Реферат по предмету "Английский язык"


Dissociation of Benzene Molecule in a Strong Laser Field eng

Dissociation of Benzene Molecule in a

Strong Laser Field

M. E. Sukharev

General Physics Institute of RAS

117942, Moscow, Russia

Dissociation of benzene molecule in a strong low-frequency linearly polarized laser field is
considered theoretically under the conditions of recent experiments. Analogy with the dissociation of diatomic molecules has been found. The dissociation
probability of benzene molecule has been derived as a function of time. The three-photon dissociate process is shown to be realized in experiments.

 

1. Introduction.

The number of articles devoted to the interaction of molecules with a strong laser field
increased considerably in recent years. The main features of interaction between diatomic molecules and a laser radiation were considered
in a great number of experimental [1-5] and theoretical [6-9] papers. Classical and quantum investigations of spatial alignment of diatomic molecules and their
molecular ions in a strong laser field, as well as ionization and dissociation of these molecules and their molecular ions account for physical pictures of
all processes.

However, when considering complex organic molecules, we observe physical phenomena to be
richer, and they are not thoroughly investigated. Most of results obtained for diatomic molecules can be generalized to
the multi-atomic molecules. This short paper contains the results of theoretical derivations for dissociation of benzene molecule C6H6
in the field of linearly polarized Ti:Sapphire laser. Data were taken from experimental results by Chin’s group, Ref. [4]. We use the atomic system of units throughout the paper.

2. Theoretical approach.

Let us consider the benzene molecule C6H6 in the field of Ti:Sapphire laser with the wavelength l=400 nm, pulse length t=300 fs and maximum
intensity Imax=2´1014 W/cm2.
According
to Ref. [4] first electron is ejected from this neutral molecule and then the dissociation of C6H6+-ion occurs.

The most probable channel for decay of this ion is the separation into the equal
parts
:






Of course, there is another channel for decay of C6H6+-ion which includes
the ejection of the second electron and subsequent Coulomb explosion of the C6H6++-ion.
We do not consider the latter process.

     The channel (1) is seen to be similar to the dissociation of the hydrogen molecular ion considered in Ref.
[2]. Indeed, the model scheme of energy levels for C6H6+-ion
(see Ref. [4]) reminds the model scheme of energy levels for H2+ [2] containing only two low-lying electronic levels: 1sg (even) and 1su (odd).

         Therefore we consider the dissociation process of C6H6+-ion
analogously to that for H2+-ion (see Fig. 1). The benzene molecular ion has the large reduced mass with respect to division into equal
parts. Hence, its wave function is well localized in space (see Fig. 2) and therefore we can apply classical mechanics for description of the dissociation
process (1). However, the solution of Newton equation with the effective potential (see below) does not produce any dissociation, since laser pulse
length is too small for such large inertial system. In addition to, effective potential barrier exists during the whole laser pulse and tunneling of the
molecular fragment is impossible due to its large mass ( see Fig. 2). Thus, we should solve the dissociation problem in the frames of quantum
mechanics.

1. The Keldysh parameter g=w(2mE)1/2/F>>1. Thus, the dissociation is the pure multiphoton
process. The frequency of laser field is w µ 2.7 эВ, while the
dissociation potential is De=6 eV. Hence, three-photon process of dissociation takes place. The dissociation rate of three-photon process is
proportional to m-1/2. The total dissociation probability is obtained by means of multiplying of this rate by
the pulse length t. Therefore the probability of three-photon process can be large, unlike the tunneling
probability. This is the explanation of large dissociation probability W»0.11 obtained in
the calculations.

4. Conclusions.

     Derivations given above of dissociation of benzene molecule show that approximately 11% of all C3H3+-ions
decay on fragments C3H3 and C3H3+ under the conditions of Ref. [4]. The absorption of three photons occurs in
this process.

      Author is grateful to N. B. Delone, V. P. Krainov, M. V. Fedorov and S. P. Goreslavsky for stimulating
discussions of this problem. This work was supported by Russian Foundation Investigations (grant N 96-02-18299).

References

1. Peter Dietrich, Donna T. Strickland, Michel Laberge and Paul B. Corkum, Phys. Rev. A, 47, N3, 2305 (1993). M. Ivanov, T. Siedeman, P. Corkum,
Phys. Rev. A, 54, N2, 1541 (1996).

2. F. A. Ilkov, T. D. G. Walsh, S. Turgeon and S. L. Chin, Phys. Rev. A, 51,
N4, R2695 (1995). F. A. Ilkov, T. D. G. Walsh, S. Turgeon and S. L. Chin, Chem. Phys. Lett 247 (1995).

3. S. L. Chin, Y. Liang, J. E. Decker, F. A. Ilkov, M. V. Amosov, J. Phys. B: At. Mol. Opt. Phys. 25 (1992), L249.

4. A. Talebpour, S. Larochelle and S. L. Chin, in press.

5. D. Normand, S. Dobosz, M. Lezius, P. D’Oliveira and M. Schmidt: in Multiphoton Processes, 1996, Conf., Garmish-Partenkirchen, Germany, Inst.
Phys. Ser. No 154 (IOPP, Bristol 1997), p. 287.

6. A. Giusti-Suzor, F. H. Mies, L. F. DiMauro, E. Charon and B. Yang, J. Phys. B: At. Mol. Opt. Phys. 28 (1995) 309-339.

7. P. Dietrich, M. Yu. Ivanov, F. A. Ilkov and P. B. Corkum, Phys. Rev. Lett. 76, 1996.

8. S. Chelkowski, Tao Zuo, A. D. Bandrauk, Phys. Rev. A, 46, N9, R5342 (1992)

9. M. E. Sukharev, V. P. Krainov, JETP, 83, 457,1996. M. E. Sukharev, V. P. Krainov, Laser Physics, 7, No3, 803, 1997. M. E.
Sukharev, V. P. Krainov, JETP, 113, No2, 573, 1998. M. E. Sukharev, V. P. Krainov, JOSA B, in press.

Figure captions

Fig. 1. Scheme of dissociation for benzene molecular ion C6H6+.

Fig. 2. The Morse potential (a), the effective potential (b) for maximum value of the field strength
(a.u.), and the square of the wave function of the ground state for benzene molecular ion (c) as functions of the nuclear separation R (a.u.) between the
fragments C3H3 and C3H3+.

Fig. 3. Envelope of laser pulse as a function of time (fs).

Fig. 4. The dissociation probability of benzene molecular ion C6H6+ as a function of time (fs).








                                                                                       


                                                       





                                                                                                   
                  





        








                                                                               


Fig. 1

                                 

                                                                                           


  Morse potential (a) (a.u.),

 effective potential for max. field (b) (a.u),


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.