Реферат по предмету "Геодезия"


Термодинамические основы подземной выплавки серы

Свойства серы и серных руд.
Метод ПВС применяют для разработки месторождений само­родной серы. Самородная сера в природных условиях существует в основном в двух модификациях: α-сера и β-cepa. α-cepa кристал­лизуется в ромбической сингонии, она устойчива при температуре ниже 95,5°С, ее плотность равна 2,06∙103 кг/м3. При температуре выше 95,5°С α-сера переходит в β-серу. Этот переход относится к фазовым переходам первого рода, так как при этом выделяется теплота перехода в количестве 10,9кДж/кг. β-сера кристаллизу­ется в моноклинной сингонии в виде иголочек, ее плотность 1,96∙103 кг/м3, температура плавления 119°С, а скрытая теплота плавления 38,5 кДж/кг. При повышенных давлениях в процессе остывания сера остается в моноклинной сингонии вплоть до есте­ственных температур. В природных условиях самородная серп в основном представлена β-серой и в меньшей степени β-серой.
Коэффициент объемного теплового расширения твердой серы (ω) в диапазоне температур от 15 до 100 °С изменяется от 1,7 ∙10 -5 до 3,5∙10 -5 1/°С, а для жидкой серы в диапазоне температур от 120 до 163 °С он изменяется следующим образом: при T=120°С ω =426∙10-6 1/°С, при T=151,7°С ω=493∙10 -6 1/°С и при T=163°С ω = 126∙10 -6 1/°С. Удельная теплоемкость твердой серы изменяется от 0,67 до 0,8 кДж/(кг∙°С), а у жидкой серы она значительно боль­ше. Максимальная удельная теплоемкость жидкой серы (1,86 кДж/(кг∙°С); имеет место при Т=158°С. Теплопроводность твердой серы в диапазоне температур от20°С до температуры плавления уменьшается с 0,27 до 0,128 Вт/(м∙оС); при дальнейшем нагревании жидкой серы ее теплопроводность не­значительно повышается и при Т=200°С становится равной 0,15 Вт/(м∙°С). Одним из важнейших свойств серы применительно к ее подзем­ной выплавке является вязкость. Способность жидкой серы при ее нагревании значительно понижать свою вязкость положена в осно­ву метода ПВС. При температуре плавления вязкость серы равна 0,011 Па∙с, при дальнейшем нагреве вязкость ее понижается и становится минимальной (0,0065 Па∙с) при Т=159°С. Дальней­шее нагревание серы сопровождается увеличением ее вязкости вплоть до Т=187°С, когда вязкость становится максимальной (93,1 Па∙с). При последующем нагревании серы ее вязкость снова уменьшается и при Т = 400°С становится равной 0,16 Н∙с/м2. При температуре 444,6 °С сера закипает. Температура воспла­менения серы в зависимости от степени ее чистоты изменяется в диапазоне от 214 до 280 °С. С увеличением примесей в сере повы­шается температура ее воспламенения и понижается вязкость. Смесь серных паров или пыли с воздухом при температуре воспла­менения может взрываться. Месторождения самородной серы имеют пластообразную, линзовидную или гнездообразную форму. Вмещающими породами для самородной серы являются известняки и реже гипсоангидриты. Текстура серных руд может быть полосчатая, вкрапленная, прожилковая, гнездовая, брекчиевидиая. В качестве покрывающих и подстилающих пород могут быть глины, мергели, нерудоносные плотные известняки, гипсоангидриты, каменная соль. Плотность серных руд изменяется от 2,38∙103 до 2,66∙103 кг/м3 и зависит от содержания серы. Плотность вмещающих известняков равна (2,7—2,8) ∙ 103 кг/м3. Прочность на сжатие серных руд изменяется в весьма широком диапазоне [(1—6) ∙ 10 7 Па] и увеличивается с уменьшением со­держания серы. Прочность на сжатие вмещающих пород изменя­ется от 7∙107 до 108 Па. После выплавления серы из руды проч­ность на сжатие образовавшегося при этом