими зонами на месторождении проявлены и более мелкие срывы, приуроченные к крутопадающим разломам. При этом на сопряжении систем субвертикальных разрывов в условиях гетерогенного разреза происходит возникновение объемных штокверкоподобных зон трещиноватости. Наиболее крупная из них трещинная зона, вмещающая полиметаллическое оруденение, сформирована на Центральном участке. Высота штокверка интенсивно нарушенных пород составляет 280 м при ширине по падению до 700 м, по простиранию он прослеживается на 1000 м. В строении штокверковой зоны преобладают многочисленные послойные срывы различного порядка и она является главной рудоносной структурой Центрального участка и месторождения в целом. Тектонические нарушения выражены зонами дробления, трещиноватости и катаклаза шириной до первых десятков метров (обычно от 0,5 до 10-15 м), нередко с центральными глинистыми швами, жилами или брекчиями кварц-карбонатного состава мощностью в первые метры. Обломки брекчированных пород сцементированы перетертым материалом исходных пород и кварц-карбонатным материалом. Мелкие зоны дробления отмечаются и в керне скважин, где они не нарушают общих структурных особенностей, и отражают влияние напряжений, возникающих при вертикальных смещениях блоков фундамента. Трещиноватость в массиве горных пород развита достаточно неравномерно от слаботрещиноватых (4-7 трещин/метр - в пределах зоны неизмененных пород) до интенсивно трещиноватых (более 15 трещин/метр – в пределах зон тектонических нарушений). Как правило, породы в таких интервалах представлены обломками керна, щебнем различного размера и дресвой. Иногда породы подвержены довольно интенсивному выщелачиванию до сыпучего состояния или довольно легко разламывающихся руками. По данным геологической документации керна горные породы на большей площади месторождения классифицируются как средне- и сильнотрещиноватые (модуль трещиноватости 5-10 трещин на 1 м). Показатель нарушенности керна (RQD) изменяется от 30% до 60%. Преобладающая часть трещин закрытого типа мощностью 1-5 мм и менее. Полости трещин обычно заполнены кварц-карбонатным материалом, по сомкнутым трещинам неред-ко развиваются налеты хлорита. В пределах рудных интервалов полости трещин выполнены сульфидами. Основное направление трещиноватости совпадает с напластованием пород. Вертикальные трещины (0-20 – 80-90 к оси керна) играют подчиненную роль. В зоне экзогенного выветривания породы подвержены интенсивному выщелачиванию. По плоскостям трещин здесь отмечается интенсивное развитие гидроокислов железа и марганца. Гидротермальные метасоматические изменения на площади месторождения наиболее интенсивное развитие получили в вулканогенных породах покровной фации и субвулканических породах. В осадочных породах интенсивность метасоматоза существенно уменьшается, а распространение ограничивается проявлением его в пределах тектонически ослабленных зон. Мощность зон гидротермального изменения пород базальтового ряда в значительной мере зависит от степени их трещиноватости и изменяется от нескольких метров до 15-40 метров. Гидротермальные изменения представлены пропилитизацией, аргиллизацией, окварцеванием, карбонатизацией, хлоритизацией, сульфидизацией. 3. Влияние трещиноватости на изменение физико-механических свойств горных пород Определяющим фактором изменчивости физико-механических свойств пород являются структурно-тектонические условия, обуславливающие в свою очередь развитие вторичных процессов. Гидротермальные метасоматические изменения приводят к существенному снижению величин прочностных показателей, а, следовательно, и снижению потенциальной устойчивости пород в горных выработках. Существенное влияние на физико-механические свойства горных пород оказывают также такие факторы как интенсивность трещиноватости, рассланцевание, брекчирование пород и руд. Характеристика физико-механических свойств дается по основным петрографическим разностям пород месторождения, характеризующимся различной степенью вторичных преобразований и приуроченным к участкам с различной степенью трещиноватости пород. Из водно-физических параметров определялись удельный вес (кг/см2), объемная масса (кг/см2), водопоглощение (%) и открытая пористость (%), морозостойкость, а из прочностных свойств – прочность на сжатие (МПа). Определение прочностных характеристик горных пород осуществлялось как в воздушно-сухом, так и в водонасыщенном состоянии, что позволило оценить снижение прочностных свойств горных пород при взаимодействии с водой. Расчетное значение σсж. по каждой керновой пробе определялось как среднеарифметическое по 6 предварительно подготовленным образцам.
