Реферат по предмету "Иностранный язык"


French And U.S Work On The Panama

Canal Essay, Research Paper

THE FRENCH CANAL CONSTRUCTION

The Geographical Society of Paris organized a committee in 1876 to seek international cooperation for studies to fill in gaps in the geographical knowledge of the Central American area for the purpose of building an interoceanic canal. The committee, a limited company, La Soci?t? Civile Internationale du Canal Interoc?anique de Darien, was headed by Ferdinand de Lesseps. Exploration of the Isthmus was assigned to French Navy Lieutenant Lucien N. B. Wyse, a grandson of Lucien Bonaparte. Armand R?clus, also a naval lieutenant, was his chief assistant.

After exploring several routes in the Darien-Atrato regions, Wyse returned to Paris in April 1877. De Lesseps, however, rejected all of these plans because they contained the construction of tunnels and locks. On a second Isthmian exploratory visit beginning December 6, 1877, Wyse explored two routes in Panama, the San Blas route and a route from Limon Bay to Panama City, the current Canal route. In selecting the latter, his plan was to construct a sea level canal. The route would closely parallel the Panama Railroad and require a 7,720-meter-long tunnel through the Continental Divide at Culebra.

With this plan for a Panama canal, Wyse traveled to Bogota, where, in the name of the society, he negotiated a treaty with the Colombian government. The treaty, signed on March 20, 1878, became known as the Wyse Concession. It granted exclusive right to the Soci?t? Civile to build an interoceanic canal through Panama. As a provision of the treaty, the waterway would revert to the Colombian government after 99 years without compensation.

A congress, the Congr?s International d’Etudes du Canal Interoc?anique (International Congress for Study of an Interoceanic Canal) was planned to take place in Paris on May 15, 1879, with invitations sent out by the Soci?t? de G?ographie (Geographical Society) of Paris. Critics claimed that a principal purpose of the congress was to give needed legitimacy to the Wyse Concession, legitimacy greatly needed, as recognized by de Lesseps, to bring in financial backing. The purpose of the congress was not to approve a route or a plan, that decision had already been made by de Lesseps, but to give that decision and the already negotiated Wyse Concession a public introduction and ceremonial sendoff. It also served to provide the appearance of impartial international scientific approval.

Fourteen proposals for sea level canals at Panama were presented before the congress, including the de Lesseps plan of Wyse and R?clus. A subcommittee reduced the choices to two — Nicaragua and Panama.

As might be expected, engineers and others offered differing opinions concerning the various plans. One such engineer was Baron Godin de L?pinay (Nicholas-Joseph-Adolphe Godin de L?pinay, Baron de Brusly). The chief engineer for the French Department of Bridges and Highways, L?pinay was known for his intelligence, as well as his condescending attitude towards those with whom he did not agree. He was the only one among the French delegation with any construction experience in the tropics, 1862 construction in Mexico of a railroad between Cordoba and Veracruz. At the congress, he made a forceful presentation in favor of a lock canal.

The de L?pinay plan included building dams, one across the Chagres River near its mouth on the Atlantic and another on the Rio Grande near the Pacific. The approximately 80-foot height of the artificial lake thus created would be accessed by locks. The principal advantages of the plan would be the reduction in the amount of digging that would have to be done and the elimination of flood danger from the Chagres. Estimated construction time was six years. Since this plan required less digging, there would be, according to prevailing theories that tropical diseases were caused by some sort of toxic emanations coming from freshly dug earth being exposed to the air, less such problems. The de L?pinay design contained all of the basic elements ultimately designed into the current Panama Canal. The French company would use these concepts as a basis for the lock canal they would eventually adopt in 1887 following the failure of their sea level attempt. Had this plan been originally approved, France might well have prevailed in their canal construction effort. Had it been adopted at the beginning, in 1879, the Panama Canal might well have been completed by the French instead of by the United States. As it was, however, the de L?pinay design received no serious attention.

The American delegation’s Nicaragua plan was introduced by Aniceto Garc?a Menocal. Cuban by birth, Menocal was a civilian engineer assigned to the Grant surveys in Nicaragua and Panama by Admiral Ammen. The well organized and persuasive presentation by the Americans very nearly upset de Lesseps’ carefully orchestrated plans. But, again, this was not to be.

De Lesseps thought a week enough time to gain consensus and wrap up the details. With things now threatening to get out of hand, he, on Friday, May 23, “threw off the mantle of indifference,” as one delegate wrote, and convened a general session. Striding confidently in front of a large map, a relaxed de Lesseps addressed the congress for the first time. He spoke spontaneously, in simple, direct language, and with great conviction, if not abundant knowledge, making everything sound right and reasonable. The map, which he referred to with easy familiarity, clearly showed that the one best route was through Panama. It was the route that had already been selected to develop Panama’s transcontinental railroad. There was no question that a sea level canal was the correct type of canal to build and no question at all that Panama was the best and only place to build it. Any problems – and, of course, there would be some – would resolve themselves, as they had at Suez. His audience was enthralled.

Following the speech, everything fell into place for the de Lesseps camp, and the building of a sea level canal through Panama was the recommendation of the Technical Committee. By no means, however, was everything peaceful and unanimous. Before the vote was even taken nearly half the Committee, walked out. Following the vote, with the full congress reconvened, the Committee report was read and the final, historical vote cast. The Committee resolution read:

“The congress believes that the excavation of an interoceanic canal at sea-level, so desirable in the interests of commerce and navigation, is feasible; and that, in order to take advantage of the indispensable facilities for access and operation which a channel of this kind must offer above all, this canal should extend from the Gulf of Limon to the Bay of Panama.”4

The resolution passed with 74 in favor and 8 opposed. The “no” votes included de L?pinay and Alexandre Gustave Eiffel. Thirty-eight Committee members were absent and 16, including Ammen and Menocal, abstained. The predominantly French “yea” votes did not include any of the five delegates from the French Society of Engineers. Of the 74 voting in favor, only 19 were engineers and of those, only one, Pedro Sosa of Panama, had ever been in Central America.

Following organization on August 17, 1879, of the Compagnie Universelle du Canal Interoc?anique de Panama, with de Lesseps as president, the Wyse Concession was acquired from the Soci?t? Civile. A new survey was ordered and an International Technical Commission of well-known engineers went to Panama, accompanied by de Lesseps, to get a first-hand look at the Isthmus.

Making good on his promise to dig the first spade of earth for the Panama Canal on January 1, 1880, de Lesseps organized a special ceremony at which his young daughter, Ferdinand de Lesseps, would do the honors of turning the first sod. The ceremonial act was to take place at the mouth of the Rio Grande, scheduled to become the Pacific entrance to the future canal.