породного скелета в 30—40 раз уменьшается по сравнению с прочностью серной руды. В связи с этим при ПВС необходимо предусматривать мероприя­тия по предотвращению нежелательных явлений вокруг серодо-бычных скважин в результате сдвижения массива. Модуль упругости серных руд Е в среднем равен 4∙1010 Па, для серы Е=0,85 ∙1010 Н/м2, для вмещающих пород Е=(4—6) ∙1010 Н/м2. Коэффициент линейного теплового расширения серных руд в диапазоне температур от 20 до 110°С изменяется от 0,2 ∙10-5 до 2,5 ∙10-5 1/°С. Зависимость коэффициента линейного теплового рас­ширения серных руд в этом диапазоне температур имеет два ма­ксимума: первый при температуре около 70 °С, а второй при 110°С, причем второй по абсолютному значению гораздо больше, чем первый. Под действием термических напряжений, возникающих в сер­ной руде в связи с тепловым расширением, происходит разрушение каверн, что увеличивает проницаемость руды и способствует повы­шению извлечения серы. Удельная теплоемкость и теплопроводность серных руд в диа­пазоне температур 20—100 °С мало изменяются и соответственно равны с=0,7—1,8 кДж/(кг .°С) и λ=0,5—1,5 Вт/(м .°С). Удельная теплоемкость и теплопроводность известняка при этих же темпе­ратурах составляют с=0,67—1 кДж/(кг . °С) и λ=1—2,3 Вт/(м . °С). Удельная теплоемкость серных руд при нагреве до 70 °С прак­тически не изменяется, при дальнейшем нагреве до 90—100°С она возрастает, а затем с ростом температуры выше 100 °С наблюдает­ся незначительное ее снижение. Минимальное значение теплопроводности серных руд наблюда­ется при Т=50—70 °С, а максимальное при 90 °С. При дальней­шем увеличении температуры теплопроводность серных руд пони­жается. Применительно к ПВС важными характеристиками серных руд являются проницаемость и коэффициент фильтрации, которые за­висят от пористости, трещиноватости, степени кавернозности и других факторов. Коэффициент проницаемости и коэффициент фильтрации характеризуют одно и то же явление — способность пород пропускать сквозь себя, жидкость и газы. Различие между ними заключается в том, что коэффициент проницаемости (Кпр , м2) учитывает давление жидкости и ее вязкость, а коэф­фициент фильтрации (Кф , м/сут) — нет. Эти два коэффициента соответственно определяются из следующих формул: 14.1 14.2 где Q — объемное количество жидкости, проходящее через сечение породы S за время τ, м3; Р — перепад давления жидкости на уча­стке породы длиной l, Па; η — вязкость жидкости, Н∙ с/м2. Проницаемость серных руд изменяется в пределах от 0,3 до 1 Д. После выплавки серы из серной руды проницаемость пород­ного скелета увеличивается в 10—50 раз и достигает значений 10—20 Д. В монолитных некавернозных серных рудах проницаемость очень низкая. При подземной выплавке серы из таких руд перемещение теплоносителя в рудном теле происходит в основном по открытым порам и трещинам. Коэффициент фильтрации серных руд изменяется в пределах от 10 до 100 м/сут. Для покрывающих и подстилающих пород место­рождений самородной серы коэффициент фильтрации значительно меньше и не превышает десятых долей метра в сутки.

Принцип и условия применения ПВС. В основу метода ПВС положены способность самородной серы плавиться при сравнительно низкой температуре (119°С) и низ­кая вязкость расплавленной серы (0,0065 Н.с/м2 при Т=158°С). Метод выплавки серы с помощью перегретой воды впервые был предложен в России в 1893 г. инж. К. Паткановым. Американским инж. Фрашем в 1895 г. было предложено выплавлять серу перегре­той водой непосредственно в массиве, поэтому метод ПВС назы­вают методом Фраша.