Необходимо отметить, что сочетание такого многообразия факторов, как вторичные преобразования и различная степень трещиноватости пород предопределили изменчивость физико-механических свойств пород даже в пределах одной пробы. По данным лабораторных исследований, объемная масса основных горных пород, распространенных на площади месторождения, составила
- базальты – 2,53-2,74 г/см3 (в среднем 2,63 г/см3), конгломераты – 2,53-2,66 г/см3, песчаники – 2,59-2,7 г/см3, сиенит-порфиры – 2,29-2,57 г/см3. Объемная масса измененных базальтов составляет 2,3-2,71 г/см3. Для руд месторождения с общими рядовыми содержаниями свинца и цинка (в сумме 4,6%) объемная масса составляет 3,4-3,5 т/м3. Рудам с суммарным содержанием свинца и цинка равным 2,2 % (что составляет 92 % от всех руд месторождения) соответствует объемная масса на уровне 3,05-3,1 т/м3. Таб. 4. 0 Физико-механические свойства пород Нойон-Тологойского месторождения Наименование пород Плотность частиц грунта, г/см3 Плотность породы, г/см3 Пористость, % Водопоглощение ,% Прочность на сжатие в воздушно-сухом состоянии, МПа Прочность на сжатие в водонасыщенном состоянии, МПа Коэффициент размягчаемости Базальты 2,67-2,79* 2,71 2,53-2,74 2,63 0,4-4,8 2,6 0,1-1,5 0,64 104-199** 155 92-160** 130 0,73-0,93** 0,84 Базальты трещиноватые 2,7-2,86 2,79 2,59-2,74 2,66 2,9-4,0 4,6 1,15-3,4 2,3 75-129 105 44-91 74 0,57-0,88 0,70 Базальты измененные 2,64-2,78 2,71 2,3-2,71 2,50 2,3-9,1 5,4 1,4-4,7 3,3 21-104 58 7-54 28 0,29-0,65 0,47 Конгломераты 2,71-2,77 2,73 2,53-2,66 2,61 2,2-8,7 4,3 0,9-2,0 1,5 70-144 102 40-111 67 0,5-0,79 0,63 Песчаники 2,71-2,72 2,71 2,59-2,7 2,63 0,7-4,4 2,9 1,2-1,7 1,5 89-137 119 58-100 82 0,65-0,73 0,69 Сиенит-порфиры 2,65-2,74 2,7 2,29-2,57 2,47 4,8-7,1 5,8 2,0-3,7 2,9 37-157 90 25-119 69 0,71-0,87 0,76 Примечание: *-в числителе минимальное и максимальное значения, в знаменателе – среднее. ** - данные характеризуют породы массивной текстуры. Расчетная пористость пород изменяется от 0,4 до 9,1 %. Максимальные вариации водных свойств в зонах дробления с наложенными процессами, где влажность может составлять 9-17%. Водопоглощение горных пород изменяется от 0,1 до 4,7 % и составляет в среднем 1,7 %. Наименьшее водопоглощение характерно для плотных и слаботрещиноватых пород, что обусловлено их невысокой пористостью. Влажность руд в среднем колеблется в пределах 0,4-2,5% и лишь единичные пробы увлажнены до 4,4%. Руды и вмещающие породы месторождения относятся к средним и, частично, низким категориям крепости. Коэффициент крепости пород и руд по шкале проф. М. М. Протодьяконова, определенный расчетным способом, колеблется от 6 до 12, категория пород по по буримости VIII-IX. Руды характеризуются коэффициентом крепости от 6 до 10. Колебания коэффициента крепости одних и тех же пород происходят из-за разной степени их гидротермальных изменений, степени дробления и трещиноватости. Высокой прочностью пород и руд обусловлено извлечение керна хорошей сохранности. Так, процент выхода керна в большинстве скважин, пробуренных на площади месторождении, составил не менее 80-90%. Лишь при проходке зон интенсивной нарушенности и глинистых швов целостность керна существенно нарушалась. Сопротивление одноосному сжатию неизмененных базальтов, в зависимости от степени их трещиноватости, изменяется от 75 до 199 МПа (до 199 МПа) и в среднем равно 105-155 МПа. При этом коэффициент размягчаемости их обычно составляет более 0,75 (неразмягчаемые породы). Более низкими прочностными свойствами характеризуются породы с порфировой структурой. Так, сопротивление одноосному сжатию миндалекаменных базальтов составило: в воздушно-сухом состоянии – 66-122 МПа (в среднем – 87 Мпа); в водонасыщенном состоянии – 27-97 МПа (в среднем 49 МПа). Измененные базальты в большинстве случаев классифицируются как размягчаемые породы средней прочности и малопрочные (σсж. – менее 60МПа). Прочностные свойства пород дайкового комплекса, вследствие структурных особенностей, несколько ниже, чем у базальтов. В зависимости от состояния пород сопротивление одноосному сжатию (σсж.) сиенит-порфиров меняется от 37-92 МПа до 157 МПа (среднее – 90 МПа). Данные породы практически не снижают прочность в водонасыщенном состоянии. Наибольшей способностью к размоканию, набуханию и снижению прочностных свойств во влажном состоянии обладают конгломераты верхнегазимурской свиты. При взаимодействии с водой их прочностные свойства (70-144 МПа) снижаются на 25-35 % (до 40 %). Существенное снижение прочностных свойств в водонасыщенном состоянии характерно и для метасоматически измененных базальтов (коэффициент размягчаемости 0,29-0,65). Интенсивно каолинизированные породы при замачивании размокают и становятся рыхлыми.