On the designated day, but later than the designated time, the steam tender Taboguilla took de Lesseps and a party of distinguished guests three miles to the site on the Rio Grande where the ceremony would take place, following appropriate feasting and festivities on board. However, since late guests had delayed the Taboguilla, the Pacific Ocean tide had receded such that the vessel could not land at the designated site. The undaunted de Lesseps was, of course, ready with a solution. He had brought a special shovel and pickaxe with him from France especially for the occasion. Now, declaring that the act was only symbolic anyway, he arranged for his daughter Ferdinande to strike the ceremonial pickaxe blow in a dirt-filled champagne box. The empty champagne box is, perhaps, a clue to the gaiety and applause that followed the official act.

De Lesseps then decided that another ceremony should inaugurate the section of the canal that would have the deepest excavation, the cut through the Continental Divide at Culebra. A ceremony was arranged, and on January 10, 1880, appropriate officials and guests gathered at Cerro Culebra (later known as Gold Hill) for the ceremony, which included witnessing the blast from an explosive charge set to break up a basalt formation just below the summit. After blessings by the local bishop, young Ferdinande again performed the honors, pushing the button of the electric detonator that set off the charge that hurled a highly satisfactory amount of rock and dirt into the air.

As de Lesseps was a trained diplomat and not an engineer, a fact that he should perhaps have more often remembered during canal design decisions, his son Charles took on the task of supervising the daily work. De Lesseps himself handled the important work of promoting and raising money for the project from private subscription. Not having the least scientific or technical bent, de Lesseps relied upon a rather naive faith in the serendipitous nature of emerging technology. Thus he worried little about the problems facing this gigantic undertaking, feeling sure that the right people with the right ideas and the right machines would somehow miraculously appear at the right time and take care of them. His boundless confidence and enthusiasm for the project and his consummate faith in the miracles of technology attracted stockholders.

In the meantime, the International Technical Commission set about the difficult task of exploring and charting the canal route. Between Colon and Panama City, the canal line was divided into sections, each section in charge of a team of engineers. Survey findings were compiled into a final report by the commission headquarters in Panama City.

The International Technical Commission was required to verify all previous surveys, including those done by Wyse and R?clus and the U.S. studies of Lull and Menocal. The ultimate goal was to determine the final line of the canal leading to the preparation of design specifications and working plans. Another goal was to convince investors that de Lesseps was not just the promoter for a hastily conceived, half understood, imperfectly planned project that, most likely reflected unreliable cost estimates.

However, the few weeks’ time allowed for this survey work was far too short for an investigation of such importance. Owing to this fact, the content of the technical commission’s report, submitted on February 14, 1880, was scientifically and professionally thin. In fact, it comprised little more than a rubber stamp for the project as conceived by de Lesseps. In approving a sea level canal, the commission reported no significant construction difficulty in cutting the deep channel through the Continental Divide at Culebra Cut and estimated that construction would take approximately eight years. The recommendations also included a protective breakwater at Limon Bay and a possible Pacific-side tidal lock.

To do the work, de Lesseps contracted Couvreux and Hersent, with whom he had worked at Suez. Looking at the work in retrospect, it can be seen as falling into four phases. During the first phase, from March 12, 1881, to the end of 1882, the entire project was under Couvreux and Hersent. During the second phase, 1883 through 1885, following the withdrawal of Couvreux and Hersent, the work was accomplished by a number of small contractors under supervision of the company itself. The third phase, between 1886 and 1887, saw the work done by a few large contractors. Finally, in the fourth phase, beginning in 1888, the sea level project was finally, though temporarily, abandoned for a lock canal with the idea that, after the lock canal was functional, the channel could be deepened gradually to make a sea level canal. But it was already too late, and the work gradually ground to a halt. Armand R?clus, the Agent G?n?ral or chief superintendent of the Compagnie Universelle, led the first French construction group of about 40 engineers and officials. They landed at Colon on January 29, 1881, aboard the Lafayette. An optimistic R?clus expected preparatory tasks to take about a year, but Panama’s sparse population did not lend itself to labor recruitment, nor did its thick jungles lend themselves to quick movement through the countryside to accomplish the work. Gaston Blanchet, Couvreux and Hersent’s director, accompanied R?clus to the Isthmus. As Blanchet was known to be the company’s driving force, it was a terrible blow when, just 10 months into the project, he died, apparently of malaria.

Work went forward, however. Surveys were completed and the canal line more accurately determined. Construction was begun on service buildings and housing for laborers. The delivery of machinery was expected soon. Some was manufactured in Europe and some in the United States. All manner of equipment was needed, from launches, excavators, dump cars and cranes to telegraph and telephone equipment.

De Lesseps was aware that the railroad was important to the work, and control of this vital element was gained by the French in August 1881. But it cost them dearly, more than $25,000,000 — about a third of Compagnie Universelle resources. Strangely, however, the railroad was never organized to serve anywhere near its full potential, especially in moving material from the site of excavation to deposit areas.

As the work force increased, so did illness and death. The first yellow fever death among the 1,039 employees occurred June 1881 soon after beginning of the wet season. A young engineer named Etienne died on July 25, supposedly of “brain fever.” A few days later, on July 28, Henri Bionne died. Holding degrees in medicine and law, as well as an international finance authority, he was a significant player in the Paris operation. In his book, “The Path Between the Seas, David McCullough wrote: “The cause of death would be attributed in Paris to ‘complications in the region of the kidneys.’ But on the Isthmus, the story would be told for as long as the French remained. He had arrived from France to make a personal inspection for de Lesseps, and several of the engineers had arranged a dinner in his honor at the employees’ dining hall at the camp at Gamboa. It was a festive evening apparently. Bionne, the last to arrive, had come into the hall just as everyone was being seated. One of the guests, a Norwegian woman, was exclaiming with great agitation that there were only thirteen at the table. ‘Be assured, madame, in such a case it is the last to arrive who pays for all,’ Bionne said gaily. ‘He drank to our success on the isthmus,’ one engineer recalled; ‘we drank to his good luck…’ Two weeks later, on his way home to France, Bionne died of what the ship’s doctor designated only as fever, not yellow fever. The body was buried at sea.”

By October, equipment and materials were arriving and accumulating in Colon faster than a work force could be hired to use them. By December 1881, the French had set up headquarters in Panama City at the Grand Hotel on Cathedral Plaza.

A banquet and ball in Panama City marked the official beginning of Culebra Cut excavation on January 20, 1882. However, little actual digging was accomplished because of lack of organization in the field. Engineers continued doing survey and preliminary work, work necessary to the project considering the skimpy studies originally done, and sending reports to Paris.