Сущность метода ПВС заключается в том, что залежь самород­ной серы отрабатывается с помощью добычных скважин, про­буренных на расстоянии 25—50 м друг от друга, что соответствует 2—3 мощностям пласта. В каждой скважине монтируют систему коаксиально расположенных труб, через которые осуществля­ют подачу перегретой воды в серную залежь и откачку рас­плавленной серы в эмульгированом виде на поверхность. Принципиальная схема серо-добычной скважины пред­ставлена на рис. 14.1. После бурения скважины до кровли рудной залежи в нее вставляют обсадную колонну и производят цементацию зазора между колонной и стенками сква­жины. Обсадная колонна в ос­новном служит для предотвраще­ния потерь тепла перегретой во­дой при ее движении по высоте покрывающих пород. Это дости­гается за счет того, что между обсадной колонной и водоподающей трубой имеется воздушный зазор. После установки обсадной колонны скважину бурят на всю глубину рудного тела с незначительным перебуром по подстилаю­щим породам. После окончания бурения скважины ее промывают и произво­дят интенсивную откачку воды для очистки каверн и трещин от буровой мелочи и обеспечения притока пластовых вод в скважину. Если приток пластовых вод в скважину (приемистость скважины) окажется недостаточным, что свидетельствует о низкой фильтра­ционной способности серных руд, то ее подвергают кислотной об­работке до тех пор, пока приемистость скважины не достигнет 5 м/ч при нагнетании в нее воды под давлением 106 Па. После проведения вышеописанных профилактических меропри­ятий скважину сдают для монтажа оборудования. В нее вставля­ют три трубопровода, коаксиально расположенных один в другом. Диаметр наружного трубопровода (водоподающая колонна) равен 6 дюймам, промежуточного трубопровода (серная колонна) — 3 дюймам и внутреннего (воздушная колонна) — 1 дюйму. В зазор между водоподающей и серной колоннами нагнетается перегретая вода с Т=160°С, которая через перфорации 7 попада­ет в сероносную залежь. Перегретая вода, двигаясь за счет филь­трации в рудной залежи, нагревает руду и расплавляет серу. Так как плотность расплавленной серы больше воды, то она стекает вниз и через перфорации 8 в водоподающей колонне попадает в серную трубу, поднимаясь в ней на высоту гидростатического давления, соответствующего уровню почвы залежи. В нижней части серодобычной колонны в зазоре между во­доподающей и серной трубами устанавливается разделительный пакер, который предотвращает возможность попадания перегретой воды (минуя рудную залежь) в приямок для расплавленной серы. С другой стороны, разделительный пакер служит для предотвра­щения попадания воды в зазор между водоподающей и серной ко­лонной при нагнетании ее по серной колонне при аварийных си­туациях, связанных с застыванием серы в нижней части серодо­бычной скважины. С помощью сжатого воздуха, который подается по центрально­му трубопроводу, расплавленная сера эмульгируется и подается по зазору между серной и воздушной колоннами на поверхность. Воду для закачки в скважину перегревают до Т=160°С в пря­моточных водогрейных или паровых котлах с бойлерными. Пере­гретая вода, проходя через контрольно-распределительную стан­цию (КРС), нагнетается в скважину. КРС служит для контроля за температурой и давлением подачи перегретой воды, а также для их регулирования. Каждая КРС обслуживает несколько рабочих скважин. Расстояние между добычными скважинами выбирают таким, чтобы обеспечить максимальное извлечение серы при возможно меньших затратах на буровые работы, монтаж и оборудование серодобычных скважин, производство теплоносителя на 1 т извле­ченной серы. Метод ПВС является более эффективным по сравнению с тра­диционными способами разработки в том случае, когда для его применения имеются определенные условия. Для оценки этих усло­вий существует несколько критериев. В первую очередь запасы серы должны обеспечить рентабельность строительства предприя­тия и промышленный масштаб производства. Если при произво­дительности 100 тыс.т в год товарной серы предприятие будет ра­ботать не менее 2—3 лет, то оно будет рентабельным. Вторым критерием является мощность рудной залежи. Перс­пективными для ПВС считаются залежи мощностью не менее 10м. Третьим критерием является содержание серы в руде. При со­держании серы более 10% руда является перспективной для ПВС. Однако эта цифра может быть и ниже (до 5%) в том случае, если выплавляемость серы хорошая, что имеет место при прожилковой и крупновкрапленной структуре серных руд. Четвертым и наиболее важным критерием является проницае­мость серного пласта. Она должна обеспечивать водопоглощение пласта на 1 м его мощности не менее 0,5 м3/ч и приемистость сква­жины не менее 5 т/ч при давлении подачи воды, равном 106 Па. Пятым критерием является водонепроницаемость подстилаю­щих и особенно покрывающих сероносный пласт пород. При от­сутствии водоупора в покрывающих породах горячая вода, которая легче холодной пластовой воды, будет подниматься вверх и рас­пространяться в породах кровли сероносного пласта, что не обес­печит условий «природного автоклава». При отсутствии водоупора в подстилающих породах имеют место потери расплавленной серы. Шестым критерием для оценки целесообразности ПВС являют­ся глубина залегания рудной залежи и прочность покрывающих пород. Наиболее благоприятная глубина залегания 100—600 м. При глубине менее 50 м возможен гидравлический разрыв покры­вающих пород в процессе нагнетания перегретой воды в пласт. При глубине залегания более 500—600 м имеют место большие за­траты на бурение скважин и их оборудование, а также большие потери тепловой энергии. Последним, седьмым критерием является наличие в районе ме­сторождения местных ресурсов воды, топлива и электроэнергии. Следует отметить, что на производство 1 т серы методом ПВС в зависимости от условий залегания рудной залежи необходимо от 5 до 50 м3 воды, нагретой до 160 °С. В том случае, если условия месторождения не удовлетворяют приведенным выше семи критериям, его нецелесообразно разраба­тывать методом ПВС по технико-экономическим соображениям.


