Реферат по предмету "Иностранный язык"


Pascals Triangle Essay Research Paper Pascals TriangleBlas

Pascals Triangle Essay, Research Paper

Pascal?s Triangle

Blas? Pacal was born in France in 1623. He was a child prodigy and was

fascinated by mathematics. When Pascal was 19 he invented the first calculating

machine that actually worked. Many other people had tried to do the same but did not

succeed. One of the topics that deeply interested him was the likelihood of an event

happening (probability). This interest came to Pascal from a gambler who asked him

to help him make a better guess so he could make an educated guess. In the coarse of

his investigations he produced a triangular pattern that is named after him. The pattern

was known at least three hundred years before Pascal had discover it. The Chinese

were the first to discover it but it was fully developed by Pascal (Ladja , 2).

Pascal’s triangle is a triangluar arrangement of rows. Each row except the first

row begins and ends with the number 1 written diagonally. The first row only has one

number which is 1. Beginning with the second row, each number is the sum of the

number written just above it to the right and the left. The numbers are placed midway

between the numbers of the row directly above it.

If you flip 1 coin the possibilities are 1 heads (H) or 1 tails (T). This

combination of 1 and 1 is the firs row of Pascal’s Triangle. If you flip the coin twice

you will get a few different results as I will show below (Ladja, 3):

Let’s say you have the polynomial x+1, and you want to raise it to some

powers, like 1,2,3,4,5,…. If you make a chart of what you get when you

do these power-raisins, you’ll get something like this (Dr. Math, 3):

(x+1)^0 = 1

(x+1)^1 = 1 + x

(x+1)^2 = 1 + 2x + x^2

(x+1)^3 = 1 + 3x + 3x^2 + x^3

(x+1)^4 = 1 + 4x + 6x^2 + 4x^3 + x^4

(x+1)^5 = 1 + 5x + 10x^2 + 10x^3 + 5x^4 + x^5 …..

If you just look at the coefficients of the polynomials that you get, you’ll see

Pascal’s Triangle! Because of this connection, the entries in Pascal’s Triangle are called

the binomial coefficients.There’s a pretty simple formula for figuring out the binomial

coefficients (Dr. Math, 4):

n!

[n:k] = ——–

k! (n-k)!

6 * 5 * 4 * 3 * 2 * 1

For example, [6:3] = ———————— = 20.

3 * 2 * 1 * 3 * 2 * 1

The triangular numbers and the Fibonacci numbers can be found in

Pascal’s triangle. The triangular numbers are easier to find: starting with the third one

on the left side go down to your right and you get 1, 3, 6, 10, etc (Swarthmore, 5)

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

The Fibonacci numbers are harder to locate. To find them you need to go

up at an angle: you’re looking for 1, 1, 1+1, 1+2, 1+3+1, 1+4+3, 1+5+6+1

(Dr. Math, 4).

Another thing I found out is that if you multiply 11 x 11 you will get 121 which

is the 2nd line in Pascal’s Triangle. If you multiply 121 x 11 you get 1331 which is the

3rd line in the triangle (Dr. Math, 4).

If you then multiply 1331 x 11 you get 14641 which is the 4th line in Pascal’s

Triangle, but if you then multiply 14641 x 11 you do not get the 5th line numbers. You

get 161051. But after the 5th line it doesn’t work anymore (Dr. Math, 4).

Another example of probability: Say there are four children Annie, Bob,

Carlos, and Danny (A, B, C, D). The teacher wants to choose two of them to hand out

books; in how many ways can she choose a pair (ladja, 4)?

1.A & B

2.A & C

3.A & D

4.B & C

5.B & D

6.C & D

There are six ways to make a choice of a pair.

If the teacher wants to send three students:

1.A, B, C 2.A, B, D 3.A, C, D 4.B, C, D

If the teacher wants to send a group of “K” children where “K” may range

from 0-4; in how many ways will she choose the children

K=0 1 way (There is only one way to send no children)

K=1 4 ways ( A; B; C; D)

K=2 6 ways (like above with Annie, Bob, Carlos, Danny)

K=3 4 ways (above with triplets)

K=4 1 way (there is only one way to send a group of four)

The above numbers (1 4 6 4 1) are the fourth row of numbers in Pascal

Triangle (Ladja, 5).

“If we extend Pascal’s triangle to infinitely many rows, and reduce the scale of

our picture in half each time that we double the number of rows, then the resulting

design is called self-similar — that is, our picture can be reproduced by taking an

subtriangle and magnifying it,” Granville notes.The pattern becomes more evident if

the numbers are put in cells and the cells colored according to whether the number is 1

or 0 (Peterson’s, 5).Similar, though more complicated designs appear if one replaces

each number of the triangle with the remainder after dividing that number by 3. So, I

get:

1

1 1

1 2 1

1 0 0 1

1 1 0 1 1

1 2 1 1 2 1

1 0 0 2 0 0 1

This time, one would need three different colors to reveal the patterns

of triangles embedded in the array. One can also try other prime numbers

as the divisor (or modulus), again writing down only the remainders in

each position (Freedman, 5). Actually, there’s a simpler way to try this out. With the

help of

Jonathan Borwein of Simon Fraser University in Burnaby, British Columbia, and his

colleagues, Granville has created a “Pascal’s Triangle Interface” on the web. One can

specify the number of rows (up to 100), the modulus (from 2 to 16), and the image size

to get a colorful rendering of the requested form.It’s a neat way to explore the fractal

side of Pascal’s triangle. Here’s one example that I tried out, using 5 as the modulus

(Petetson’s, 5).




Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Посягання на територіальну цілісність і недоторканність України
Реферат Понятие преступности
Реферат Понятие деловой репутации юридического лица и ее защита
Реферат Поняття та види об єктів авторського права
Реферат Понятие вещи в гражданском праве, их правовая классификация
Реферат Поняття вини та її форми Умисел та його види зміст умислу
Реферат Керiвництво программиста
Реферат Понятие жилого помещения Норма жилой площади ее правовое значение и
Реферат Понятия приемов делегирования
Реферат Осознанное восприятие
Реферат Понятие, значение и сущность криминалистической габитоскопии
Реферат Поняття ознаки та особливості процесуального становища відповідача в цивільному судочинстві
Реферат Подсудность
Реферат Предмет понятие метод и система криминологии
Реферат Проблемы взаимоотношения общества права и государства