On the Isthmus, the Compagnie Universelle established medical services presided over ty the Sisters of St. Vincent de Paul. The first 200-bed hospital was established in Colon in March 1882. On the Pacific side, construction for L’H?pital Central de Panama, the forerunner of Ancon Hospital, was begun on Ancon Hill. It was dedicated six months later, on September 17, 1882. With the information on the mosquito connection in the transmission of yellow fever and malaria not yet discovered, the French and the good sisters unwittingly committed a number of errors that were to cost dearly in human life and suffering. The hospital grounds were set out with many varieties of vegetables and flowers. To protect them from leaf-eating ants, waterways were constructed around flowerbeds. Inside the hospital itself, water pans were placed under bedposts to keep of insects. Both insect-fighting methods provided excellent and convenient breeding sites for the Stegomyia fasciata and Anopheles mosquitoes, carriers of yellow fever and malaria. Many patients who came to the hospital for other reasons often fell ill with these diseases after their arrival. It got to the point where people avoided the hospital whenever possible.

Finally, with all excavating arrangements made, Couvreux and Hersent decided to withdraw from the project and wrote to de Lesseps requesting cancellation of their contract on December 31, 1882.

For a time, confusion reigned, until appointment of Jules Dingler as the new Director General. An engineer of outstanding ability, reputation and experience, Dingler was unphased by the yellow fever threat, and, accompanied by his family, arrived in Colon on March 1, 1883, along with Charles de Lesseps.

Dingler concentrated on restoring order to the work and the organization; however, in doing so, he incurred no small amount of dislike. At this time a new system, the system of small contracts, was initiated and nearly thirty were granted. For these contracts, the Compagnie Universelle rented out the necessary equipment at low rates. It wasn’t particularly efficient, requiring a great deal of paperwork and involving numerous lawsuits in Colombian courts, but the work was getting done, making use of the available labor force.

Dry excavation work was progressing in Culebra Cut and was expected to be finished by May 1885. However, there was growing concern about bank stability and the danger of slides. At the Atlantic and Pacific entrances, dredges worked their way inland. Machinery came from many quarters — France, the United States and Belgium. Equipment was constantly being modified and used in experimental combinations, but mostly it was too light and too small. A growing accumulation of discarded, inoperative equipment along the canal line testified to earlier mistakes.

With some 10,000 men employed, work was going well in September of 1883. The maximum force employed by the French at any one time was reached in 1884, with more than 19,000. The labor supply came from the West Indies, chiefly Jamaica.

But just as things appeared to be going well, tragedy struck the Dingler family. His daughter, Louise, died of yellow fever in January 1884. A month later Dingler’s twenty-year-old son, Jules, died of the same disease. As if that weren’t enough, the daughter’s young fiance, who had come with the family from France, contracted the disease and died also.

Dingler persevered, keeping up the pace of the work. He went back with his wife to France on business in June. They returned to the Isthmus in October, bringing with them a young, capable and energetic engineer named Philippe Bunau-Varilla, a man destined to play a pivotal role in the history of Panama and of the Panama Canal. Bunau-Varilla was assigned as division engineer in the key work of Culebra and Pacific slope construction, involving both dry excavation and dredging. Work at Culebra at this time needed a shot in the arm.

Then, terrible as it seems, tragedy struck again. Dingler’s wife died of yellow fever, just about a year after her daughter and son. A devastated Dingler stayed on the job until June, when he returned to France, never to return to the Isthmus that had taken from him so many of his loved ones.

Maurice Hutin then served as Director General for one month until forced to return to France for health reasons. The new acting Director General was 26-year-old Bunau-Varilla. Worker morale improved under Bunau-Varilla, and excavation increased along the line. Still, there was woefully inadequate equipment and work organization. Decauville handcars were doing most of the work at Culebra, on the Pacific side. Each of five excavators working on the Atlantic side could remove 300 cubic meters each day, but lack of spoil trains defeated their work.

There continued to be not enough of the right type of equipment; it was still too small and too light. And, there was a large turnover of labor. The spoil disposal system was inefficiently organized and managed, dump areas were too close to the excavation and slid back onto the channel whenever the rains came. Drainage ditches built parallel to the Canal helped, but not a lot. The deeper the excavation, the worse the slides. Making the slopes less steep by carving them back was another method of alleviating the slides, but this added to the total amount of digging required. And, while the soil slid with ease into the channel, the sticky clay consistency adhered with tenacity to shovels and often had to be scraped off. French bucket-chain excavators got caught and stopped by stones and rock.

In a move toward greater efficiency, Bunau-Varilla went back to the old scheme of large contractors, but instead of just one, hired several. Hand labor was cut considerably.

One contractor had let so many subcontracts in the western hill at the saddle that it became known as Contractors Hill. As late as July 1885, only about one-tenth of the estimated total had been excavated. Ultimately, the unresolved problem of the slides would doom the sea level canal plan to failure.

All the while, the toll in human lives was mounting, peaking in 1885. Yellow fever, which used to come in two- or three-year cycles, was now constant. Malaria, of course, continued to take even more lives than yellow fever. Because the sick avoided the hospitals whenever possible because of its reputation for propagating disease, much of the death toll was never recorded.

A new Director General, Leon Boyer, arrived in January 1886, relieving Bunau-Varilla. Soon thereafter, Bunau-Varilla, himself, contracted yellow fever, but did not die. However, greatly weakened, he went back to France to recuperate.

Boyer communicated to his superiors his conviction that, within current time and cost limits, it would be impossible to construct a sea level canal. To soften the report, he recommended the design proposed by Bunau-Varilla of a temporary lake and lock canal that could later, after it was built and functioning, be gradually deepened to sea level.

But, by May, he too was gone, another victim of yellow fever. The job of provisional director went to his assistant, Nouailhac-Pioch, until another Director General, a man by the name of Jacquier, the sixth since 1883, was appointed in July 1886, a position he held until the crash of 1888.

Such was the work in 1886, that the area of heaviest excavation, the stretch between Matachin and Culebra, appeared to be one continuous project. The French organization on the Isthmus had, although top-heavy with management, improved, and equipment was plentiful. Housing was clean and adequate, although not screened against flies and mosquitoes.

In spite of improvements, a lack of progress at Culebra was beginning to concern Parisian officials. Charles de Lesseps proposed to Bunau-Varilla the organization of a company to take on the work at Culebra, which he did in July 1886. The company was called “Artigue, Sonderegger et Cie.” after the two engineers who were the company’s technical members. Bunau-Varilla decided to take over the actual field supervision of the work himself. As American engineers would do later, he moved into quarters at Culebra Cut so he could watch the progress of the work. About six months later, the French work at Culebra Cut had reached peak activity. Twenty-six French excavators were digging and carrying the spoil to the dump site; still the Panama Railroad had not been harnessed to the effort of hauling spoil.

It was becoming increasingly clear to nearly everyone except Ferdinand de Lesseps that, under the circumstances, a sea level canal was out of the question and that only a high level lock canal had any hope of succeeding at this point. Under pressure from all sides, he stubbornly stuck to his guns, but finally agreed to consider making a change. Even then he delayed the inevitable for another nine months with the study of alternate plans.