Тепловой баланс при ПВС.
Как показывает практика, расходы на производство теплоноси­теля при ПВС достигают 50—60% общих затрат на производство серы. Снизить себестоимость добычи серы методом ПВС возможно в первую очередь за счет выбора рациональных термодинамических параметров теплоносителя и сокращения его непроизводи­тельных потерь. В качестве теплоносителя при ПВС возможно применять горя­чие дымовые газы, пар, парогазовые смеси, перегретую воду. Од­ним из основных показателей теплоносителя является его тепло­содержание(энтальпия). С этой точки зрения наиболее подходя­щим теплоносителем является перегретая вода, объемная теплоем­кость которой примерно в 2000 раз больше, чем у дымовых газов.
Температура перегретой воды, подаваемой в серную залежь, не должна превышать 160 °С, так как при температуре выше этой вяз­кость расплавленной серы начинает повышаться. В связи с этим температура воды у устья добычной скважины должна быть та­кой, чтобы с учетом теплопотерь при ее движении по трубам тем­пература на входе в рудное тело не превышала бы 160°С и в то же время была бы достаточной для обеспечения эффективной вы­плавки серы из руды.
Температуру воды в рудном теле стараются поддерживать рав­ной 155 — 159°С. Теплопотери теплоносителя при его движении по трубам в начальный период весьма значительны (10 — 15%), а при установившемся режиме они составляют около 1%. С учетом этого температура воды у устья скважины должна быть около 160 °С. В каждой серодобычной скважине можно выделить два участ­ка: первый — от устья скважины до ее забоя и второй — призабойная зона рудной залежи. Первый участок выполняет функции транспортных магистралей для перемещения перегретой воды, рас­плавленной серы и сжатого воздуха. Второй участок выполняет функции естественного автоклава. На первом участке геплопотери теплоносителя в среднем составляют около 1%, а остальная энер­гия теряется непосредственно в рудной залежи и выносится рас­плавленной серой на поверхность. Непосредственно на нагрев и плавление собственно серы затрачивается около 3 — 5% энергии перегретой воды, а остальная энергия безвозмездно теряется. В общем случае уравнение теплового баланса можно записать следующим образом: Q=Qтр+Qп , (14.3) где Q — энергия теплоносителя у устья скважины, Дж; Q тр -- по­тери энергии теплоносителя при транспортировании по трубам водоподающей колонны, Дж; Q п-- потери энергии теплоносителя в пласте, Дж. В свою очередь, величина Qп слагается из следующих состав­ляющих: Qп=Q1+Q2+Q3+Q4+Q5+Q6, (14.4)
где Q1 — количество тепла, необходимого на нагрев серы, Дж; Q2 — теплота плавления серы, Дж; Q3 — количество тепла, необхо­димого на нагрев породного скелета рудной залежи, Дж; Q4 — тепло утечек теплоносителя в покрывающую толщу, Дж; Q5 — остаточная теплота теплоносителя, Дж; Q6 — прочие виды тепло­вых потерь, Дж.
Параметры процесса ПВС.