Прочностные характеристики руд не определялись в связи с отбором кернового материала для основных видов опробования. Принимая во внимание идентичные условия образования и во многом схожие геолого-структурные особенности полиметаллических месторождений Восточного Забайкалья, о прочностных свойствах полиметаллических руд можно судить по результатам разведочных работ и эксплуатации некоторых из ранее разведанных месторождений. Исследование прочностных характеристик базальтов, включающих прожилки и вкрапления сульфидов (штокверковое оруденение на Центральном участке), свидетельствует об их соответствии неизмененным эффузивным породам (σсж. среднее – 143 МПа).
Как видно из краткой характеристики вмещающих пород и руд на площади месторождения распространены скальные породы с прочностью более 50 МПа. Коэффициент размягчения их изменяется от 0,5 до 0,9. Существенное снижение прочных свойств пород возможно лишь в интервалах интенсивно трещиноватых гидротермально измененных пород. Наряду с геологическими факторами, существенную роль в инженерно-геологических процессах играет и тектоническая обстановка на месторождении. Породы подвержены морозному выветриванию, после испытаний на морозостойкость прочностные характеристики их снижались. При проведении цикла испытаний (10-15 испытаний) в насыщенном растворе сернокислого натрия, потеря в весе составила: базальты – 5,4-10,5 % (у интенсивно трещиноватых пород до 24,5 % и более); конгломераты - 12,0-20,3 %. Горные породы и руды месторождения довольно устойчивы, что подтверждается опытом горных работ при проходке наклонных стволов. Проходка производилась с использованием патронированного аммонита при среднем расходе его 16-18 кг на 1 п.м. проходки. Разрушенные взрывом горные породы представляют собой глыбы и куски неправильной формы. При проходке горных выработок больших обрушений и значительных вывалов горных пород не отмечалось. Мелкие вывалы с кровли обусловлены пониженной механической прочностью и связностью гидротермально переработанных пород, а также трещинами напластования. При ведении горных работ отставание крепления от забоя достигало 50 и более метров. Углы естественного откоса вмещающих пород в отвалах изменяются от 40 до 55о. С поверхности и до глубины предполагаемой отработки породы и руды не радиоактивны. Основное внимание при проведении дальнейших инженерно-геологических исследований следует сосредоточить на характеристике наиболее слабых разновидностей пород, их пространственному распределению, как по площади, так и в разрезе. Особое внимание следует обратить на тектоническое строение, так как сочетание этих факторов может привести к существенному усложнению инженерно-геологической обстановки на месторождении. Из современных геологических процессов, наиболее активно проявленных в данном районе, необходимо выделить плоскостной смыв, струйчатую эрозию, морозное растрескивание. В пределах участков, приуроченных к межсопочным понижениям и характеризующимися худшими условиями дренирования – заболоченность, вторичное засоление и пучение грунтов, а также проявление термокарстовых явлений на участках развития многолетнемерзлых пород. При ведении наземного строительства необходимо учитывать значительную глубину сезонного промерзания грунтов и их просадочные свойства, особенно при замачивании. Учитывая слабую естественную дренированность территории, особое внимание при разработке месторождения необходимо уделить организации водоотлива и объектов водного хозяйства (очистные сооружения, хво-стохранилища, отстойники и т.п.). Для количественной оценки интенсивности трещиноватости массива горных пород применяется площадной коэффициент трещинной пустотности, предложенный Л. И, Нейштадт (1969). Под коэффициентом трещинной пустотности понимается отношение площади трещин (в любой плоскости) St к площади S той площадки, на которой произведено измерение этих трещин, выраженное в процентах: В обнажении трещиноватых горных пород выбирается площадка квадратной формы, величина которой определяется характером, размером и густотой трещин. Площадка зарисовывается или фотографируется, а все встреченные в ее пределах трещины нумеруются и описываются . Все трещины подразделяются по генезису, ширине и характеру выполнения на несколько групп, для каждой из которых указываются количество трещин, их средние ширина и длина. Площади трещин, вычисленные по группам, суммируются, берется отношение (%) общей площади трещин к площади площадки подсчета, что дает площадной коэффициент трещинной пустотности. Площадной коэффициент трещинной пустотности является приближенной количественной характеристикой интенсивности трещиноватости массива пород. Однако этот способ не дает полного представления о трещиноватости горных пород, так как коэффициентом трещинной пустотности не полностью учитываются такие качественные показатели, как их ширина, протяженность, изменчивость с глубиной, пространственное распределение н т. д., существенно влияющие на общую трещиноватость массива. Приложение Program geo_rashet; uses crt; var St,S,Kt:real; begin Writeln('Какова общая площадь трещин St= '); readln(St); Writeln('Площадь площадки, где взяты измерения трещиноватости S='); readln(S); Kt:=St/S; Writeln; Writeln('Площадной коэфицент трещиноватой пустотности равен Kt= ',Kt:2:2,'*100%'); end. Заключение Наиболее важными особенностями инженерно-геологических условий, определяющими систему эксплуатации данного месторождения, являются: - геолого-структурные условия залегания рудных тел; - прочностные и горно-технологические свойства руд и вмещающих пород; - гидрогеологические условия. Ненарушенные скальные вмещающие породы и руды Нойон-Тологойского месторождения обычно крепкие, монолитные, устойчивые. Лишь в зонах тектонических нарушений устойчивость пород и руд снижается за счет наложенных гидротермально-метасоматических изменений и трещиноватости, появляются ослабленные участки дробления, брекчирования и перетирания пород. Мощность слабо устойчивых зон может достигать десяти и более метров. При проведении подземных горных работ возможны осложнения в виде отслоений в кровле выработок, особенно при проходке по зонам послойных срывов, состоящих из ряда сближенных субпараллельных тектонических швов. Проходка этих интервалов должна сопровождаться обязательным креплением. Предварительные данные позволяют оценить горно-геологические особенности месторождения как средней сложности, требующие дальнейшего изучения.
Список использованной литературы 1. Ермолов В.А. Геология. Часть I. Основы геологии: учебник В.А.Ермолов. Л.Н. Ларичев. В.В. Мосейкин - М.: МГУ. 2004. -599с. 2. Ермолов А.А. Месторождения полезных ископаемых: учебник В.А. Ермолов. Л.Н. Ларичев. В.В. Мосейкин - М.: МГУ. 2003. - 407с. 3. Карлович И.А. Геология: учебное пособие И.А.Карлович - М.: - Академический проект. ТРИКСТА, 2005. -703с.
4. Невский В.А. Трещинная тектоника рудных полей и месторождений; учебник В.А. Невский - М.: Недра. 1979. — 224с. 5. Чернышов С.Н. Трещины горных пород; учебник /С.Н. Чернышов - М.: Наука. 1983. -240с. 6. Михайлов А.Е. Структурная геология и геологическое картировании; учебник А.Е. Михайлов - М.: Недра. 1973. - 432с.
7. Отчет по результатам дооценки полиметаллического месторождения Нойон – Тологой; «БайкалРУД» Чита, 2008.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Об’єднання підприємств. Джерела формування оборотних коштів. Розподіл і використання прибутку
Реферат Современные методы обследования функции почек
Реферат Гидромеханизированная технология обработки угольного пласта в условиях проектируемой шахты
Реферат Personal Writing The College Experience Essay Research
Реферат Много шума из ничего Уильям Шекспир
Реферат Внешняя торговля Сибири
Реферат Расы
Реферат Варакин, Василий Дмитриевич
Реферат Нормы правового регулирования. Реальность конституционного положения РФ
Реферат Цитотоксическая активность эозинофилов при описторхозе
Реферат Анализ и оценка обеспеченности предприятия собственными оборотными средствами на примере ООО Г
Реферат Практический анализ управления предприятием нефтехимической промышленности на примере ОАО "Могилевхимволокно"
Реферат Влияние стиля родительских отношений на формирование личности подростка
Реферат АВ Дружинин о повестях ФМ Достоевского 40-х гг
Реферат Чинники що впливають на ситуацію етичного вибору школярів середньої ланки