In October 1887, the Superior Advisory Committee, released its report. The eminent French engineers established the possibility of building a high-level lock canal through the Isthmus of Panama. The plan would allow vessel transits while, at the same time, permitting dredging of a channel to sea level sometime in the future. It was never intended to be a permanent solution. De Lesseps finally, reluctantly, agreed. Bunau-Varilla’s idea was to create a series of pools in which floating dredges could be placed; the pools would then be connected by a series of 10 locks. The highest level of such a canal would be 170 feet. Work on the lock canal started on January 15, 1888. Gustave Eiffel, builder of the Eiffel Tower in Paris, would construct the canal locks. The waterway would have a bottom width of 61 feet.

In Gaillard Cut, where the average level had been lowered only 3 feet in 1886, was lowered 10 feet in 1887 and 20 feet in 1888, ultimately bringing the level to 235 feet at the time work was stopped.

Under Artigue, Sonderegger et Cie., work was going very well indeed. Some areas of the canal were nearly complete, the Panama Railroad was being rerouted away from the Cut, the first lock was nearly ready to begin installation and preliminary work on a dam had been started.

But suddenly there was no more money. A public subscription asked for by de Lesseps had failed. Shareholders, at their last meeting in January 1889, decided to dissolve the Compagnie Universelle, placing it under legal receivership under the direction of Joseph Brunet. An ignominious end to such a great effort. Some aspects of the work struggled on for a few months, but by May 15, 1889, all activity on the Isthmus ceased. Liquidation was not completed until 1894.

In France, popular pressure on the government regarding what was called the “Panama Affair” led to prosecution of company officials, including Ferdinand and Charles de Lesseps, who were both indicted for fraud and maladministration. Advanced age and ill health excused the senior de Lesseps from appearing in court, but both were found guilty and given 5-year prison sentences. However, the penalty was never imposed, as the statute of limitations had run out.

Charles, in a second trial for corruption, was indicted and found guilty of bribery. Months he had already spent in jail during the trials were deducted from his one-year sentence. Then, becoming seriously ill, he served the remainder of his sentence in hospital.

By this time, Ferdinand de Lesseps’ mental state was mercifully such that he knew little of what was going on, and he remained sequestered at home within the family circle. He died at age 89 on December 7, 1894. Charles lived until 1923, long enough to see the Panama Canal completed, his father’s name restored to honor and his own reputation substantially cleared.

Many reasons can be stated for the French failure, but it seems clear that the principal reason was de Lesseps’ stubbornness in insisting on and sticking to the sea level plan. But others were at fault also for not opposing him, arguing with him and encouraging him to change his mind. His own charisma turned out to be his enemy. People believed in him beyond reason.

The devotion to duty of the French in the face of the odds faced on the Isthmus is truly extraordinary, even when we remember what a different world it was then and the life span expectations entertained by most people, even those in favorable circumstances.

With the original Wyse Concession to expire in 1893, Wyse set out again for Bogota, where, he negotiated a 10-year extension. The “new” Panama Canal Company, the Compagnie Nouvelle de Canal de Panama was organized effective October 20, 1894.

With insufficient working capital, only some $12,000,000, to proceed with any significant work, the Compagnie Nouvelle entertained the hope of attracting investors who would help them to complete an Isthmian canal as a French enterprise. Initially, they had no intention of selling their rights; they wanted to make a success of the operation and perhaps be able to repay the losses of the original shareholders.

Sailing from France on December 9, 1894, the first group arrived in Panama to again pick up on excavation in Culebra Cut. There, every shovelful of dirt would count, no matter what type of Canal was ultimately decided upon, lock or sea level. By 1897, the work force would have expanded from an initial 700 to more than 4,000.

The Comit? Technique, a high level technical committee, was formed by the Compagnie Nouvelle to review the studies and work — that already finished and that still ongoing — and come up with the best plan for completing the canal. The committee arrived on the Isthmus in February 1896 and went immediately, quietly and efficiently about their work of devising the best possible canal plan, which they presented on November 16, 1898.

Many aspects of the plan were similar in principle to the canal that was finally built by the Americans in 1914. It was a lock canal with two high level lakes to lift ships up and over the Continental Divide. Double locks would be 738 feet long and about 30 feet deep; one chamber of each pair would be 82 feet wide, the other 59. There would be eight sets of locks, two at Bohio Soldado and two at Obispo on the Atlantic side; one at Paraiso, two at Pedro Miguel, and one at Miraflores on the Pacific. Artificial lakes would be formed by damming the Chagres River at Bohio and Alhajuela, providing both flood control and electric power.

If directors of the Compagnie Nouvelle still entertained the idea that the canal could somehow be completed, they were soon faced with the reality of the situation; during and following the bitter scandal of the old company, the public had lost all faith in the project. There would be, therefore, no funds forthcoming from a bond issue, and none was tried, nor did the French government have any support for the project.

With half its original capital gone by 1898, the company had few choices — abandon the project or sell it. Company directors decided to proffer a deal to the most likely taker, the United States of America. It was no secret that the United States was interested in an Isthmian canal. With the technical commission report and a tentative rights transfer proposal in hand, company officials headed for the United States, where they were received by President William McKinley on December 2, 1989. The deal was five years in the making, but was eventually signed.

Some say that a large part of the eventual success on the part of the United States in building a canal at Panama came from avoiding the mistakes of the French. The lessons learned from the French experience were certainly helpful, but the American success was considerably more than that.

AMERICAN CANAL CONSTRUCTION

Panama was enveloped in its own “miasmal mist” of failure following the French Canal adventure. The second Walker Commission, the U.S. Isthmian Canal Commission of 1899-1902, ordered by President McKinley, favored a Nicaragua route, as did both popular and official U.S. support. Panama seemed clothed in defeat, while Nicaragua was regarded as a clean slate for an all-American canal project.

Following President McKinley’s assassination, Theodore Roosevelt became president. For him, there was no romance about the project, none of this nonsense about following a dream. The canal was practical, vital and indispensable to the U.S. destiny as a global power with supremacy over both its coastal oceans. Roosevelt was a proponent of a doctrine proposed by U.S. naval officer and scholar Thayer Mahan, who explained his theory in the 1890 book “Influence of Sea Power upon History.” The theory was that supremacy at sea was an integral part of commercial and military prowess. For Roosevelt, this made a U.S.-controlled canal an absolute necessity.

A timely incident clearly demonstrated this truth to Roosevelt and the world. A naval base had been established in Cuba as a result of the Spanish-American War. The battleship Maine, which was stationed there, was blown up on February 15, 1898, with 260 lives lost. At the time, another battleship, the Oregon had been stationed in San Francisco. To save the day, the Oregon was ordered to proceed at once to the Atlantic, a 12,000-mile course around the Horn. Sixty-seven days later, but fortunately, still in time, the vessel arrived off Florida to join in the Battle of Santiago Bay. The experience clearly showed the military significance of an Isthmian canal.