Рассмотрим некоторый объем пласта серной руды пористо­стью П, из которого предстоит выплавить серу. Пусть начальная температура руды равна Т0. Предположим, что процесс нагнета­ния перегретой воды в пласт происходит некоторыми порциями Если обозначить температуру перегретой воды через Tв, то после нагнетания первой порции воды температура руды поднимется и станет равной Т /,после нагнетания второй порции температура руды повысится от Т / до Т // и т.д. Для каждой порции нагнетания можно составить систему уравнений теплового баланса, которые имеют вид: где γв и γр -- плотность воды и руды, кг/м3; св и ср — удельная те­плоемкость воды и руды, Дж/(кг . °С) Согласно исследованиям Г. X. Хчеяна, объем воды Vв который необходим для нагревания 1 м3 руды в пласте до температуры Тп при условии рассмотрения этого процесса, как состоящего из п серии последовательных закачек воды, равен L — удельная теплота плавления серы, Дж/кг; γс —плотность се­ры, кг/м3; v — объем серы, содержащийся в 1 м3 руды, м3/м3; Тпл— температура плавления серы, °С. Принимая во внимание, что в единице объема руды содержится v(l—П)γс тонн серы, объемный расход теплоносителя V (м3/кг) на выплавку 1 кг серы будет где χт — технологический коэффициент извлечения серы при ее подземной выплавке, χт=0,8÷ 0,9. Коэффициент использования тепла Ки при ПВС можно опреде­лить из очевидной формулы, где сс — удельная теплоемкость серы, Дж/(кг . °С). Принимая во внимание то обстоятельство, что падение темпе­ратуры воды при ее движении от устья скважины до пласта прак­тически отсутствует, и то, что оптимальной температурой расплав­ленной серы по фактору ее вязкости является Т=159 °С, в выра­жениях (14.7), (14.8) и (14.11) вместо Тп следует подставлять 159°С, а вместо Тв — соответственно 160°С. Скорость движения фронта плавления (υ nu, м/с) серы при под­земной выплавке определяется из выражения dRγв св qв 14.12 dτ2πhR(γрср+Qпл /(Тв-Т0)) где R — радиус зоны плавления серы, м; qв — объемный расход перегретой воды, м3/с; h — мощность пласта, м; Qпл — количество тепла, необходимое для плавления серы в единице объема руды, Дж/м3. Количество серы Мс (кг/с), добываемой в единицу времени ме­тодом подземной. выплавки, зависит от свойств руды, расходных и термодинамических параметров теплоносителя: 14.13
Техника и технология подготовки и эксплуатации серодобычных скважин.
Вскрытие месторождения при применении метода ПВС осуще­ствляют системой добычных и вспомогательных скважин. Добыч­ные скважины предназначены для нагнетания теплоносителя в руд­ную залежь и откачки расплавленной серы. Вспомогательные сква­жины по своему назначению делятся на разведочные, водоотливные, оценочные и контрольные. Добычные скважины являются одновременно вскрывающими, подготовительными и нарезными выработками. Оборудование для бурения скважин выбирают в зависимости от глубины залегания рудной залежи. Как правило, это станки, применяемые для поис­кового глубинного бурения. Бурение скважины до продуктивной толщи производят с применением глинистых растворов. По глуби­не сероносной залежи бурение ведут с промывкой чистой водой. Перебур рудной залежи делают глубиной 1—1,5 м. Цементацию кондуктора производят обычным цементом, при­готовленным на воде, цементацию обсадной колонны осуществля­ют термостойким цементом. Цементация затрубного пространства обеспечивает герметичность скважины и снижает агрессивное вли­яние на трубы сероводородных пластовых вод. Спустя 16—24 ч с момента окончания цементации скважины производят ее испытание на герметичность путем нагнетания воды. При наличии воды у устья скважины в затрубном пространстве приступают к повтор­ной ее цементации.
После бурения скважины на проектную глубину производят ее промывку и при необходимости кислотную обработку, а затем мон­тируют в ней систему водоподающей, серной и воздушной колонн. Конструкция эксплуатационного оборудования серодобычной сква­жины должна обеспечивать непрерывность подачи теплоносителя в пласт и откачку расплавленной серы. Кроме того, оборудование скважины должно обеспечивать возможность подачи теплоносите­ля по серной колонне на случай застывания серы у устья сква­жины.
