Реферат по предмету "Иностранный язык"


Earthquakes Essay Research Paper Earthquakes have plagued

Earthquakes Essay, Research Paper

Earthquakes have plagued our lives for as long as people have inhabited the earth. These

dangerous acts of the earth have been the cause of many deaths in the past century. So

what can be done about these violent eruptions that take place nearly with out warning?

Predicting an earthquake until now has almost been technologically impossible. With

improvements in technology, lives have been saved and many more will. All that remains is

to research what takes place before, during, and after an earthquake. This has been done

for years to the point now that a successful earthquake prediction was made and was

accurate.

Earthquake, vibrations produced in the earth’s crust when rocks in which elastic

strain has been building up suddenly rupture, and then rebound.The vibrations can range

from barely noticeable to catastrophically destructive. Six kinds of shock waves are

generated in the process. Two are classified as body waves?that is, they travel through

the earth’s interior?and the other four are surface waves. The waves are further

differentiated by the kinds of motions they impart to rock particles. Primary or

compressional waves (P waves) send particles oscillating back and forth in the same

direction as the waves are traveling, whereas secondary or transverse shear waves (S

waves) impart vibrations perpendicular to their direction of travel. P waves always travel

at higher velocities than S waves, so whenever an earthquake occurs, P waves are the first

to arrive and to be recorded at geophysical research stations worldwide.

Earthquake waves were observed in this and other ways for centuries, but more

scientific theories as to the causes of quakes were not proposed until modern times. One

such concept was advanced in 1859 by the Irish engineer Robert Mallet. Perhaps drawing

on his knowledge of the strength and behavior of construction materials subjected to

strain, Mallet proposed that earthquakes occurred either by sudden flexure and constraint

of the elastic materials forming a portion of the earth’s crust or by their giving way and

becoming fractured.

Later, in the 1870s, the English geologist John Milne devised a forerunner of today’s

earthquake-recording device, or seismograph. A simple pendulum and needle suspended

above a smoked-glass plate, it was the first instrument to allow discrimination of primary

and secondary earthquake waves. The modern seismograph was invented in the early 20th

century by the Russian seismologist Prince Boris Golitzyn. His device, using a magnetic

pendulum suspended between the poles of an magnet. Most tectonic quakes occur at the

boundaries of these plates, in zones where one plate slides past another?as at the San

Andreas Fault in California, North America’s most quake-prone area?or is subducted

(slides beneath the other plate). Subduction-zone quakes account for nearly half of the

world’s destructive seismic events and 75 percent of the earth’s seismic energy. They are

concentrated along the so-called Ring of Fire, a narrow band about 38,600 km long, that

coincides with the margins of the Pacific Ocean.

Seismologists have devised two scales of measurement to enable them to describe

earthquakes quantitatively. ?One is the Richter scale?named after the American

seismologist Charles Francis Richter?which measures the energy released at the focus of

a quake. It is a logarithmic scale that runs from 1 to 9; a magnitude 7 quake is 10 times

more powerful than a magnitude 6 quake, 100 times more powerful than a magnitude 5

quake, 1000 times more powerful than a magnitude 4 quake, and so on.

The other scale, introduced at the turn of the 20th century by the Italian

seismologist Giuseppe Mercalli, measures the intensity of shaking with gradations from I

to XII. Because seismic surface effects diminish with distance from the focus of the

quake, the Mercalli rating assigned to the quake depends on the site of the measurement.

Intensity I on this scale is defined as an event felt by very few people, whereas intensity

XII is assigned to a catastrophic event that causes total destruction. Events of intensities II

to III are roughly equivalent to quakes of magnitude 3 to 4 on the Richter scale, and XI to

XII on the Mercalli scale can be correlated with magnitudes 8 to 9 on the Richter scale.

Attempts at predicting when and where earthquakes will occur have met with some

success in recent years. At present, China, Japan, Russia, and the U.S. are the countries

most actively supporting such research. In 1975 the Chinese predicted the magnitude 7.3

quake at Haicheng, evacuating 90,000 residents only two days before the quake destroyed

or damaged 90 percent of the city’s buildings. One of the clues that led to this prediction

was a chain of low-magnitude tremors, called foreshocks, that had begun about five years

earlier in the area. Other potential clues being investigated are tilting or bulging of the

land surface and changes in the earth’s magnetic field, in the water levels of wells, and

even in animal behavior. A new method under study in the U.S. involves measuring the

buildup of stress in the crust of the earth. On the basis of such measurements the U.S.

Geological Survey, in April 1985, predicted that an earthquake of magnitude 5.5 to 6

would occur on the San Andreas fault, near Parkfield, California, sometime before 1993.

Many unofficial predictions of earthquakes have also been made. In 1990 a zoologist, Dr.

Iben Browning, warned that a major quake would occur along the New Madrid fault

before the end of the year. Like most predictions of this type, it proved to be wrong.

Groundwater has also played an important part in earthquake predictions. A peak in radon

in the groundwater at Kobe, Japan 9 days before the 7.2 earthquake cause quite a stir.

Radon levels peaked 9 days before the quake, then fell below the normal levels 5 days

before it hit.

The whole idea behind earthquake predicting is to save lives. With the

improvement in technology, lives have been saved. New ideas and equipment is starting to

prove to be very helpful in predicting were and when an earthquake will strike. The time

and research put into earthquake prediction.

31d




Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Внешняя политика КНР вторая половина ХХ века
Реферат Шпаргалки для контрольной по немецкому (средняя ступень)
Реферат Борьба с компьютерными вирусами
Реферат Воспитание у детей культуры поведения
Реферат Анализ мер, применяемых сотрудниками исправительных учреждений, по обеспечению режима отбывания наказания
Реферат Постмодернизм и исторические мифы в современной России
Реферат трагедии тему нравственного самоопределения личности Софокл раскрывает перед нами вопрос вселенского
Реферат Контент-вопрос Видеоконтент в телекоммуникациях или Video over Broadband как символ времени
Реферат POLICING THE INTERNET Essay Research Paper The
Реферат Компьютеризация металлургических процессов
Реферат The Great Gatsby As A Satire Essay
Реферат Ebola Human Soup Maker Essay Research Paper
Реферат Определение уровня физической подготовленности учеников младшего школьного возраста
Реферат Норманнская теория происхождения русской государственности ее апологеты и критики
Реферат Управление структурно-механическими свойствами материалов