As mentioned before, popular sentiment and the second Walker Commission were in favor of a Canal in Nicaragua, and the actions along those lines were being hastened through the U.S. House. At about this same time, the Compagnie Nouvelle held a stockholders meeting in Paris, and, fearing to get left out in the cold with their proposed deal with the Americans, ascribed a new value to their Panama assets of $40,000,000. This just happened to be the value put upon them by the Americans. Admiral Walker was quoted saying, “It put things on a very different footing.” The House, however, passed the Hepburn Bill favoring Nicaragua – two votes short of unanimous.

Through this, the White House had maintained silence; however, following the House vote, Roosevelt summoned the members of the Walker Commission for a closed-door meeting. There he let it be known that he wanted the French offer accepted and that the Commission was to provide a supplementary report unanimously favoring the Panama route. The Commission prepared the supplementary report reversing its original decision and coming out unanimously for Panama.

President Roosevelt submitted the supplementary report to Congress in January 1902. Wisconsin Senator John Coit Spooner introduced an amendment to the Hepburn Bill authorizing the president to acquire the French company’s assets and concessions for a maximum price of $40,000,000. The bill stated that if arrangements could not be agreed upon between the United States and Colombia within “a reasonable time,” the President would be authorized to seek an agreement for the alternate route through Nicaragua.

Senator John Tyler Morgan, a long-time Nicaragua supporter, championed that route. On the other hand was the “Panama Lobby,” led by William Nelson Cromwell and, yes, he was back again, Philippe Bunau-Varilla. As Bunau-Varilla personally held shares in the French company, his interest in seeing them bought out was clearly not unselfish. Nor were Cromwell’s motives. A lawyer who at the same time was a shareholder, a company director and represented the Panama Railroad Company, he hoped to make big money out of the deal and, as a matter of fact, did, with a fee of $800,000 for services rendered.

Senator Mark Hanna was also in favor of the Panama route for technical reasons, reasons already provided in engineering reports. The Panama waterway would be shorter, straighter, take less time to transit, would require fewer locks, had better harbors, already had a railroad and would cost less to run.

Hanna’s speech and support before the Senate were impressive, but not enough so to change the number of votes required. But it was Bunau-Varilla who turned the tide. To each senator he mailed a letter enclosing a one-centavo stamp showing a Nicaraguan landscape. In the background, the famous Momotombo volcano was depicted in full eruption. The stamp clearly pointed out the differences between the two countries — one with active volcanoes, the other comparatively stable. On June 19, 1902, the Senate vote favored a Panama canal route by just eight votes.

That it was the technical, engineering viewpoint that prevailed was significant. The most vociferous and articulate of the engineers favoring Panama was George Shattuck Morison. Morison is credited with changing many important minds about the canal route, including Walker, Hanna and even President Roosevelt, to whom he wrote a letter on December 10, 1901, detailing the technical reasons and his own person convictions for building the Canal through Panama. Roosevelt would later credit “engineers” for helping make up his mind.

With the route decided, it was now time to begin negotiations with Colombia for a concession to build a canal through the Colombian province of Panama. The resulting Hay-Herran Treaty, developed by Colombian charge d’affaires Dr. Tomas Herran and U.S. Secretary of State John Hay, was rejected by Colombia. Roosevelt, reportedly furious, was not inclined to continue negotiations.

Impatient to build the canal, Roosevelt supported Panama’s independence movement. And he was willing to put forth a show of military force, dispatching warships to both sides of the Isthmus – the Atlanta, Maine, Mayflower and Prairie at Colon and the Boston, Marblehead, Concord and Wyoming at Panama City – thus effectively blocking the sea approaches. Troops not only protected the railroad, but were also sent into the interior to block access from those areas. A land approach by a Colombian force of 2,000 was defeated by the Darien jungle and forced to turn back.

Roosevelt would later boast that “…I took the isthmus, started the canal and then left Congress not to debate the canal, but to debate me.” Without the U.S. military presence it is doubtful that the Panama independence movement would have succeeded.

Panama declared independence from Colombia on November 3, 1903. The Hay-Bunau-Varilla Treaty was negotiated by the new republic’s “Envoy Extraordinary and Minister Plenipotentiary” Philippe Bunau-Varilla with John Hay. The new treaty was sent to Panama for ratification. The treaty granted to the United States as if sovereign a canal concession in perpetuity to a canal zone 10 miles wide, 5 miles on either side of the Canal prism line. Whether they liked it or not, the founders of Panama had little choice but to accede, as to refuse would have withdrawn all U.S. support from the fledgling republic and further dealings with Colombia. It was this arrangement, however, that gave the United States the control it needed in this vastly underdeveloped country to get the monumental job of canal construction done.

The Hay-Bunau-Varilla Treaty was ratified in Panama on December 2, 1903, and in the United States on February 23, 1904. Roosevelt’s audacious move had succeeded for the United States, but not without political repercussions in U.S./Latin American relations for years to come. Upon the treaty’s ratification in the United States on February 23, 1904, Panama received a payment of $10 million. Three days later, Bunau-Varilla resigned and returned to France.

The beginning of the U.S. canal construction effort dates from May 4, 1904, when, in a brief ceremony, U.S. Army Corps of Engineers officer Lieutenant Mark Brooke received the keys to the storehouses and Ancon Hospital. Chief Sanitary Officer Dr .William Crawford Gorgas and his staff were among the first to arrive and set up operations.

Medical researchers at around this time were becoming more receptive to the idea of a relationship between mosquitoes and malaria and yellow fever. Dr. Carlos Juan Finlay, as early as 1881, had become convinced that yellow fever was transmitted by a specific mosquito vector, the Stegomyia fasciata (later to be named the Aedes aegypti). The only problem was that he couldn’t prove what appeared to most at the time to be a totally far-fetched theory. However, others would take their lead from Finlay. Dr. Henry Rose Carter doing research in Mississippi discovered “extrinsic incubation,” the fact that a specific period of time was involved in the person to person transmittal of the disease. However, the great yellow fever discoveries in Cuba in 1900 were the work of Dr. Walter Reed, who happened at the time to be Gorgas’ commanding officer, who proved that Stegomyia fasciata was the carrier, debunking all previous theories, including the belief that “fomites,” the term used for the soiled clothes or bedding of yellow fever victims, could spread the disease. Gorgas, himself a yellow fever survivor and thus immune to the disease, was a particularly valuable member of the medical team. Still skeptical, however, he suggested to Reed that, to prove the theory once and for all, Havana needed to be rid of the Stegomyia fasciata and the results observed. Gorgas, with Reed’s approval, began the work in February of 1901. Results showed a dramatic reduction in yellow fever cases – from 1,400 known cases in 1900, to only 37 cases in 1901; none of them after October. The eradication procedures didn’t just kill off the Stegomyia fasciata, but reduced the Anopheles population as well, thus decreasing malaria cases by more than half. These same techniques were what Gorgas brought with him to Panama in 1904.