Перфорацию водяной колонны для стекания расплавленной серы к устью скважины производят по всей высоте перебура и да­лее на высоту 0,3—0,7 м над уровнем почвы пласта. Расстояние между верхним рядом серной и нижним рядом водной перфора­ции зависит от гидрогеологических условий месторождения и в каждом конкретном случае изменяется от 0,3 до 1 м. Высота водной перфорации составляет 0,8—1 м. Перфорацию водной ко­лонны производят круглыми отверстиями диаметром 18—20 мм, расположенными в шахматном порядке на расстоянии 80—100 мм друг от друга. Площадь перфораций не должна превышать 15— 20% поверхности колонны на участке ее перфорирования. Перед опусканием в скважину серной колонны на ее внешней поверхности на расстоянии 100—500 мм от конца приваривают внутреннюю часть пакера, служащего для разделения водной ко­лонны от серной. В устье добычной колонны монтируют обвязку, которая обес­печивает герметизацию скважины и позволяет осуществлять раз­дельную подачу и отвод рабочих агентов в соответствующие ка­налы. Для компенсации горизонтальных тепловых смещений труб у устья скважины их соединяют с помощью шарниров, уплотнение в которых обеспечивается за счет применения термостойких саль­никовых набивок. Вертикальные смещения колонн возможны бла­годаря применению сальниковых компенсаторов. Каждое предприятие по добыче серы методом подземной вы­плавки состоит из: 1) участка водоснабжения и водоподготовки, обеспечивающих отстаивание воды, ее предварительный нагрев и перегрев в специ­альных котлах; 2) компрессорной станции; 3) контрольно-распределительной станции; 4) собственно добычного комплекса (добычные скважины с необходимым оборудованием); 5) складов серы; 6) вспомогательных участков. Технология ПВС должна обеспечивать максимально возможное извлечение серы из залежи при минимально возможных затратах. Основным технологическим показателем ПВС является расход теплоносителя на 1 т добытой серы. Для каждого конкретного предприятия в зависимости от горно- и гидрогеологических усло­вий месторождения существует предельно допустимый расход теплоносителя на 1 т добытой серы. Закачку теплоносителя в рудную залежь производят под давлением от (5—7) . 105 до (10—16)× ×105 Па. Нижний предел давле­ния регламентируется возможностью перехода перегретой воды в пар, а верхний — возможностью гидроразрыва кровли пласта. Для снижения верхнего предела давления подачи теплоносителя производят разгрузку пласта откачкой пластовых вод через систе­му водоотливных скважин. Отработку линзообразных и гнездовидных залежей целесооб­разно осуществлять кустами добычных скважин по 3—6 шт. Мощ­ные пластовые залежи целесообразно отрабатывать рядами сква­жин, расположенных по простиранию рудного тела, с разгрузкой пласта водоотливными скважинами, расположенными ниже по па­дению пласта. Число одновременно работающих скважин в конеч­ном итоге зависит от водопоглощения каждой из них и мощности котельной по производству перегретой воды. Оптимальное расстояние между добычными скважинами, а сле­довательно, и оптимальное извлечение серы определяется эконо­мическими показателями. Коэффициент извлечения χ серы при подземной выплавке состоит из двух показателей: технологическо­го (χt), определяющего извлечение серы в зоне ее плавления во­круг каждой добычной скважины, и системного (χс), характеризу­ющего извлечение и потери серы в зависимости от системы разра­ботки. Величина xс зависит от расстояния между скважинами, раз­меров «мертвых» зон между ними, потерь серы в серной луже и других факторов. Коэффициент извлечения серы χ=χт χс. Как показывает практика ПВС, в настоящее время оптималь­ным считается извлечение при χ=0,4—0,5. При таком извлечении себестоимость 1 т добытой серы составляет 20—25 руб., в то время как при открытом и подземном способах разработки серы она со­ставляет 30—35 руб/т при коэффициенте извлечения, достигающем 0,6—0,7.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Оказание самопомощи и взаимопомощи при ранениях переломах и ожогах
Реферат Сущность экономического анализа
Реферат Аритмия: классификация, патогенез, лечение
Реферат О неточном словоупотреблении в школьном сочинении непонимание значений слова как корень стилисти
Реферат Эндоскопия
Реферат Метод расчета износа при оценке стоимости транспортных средств
Реферат Экономическая характеристика Новоалександровского РАЙПО
Реферат Комерційні банки заучастю іноземного капіталу
Реферат Анализ агрессивности у детей при переходе из начальной школы в среднюю и её соотношение с мотивацией учебной деятельности
Реферат Why Do You Want To Be A
Реферат Анализ средств физического воспитания, используемых на уроке физической культуры
Реферат Психология формирования трудового коллектива - увольнение с работы
Реферат Физико-химические принципы, лежащие в основе действия средств защиты органов дыхания. Противогазы
Реферат Опыт проведения социологических исследований формирования личности учащихся учебных заведений
Реферат Компьютерные вирусы (Eng.)