The breeding habits of the Stegomyia, which leads them to flourish in and around human habitations, made them much easier to kill than the malaria-carrying Anopheles, which are found everywhere – jungles as well as back yards, making them very difficult to control. Besides, as Gorgas continually stressed, malaria was far more dangerous than yellow fever, accounting for the largest loss of life during the French years.

For Gorgas, it was urgent to get a jump on mosquito eradication before new, non-immune workers arrived and became infected. Unfortunately, Gorgas’s superiors in the first Isthmian Canal Commission didn’t take seriously the new scientific discoveries and thus did not support Gorgas’s efforts. Even after a 1903 scientific congress in Paris reviewed Reeds yellow fever work and proclaimed it “scientifically determined fact,” Commission officials continued to believe Gorgas’s efforts to be a waste of time and money.

The Isthmian Canal Commission’s first chief Engineer, John F. Wallace, numbered among the nonbelievers. However, John F. Stevens, Wallace’s successor in 1905, provided Gorgas full support and funding. Gorgas would later write, “The moral effect of so high an official taking such a stand at this period…was very great, and it is hard to estimate how much sanitation on the Isthmus owes to this gentleman for its subsequent success.” Stevens’s actions appear even more admirable, as he would later state, “Like probably many others I had gained some little idea of the mosquito theory, but, like most laymen, I had little faith in its effectiveness, or even dreamed of its tremendous importance.”

The work to combat yellow fever included screening windows and doors, house-by-house fumigation of Panama City and Colon and weekly oiling of cisterns and cesspools. A most important advance was providing running water to Panama City, Colon and other townsites to do away with the need for the domestic water containers that served as perfect breeding sites for the yellow fever vector mosquito

As a result of Gorgas’s crusade, yellow fever was completely and permanently wiped out on the Isthmus, with the last case reported in Panama City on November 11, 1905.

Malaria, unlike yellow fever, does not confer immunity. With the disease endemic on the Isthmus, there were repeated opportunities to lay its victims low by debilitation or death. It actually was the cause of more deaths during the French and U.S. construction periods than was yellow fever. During the first year of the American effort, 1905, nearly all of the American force, including Gorgas, had contracted malaria after only a month on the Isthmus. Gorgas was to say, “If we can control malaria, I feel very little anxiety about other diseases. If we do not control malaria our mortality is going to be heavy.” A comparison between eradicating the two kinds of mosquitoes likened getting rid of the yellow fever carrier to “making war on the family cat,” while a campaign against the malaria-carrying mosquito was “like fighting all the beasts of the jungle.”

Reducing and eradicating the swarms of malarial mosquitoes was a huge task. Research, however, revealed valuable information. Knowing that the Anopheles mosquito cannot fly far without lighting on some sort of vegetation, 200-yard-wide areas were cleared around where people lived and worked. Sanitation teams drained more than 100 square miles of swamp, built nearly a thousand miles of earthen ditching, some 300 miles of concrete ditch, 200 miles of rock-filled trench, almost 200 miles of tile drain, cut hundreds of acres of wild vegetation, sprayed standing water with thousands of gallons of oil, hatched and released thousands of minnows to eat the Anopheles larvae and bred spiders, ants, lizards to feed on adult insects. To keep vegetation such as grass and algae from preventing the free spread of the larvae-smothering oil, some 200 barrels of poison (a mixture of carbolic acid, resin and caustic soda) were applied monthly around the edges of water pools and streams. While these efforts covered only a small fraction of the Zone area, they efficiently reduced malaria incidence in populated areas. Two hundred and eleven employees died of malaria during fiscal year 1906-1907, declining significantly from a peak of 7.45 per 1,000 in 1906 to .30 per 1,000 in 1913. This achievement greatly increased American chances of canal-building success. A 1941 report stated that, during the past 20 years, there were only 7 deaths from malaria among employees.

Native villages and towns in the Canal Zone, in accordance with Articles VI and XV of the 1903 treaty, were required to move. Legal owners thus required to vacate were compensated for their property. Many inhabitants were required to relocate with the filling of Gatun Lake. Many of these sites dated from early days of Chagres River navigation, when the route was a much used commercial route across the Isthmus. Such settlements included Ahorca Lagarto, Barbacoas, Caimito, Matachin, Bailamonos, Santa Cruz, Cruz de Juan Gallego and Cruces. Following Canal completion, still other townsites were no longer needed and were abandoned. These towns, some built on the sites of existing French era towns, such as Emperador, called “Empire” by the Americans and the location of steam shovel repair shops and the Central Division engineering office in charge of Culebra Cut excavation. On the other hand, Culebra, the American headquarters, was newly built. Many of these were never intended to be permanent.

Many problems had to be confronted immediately and solved by John F. Stevens, chief engineer between July 1, 1905 and April 1, 1907. As Panama was, to say the least, insufficiently developed or equipped to support the additional population created by the growing Canal labor force, a great deal of planning went into providing proper housing and an adequate food supply. Virtually everything that was needed for Canal construction, from equipment and building supplies to a labor force and food, would have to be brought to the Isthmus and distributed efficiently along the line of the canal. The Panama Railroad, which Stevens saw at once to be the lifeline of Canal construction, was completely overhauled. The lightweight, inadequate and mismatched equipment of the French was replaced with the best and toughest available, for this railroad would not only distribute workers, materials and supplies, but also would haul away the dirt and rock excavated from the channel. Stevens was to say, “This is no reflection on the French, but I cannot conceive how they did the work they did with the plant they had.” Heavier track, engines, freight cars, dump cars and refrigerator cars were ordered, and bridges signals and sidings were upgraded and improved. Also required and recruited from the United States was a phalanx of trained engineers, switchmen, operators, mechanics, yard masters, train masters, dispatchers, superintendents and conductors to first put together the railroad, as all components were shipped “knocked down,” and then operate it.

All other kinds of equipment were rehabilitated or replaced as well. Communications were improved with new telegraph and telephone systems.

The size of the labor force was tripled in six months under Stevens and whole communities, including housing, mess halls, hospitals, hotels, schools churches, cold storage, clubhouses and laundries were built to accommodate them. Streets were paved in Colon and Panama City and water and sewage systems installed. At one time, nearly half of the 24 thousand-man work force was employed at constructing buildings.

Stevens also developed the ingenious system of Canal excavation and disposal of rock and soil, called “spoil.” He devised a complex but very workable and efficient system of railroad tracks at different levels within the Cut. Spoil train schedules were coordinated to the level where the excavation work was being done. Spoil train capacity kept pace with the excavation work, keeping both trains and steam shovels efficiently employed at all times.

Col. George Washington Goethals, who succeeded Stevens as chief engineer during the construction period and under whose leadership the Canal was completed, would say: “Stevens devised, designed, and made provision for practically every contingency connected with the construction and subsequent operation of the stupendous project… It is therefore to him, much more than to me, that justly belongs the honor of being the actual ‘Genius of the Panama Canal…’”

It was Stevens who convinced Roosevelt of the wisdom and necessity of building a lock rather than a sea level canal, and Stevens who lobbied the U.S. Congress and others on Capital Hill, just as had Frenchman Godin de L?pinay lobbied before the Congres International in Paris in 1879. The difference was that Stevens succeeded. Stevens, with firsthand knowledge of seeing the Chagres during flood, talked, insisted and explained the situation, using statistics and maps, repeating again and again that “the one great problem in the construction of any canal down there is the control of the Chagres River,” during intense questioning before the House Committee on Interstate and Foreign Commerce. He also helped draft the major Senate address by Philander Knox on June 19, 1906, on the subject of the Canal, the lock plan and Gatun Dam in particular. Two days after the Knox speech, the Senate voted for a lock canal 36 to 31; on June 27, the House followed suit. Just a narrow margin of votes stood between United States’ lock canal success and a sea level canal attempt that, in all likelihood, would have failed. Stevens would call the sea level plan “an entirely untenable proposition, an impracticable futility.” Proposed as only 150 feet wide for nearly half its length, it was seen by Stevens as “a narrow, tortuous ditch” fraught with the possibility of endless landslides. Goethals reportedly once remarked that there was not money enough in the world to construct a sea level canal across Panama. Time and construction costs aside, Stevens would still prefer a lock canal:

“It will provide a safer and quicker passage for ships… It will provide, beyond question, the best solution to the vital problem of how safely to care for the floodwater of the Chagres… Its cost of operation, maintenance and fixed charges will be much less than any sea-level canal.”

Stevens estimated completion time for a lock canal to be eight years, by January 1914; he estimated that a sea level canal couldn’t be completed in less than eighteen years, or around 1924.

With all immediate problems solved and the work going well, Stevens suddenly and inexplicably resigned, effective April 1, 1907. Amid much speculation about the reason, Stevens said nothing publicly except to say that it was “personal.” As a professional experienced in railroad engineering, the canal work, for Stevens, was a straightforward administrative and design proposition. He once noted “…the problem is one of magnitude and not miracles.” Roosevelt never had any reservations about Stevens’ technical executive ability, but Stevens’ obvious insensitivity to the fact that the canal was an undertaking of the United States government did not sit well with him.

Now that the canal project was off the ground and going well, Roosevelt’s feeling about it underwent an apparent change. While at first he viewed it as a political, commercial and military necessity, he could now afford to allow himself to be inspired by the “romance” of the situation engendered by its dramatic challenges of its structural design and the many assorted difficulties overcome. Roosevelt now spoke of building the canal as a mighty battle involving both the national honor and that of the work force. The first president to leave the continental United States while in office, he made a trip to Panama in November 1906 to see for himself how things were going. At the end of his last day there, he made an impromptu speech to several hundred Americans, including John Stevens. Excerpts from those remarks reveal his thinking at the time.

“…whoever you are, if you are doing your duty, the balance of the country is placed under obligation to you, just as it is to a soldier in a great war. The man who does his duty, no matter in what position he may be placed, is the man for the job. But to do your duty you must do a little more than just earn your salary. As I have looked at you and seen you work, seen what you have done and are doing, I have felt just exactly as I would feel to see the big men of our country carrying on a great war.”

“…you here who are doing your work well in bringing to completion this great enterprise, are standing exactly as a soldier of the few great wars of the world’s history. This is one of the great works of the world. It is a greater work than you yourselves at the moment realize.”

“In the Grand Army the spirit what appeals to me is the spirit of fellowship, of comradeship. If a man was a lieutenant general of the army or if he was the last recruit, the youngest recruit whose age would permit him to serve in the ranks, it makes no difference. If he did his duty well, he is a comrade, and recognized in every Grand Army post. And so it should be with you, whether you be chief engineer, superintendent, foreman, steam shovel man, machinist, clerk – this spirit of comradeship should prevail.”

Judging from these remarks, it is easy to see how Roosevelt might have felt that Stevens, by his resignation, had betrayed the fundamental precepts of such a great and noble enterprise by viewing it as just a job and not putting into it the commitment of heart and spirit that Roosevelt felt it deserved. While he apparently felt no ill will towards Stevens, he failed to mention Stevens in the canal section of his autobiography. He also determined that he wouldn’t make the same mistake twice, and appointed as Stevens’ replacement an Army man, a member of the U.S. Army Corps of Engineers, who would be required to stay on the job as long as his president and commander in chief wanted him there. The next chief engineer was Lieutenant Colonel (later promoted to Colonel in December 1909 and to Major General on March 4, 1914) George Washington Goethals.

In addition to serving as chief engineer, Goethals also was named chairman of the Isthmian Canal Commission and president of the Panama Railroad Company and its subsidiary steamship line, giving him much more power and responsibility than wielded by previous chief engineers. He was responsible only to the Secretary of War and the President. Such power couldn’t have been entrusted to anyone who could have handled it better than did Goethals, who seemed never to let it go to his head.

Aloof and straight laced in manner and appearance and certainly not an easy mixer or winner of popularity, Goethals was highly respected for his honesty and fairness and was considered a superb administrator by his admirers, of whom there were ample number. He quickly put to rest the fears of those who thought they would be working under a military regime, saying, “I am no longer a commander in the United States Army. I now consider that I am commanding the Army of Panama, and that the enemy we are going to combat is the Culebra Cut and the locks and dams at both ends of the Canal, and any man here on the work who does his duty will never have any cause to complain of militarism.” Goethals never once wore a military uniform on the Isthmus.

Goethals was well qualified for his post, having graduated second in his class at West Point and having had previous experience with locks and dams. Most of his immediate professional subordinates were also military men, including Lieutenant Colonel Harry F. Hodges, Major William L. Sibert, Major David DuBose Gaillard and Rear Admiral Harry Harwood Rousseau. Hodges was in charge of the design and erection of the lock gates. Sibert was head of the Atlantic Division, which comprised Gatun Dam and Locks. Gaillard was in charge of the Central Division, which included all of Gatun Lake and the Culebra Cut. Gaillard died of a brain tumor shortly before the Canal was completed. In posthumous recognition of his service, President Woodrow Wilson issued an executive order on April 17, 1915, officially changing the name of Culebra Cut to Gaillard Cut. Sydney B.Williamson, in charge of the Pacific Division from the southern end of Culebra Cut to deep water in the Pacific, was the only civilian engineer on this high-level team. He was responsible for the construction of Pedro Miguel and Miraflores Locks with their auxiliary dams. The only naval member of the commission, Rousseau was in charge of the design and construction of all terminals, wharves, coaling stations, dry docks, machine shops, warehouses and other auxiliary structures.

Major design changes were made as work progressed. For example, the bottom width of the canal channel in Culebra Cut was widened from 200 to 300 feet. At the request of the U.S. Navy, locks chambers were enlarged from 95 to 110 feet to accommodate vessels then on the drawing board. A chain of small Pacific-side islands (Flamenco, Perico, Naos and Culebra) was joined to create a three-mile-long breakwater across tidal flats to prevent silt from clogging the channel entrance. The discovery of poor foundation materials at the Sosa Hill site caused the two-step set of Pacific-side locks to be relocated farther north to Miraflores; the locations of other locks remained unchanged.

Recruitment of a labor force was a big problem at the beginning of canal construction. With Panama’s relatively sparse population there was no surplus labor anywhere in the republic. It was recognized early on that all classes of labor would have to be recruited from outside and that most of the higher grades of skilled labor would have to be recruited from the United States. The average number of Americans working for the Canal during the construction period was a little over 5,000.

The islands of the Caribbean were the logical place to seek a labor force as the French had done some years before. However, when the French canal effort failed, many West Indian laborers, about 20,000 of them, were left stranded in Panama, to be repatriated at their governments’ expense. This experience left both governments and laborers themselves loath to participate in the American effort. Authorities on the Island of Barbados finally authorized large-scale recruitment leading to a total recruitment of 19,900 laborers, reportedly approximately 10 percent of the population and between 30 and 40 percent of the adult males. When restrictions were withdrawn in 1907, some 7,500 men were recruited from the French islands of Martinique and Guadeloupe. Actually the largest recruitment of contracted workers occurred in 1907, when nearly 15,000 men were brought to the Isthmus. When news got out of the high wages and good living conditions on the Isthmus, there was no longer a need to recruit, and all agents were withdrawn in 1909.

It is often, erroneously, stated that Jamaican labor built the Panama Canal. Actually, Jamaica, the largest, nearest and most populous of the British West Indies, would have been a logical place to recruit unskilled labor. However, throughout the construction period, island authorities consistently refused to allow recruiting, placing a tax of one pound sterling on anyone wishing to leave to work in Panama. For unskilled laborers who made a maximum of about 30 cents a day, to pay the tax and the passage was prohibitive. The large Jamaican immigration to the Isthmus consisted mostly of artisans, not laborers.

Contractors were not used during the American canal construction period except for special projects such as lock gate construction that required especially experienced workers. The McClintic-Marshall Company, which built the lock gates, at one time had more than 5,000 men at work on the gates. Taking this force into consideration, the maximum effective force was reached on March 26, 1913, with a total number of men actually on the job was 44,733, not including the sick, those on leave and other absentees. Taking these into consideration would add an additional 20 percent to the total number on the rolls for any given period.

Bibliography

Avery, Ralph E. Americas’s triumph at Panama : panorama and story of the construction and operation … Chicago, L.W. Walter Co., 1913. 384p.

Bennett, Ira E. History of the Panama Canal : its construction and builders. Washington, Historical Publishing Co., 1915. 543p.

Bishop, Joseph Bucklin. The Panama Gateway. N.Y., Scribner’s, 1913. 459p.

Bunau-Varilla, Philippe. Panama : the creation, destruction, and resurrection. London, Constable, 1913. 568p.

Cameron, Ian. The Impossible Dream; the Building of the Panama Canal. N.Y., William Morrow, 1972. 284p.

Du Val, Miles Percy. And the Mountains Will Move; the Story of the Building of the Panama Canal. by Miles P. Du Val, Jr. Westport, CT, Greenwood pr., 1975, c1947. 374p.

Gorgas, William C. Sanitation in Panama. New York, Appleton & Co., 1915. 298p.

Keller, Ulrich. The building of the Panama Canal in historical photographs. New York, Dover Publications, 1983. 111p.

Kimball, W. W. Special intelligence report on the progress of the work on the Panama Canal during year 1885. Washington, GPO, 1886. 38p.

Lee, William Storrs. The Strength to Move a Mountain. N.Y., Putnam, c1958. 318p.

Mahan, A. T. The Influence of sea power upon history 1660-1783. Boston, Little, Brown and Co., 1925. 556p.

McCullough, David. The Path Between the Seas: the Creation of the Panama Canal, 1870-1914. N.Y., Simon and Schuster, 1977. 698p.

Mack, Gerstle. The Land Divided; a History of the Panama Canal and Other Isthmian Canal Projects. N.Y., Octogon Books, 1974, c1944. 650p. Also available in Spanish.

Minter, John Easter. The Chagres: River of Westward Passage. N.Y., Rinehart, 1948. 418p.

Panama Canal. Twenty-fifth Anniversary; August 15, 1914 – August 15, 1939. Mount Hope, C.Z., Panama Canal press, 1939. 111p.

Panama Canal Company. The Panama Canal: Fiftieth Anniversary; the Story of a Great Conquest. Balboa Heights, C.Z., The company, 1964. 122p. Also available in Spanish.

Reclus, Armand. Panama et Darien : voyages d’exploration. Paris, Librairie Hachette, 1884. 422p.

Roger, Charles C. Intelligence report of the Panama Canal. Washington, GPO, 1889. 57p.

Saville, Caleb Mills. Hydrology of the Panama Canal. Washington, ASCE, 1913. 115p.

Selected Panama Canal Photographs 1904-1939. by Red Hallen. Balboa Heights, Panama, Panama Canal Company, 1967. 23 vol.

Small, Charles S. Rails to the Diggings: Construction Railroads of the Panama Canal. Railroa




Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Продуктивные особенности свиней породы ландрас, разводимых в СПК "Путь к комунизму"
Реферат Половая зрелость и искусственное осеменение животных
Реферат Причины бесплодия и яловости коров
Реферат Great Gatsby Essay Research Paper Great Gatsby
Реферат Why I Want To Enter College Essay
Реферат Проблемы и перспективы развития агропромышленного комплекса (АПК) региона
Реферат Природоохранные мероприятия ГПЗ "Лопчинский"
Реферат Исследование параллельной работы трёхфазных двухобмоточных трансформаторов
Реферат Communication Roles Essay Research Paper In my
Реферат Pulse Воронеж" Журнал "
Реферат Проблемы развития малого бизнеса в аграрной сфере
Реферат Особенности журналистского процесса в сети Интернет (на опыте США)
Реферат Валютные кризисы: теория и действительность
Реферат СНІД - синдром набутого імунодефіциту
Реферат VI. Основные инструменты реализации Программы