Реферат по предмету "Физика"


Процессы интермитенсии в ядерных реакциях с большим поперечным импульсом

ПРОЦЕССЫ ИНТЕРМИТЕНСИИ В ЯДЕРНЫХ ВЗАИМОДЕЙСТВИЯХ С БОЛЬШИМ PT
ВВЕДЕНИЕ
Современная физика рассматривает два типа придельных процессов : Гаусовские и не-Гауссовские. Соответственно, мы делим исследуемые проблемы на две ветви. Первый класс включает слабо флуктуирующие процессы. Во втором случае рассматриваются сильно флуктуирующие. Такой подход чрезвычайно полезный и обеспечивает большие возможности для точных решений. Это позволяет получать оптимальные математические модели и решать проблемы количественных исследований, как для слабо флуктуирующих монофазных так и для сильно флуктуирующих многофазных систем. Этого достаточно для физического процесса и математической модели, которая может быть получена на его основании.
Последние годы засвидетельствовали достаточно высокую активность в исследовании сильно флуктуирующих не-Гаусовских процессов, как в теоретическом так и в практическом аспектах. Основная особенность подобных реальных объектов - масштабная инвариантность в все уменьшающихся доменах. Поэтому, первая надежда -что масштабная инвариантность или самоподобность могли бы открыть новые направления, в конечном счете ведущие к более глубокому проникновению в свойства изучаемых событий. Имеются два пути изучения сильно флуктуирующих динамических систем. Первый включает анализ поведения решения для набора дифференциально-разностных уравнений. Второй подход состоит в том, чтобы изучить экспериментальное или теоретическое поведение сильно флуктуирующих динамических переменных (или, возможно, некоторая функция ряда динамических переменных) все время уменьшающихся элементов фазового пространства. В этой работе используется второй путь.
Теория факториальных моментов
[pic]
Пусть у нас имеется N событий в которых исследуемая величина (() сильно флуктуирует (Рис.1). Этот процесс может быть описан путем деления соответствующего интервала ( на M (для определенности) интервалов величиной
(=(/M (1)
Пусть p1 ...pM вероятность нахождения частицы в соответствующем интервале. Флуктуация ( описывается вероятностным распределением:
P (p1 ... PM) dp1 ... dpM (2)
Распределение (2) - сложное многомерное распределение, которое трудно изучать непосредственно. Эта проблема может быть решена путем изучения нормированных моментов этого распределения, определенных как: [pic] Где последняя часть уравнения - нормирующий член. Распределение P (p1 ... PM) в (2) - теоретическое. Оно не может быть получено из непосредственных измерений. На эксперименте мы имеем дело с распределением величин n1 ... nM
[pic] (4) Где Q(n1 ... nM) измеряемое распределение и П статистический шум (определяемый с помощью распределения Пуассона) который ”размазывает” P (p1 ...pM) (теоретическое распределение), особенно для малого числа измерений.
“Динамическая” - в противоположность “статистической” - интерпретация флуктуации получила свое применение в методе факториальных моментов, в котором нормированные факториальные моменты теоретического распределения приравниваются к величинам нормированных факториавльных моментов экспериментального распределения .Этот метод предложили A. Bialas и R. Peschansky.
[pic]
Где [pic]
[pic]
(6)
В формуле (6) факториальный момент, показатель q показывает свойства корреляции порядка q для данного распределения. На эксперименте распределение изучается для последовательности доменов фазового пространства ( путем последовательного деления первоначального интервала ( на М равных частей.
(=(/M
Для достижения статистической точности факториальных моментов Fq’ые индивидуальных ячеек определенные в формуле (6) , усреднены по событиям и по М. ячейкам (“ вертикальный анализ ”). Вертикально (по событиям) усредненные моменты могут быть определены как двойное среднее число:
[pic] (7) Где nm (m=1,...,M)- множественность того ,бина и [pic] средняя множественность в бине m. В этой работе мы использовали модифицированный метод вертикального усреднения в котором моменты усреднены по начальным точкам расположения начальной области (.
[pic] (8) где Nstep число малых ( step/( 10 TeV показывает что 7 из них совершенно отличаются от остальных. Поперечные импульсы большинства ( - квантов в этих 7 взаимодействиях были в несколько раз выше чем обычный средний поперечный импульс вторичных ( - квантов, т.е., ~ 0.2 GeV/c. Интегральное распределение поперечных импульсов всех вторичных ( - квантов дано на рис.2. Как видно из рисунка это распределение ясно состоит из двух экспонент:
N(( >PT( ) = A1 exp( PT(/P01 ) + A2 exp( PT( /P02 )
(4)
Для первой ветви ( обычные взаимодействия ) P01 > ~ 0.2 GeV/c. ; для второй ветви, напротив, P02 > 0,8 ГэВ/c. В этих 7 “особых” взаимодействиях большинство надпороговых ( - квантов имеют поперечный импульс PT( ( 0.5 GeV/c. Поэтому, “особые” взаимодействия отличаются от обычных не тем, что имеют один или два ( - кванта с очень большими PT( (что, в принципе также может вести к большим ), но имеют подавляющее большинство ( - квантов со сравнительно большими значениями PT. Рис.2 также показывает, что отличие в характеристиках между этими двумя ветвями так велико, что его невозможно объяснить ошибками в оценке энергии E( или потерей подпороговых ( квантов, или статистическими флуктуациями.
[pic]
Результаты
Поперечные импульсы для обоих взаимодействий (с большим и малым PT) были рассчитаны методом факториальных моментов. Из-за удобства и подобных свойств между поперечным импульсом и псевдоскоростью в вычислениях ,была использована псевдоскорость вместо поперечного импульса. (Первоначальная область была 4.0 и M=40.) В этой работе были применены компьютерные вычисления. Результаты этого представлены в Таблице 1 и в Рисунке 3. Факториальные моменты вычислены для порядка q = от 2 до 8. Результаты этой работы представлены в таблице 1 и рисунке 3.Были вычислены факториальные моменты порядка q от 2 до 8.Из рис.3 и таблицы 1 можно видеть, что для событий с малыми PT, ln Fq растет с ростом -ln (( для всех порядков.Для событий с большими PT не наблюдается сильная (( зависимость в высоких порядках для них наклон гораздо меньше. Все (q значительно больше для групп событий с малыми PT. Сравнение данных о наклонах (q для двух видов взаимодействий представлены на рис.3. Для событий с малыми PT данные согласуются с перемежающимся поведением т.е. со степенным законом (9).
Taбл. 1. Наклоны (q отфитированные в интервале 0.1 ( ln (( ( 1.0 для событий с большим и малым PT
(4.0
============================================ события с малыми PT события с большими PT
_________________________________________________________ q (q
(q
============================================
2 0.100 ( 0.004
0.068 ( 0.005
3 0.260 ( 0.014
0.095 ( 0.010
4 0.310 ( 0.027
0.094 ( 0.016
5 0.51 ( 0.05
0.08 ( 0.02
6 0.66 ( 0.06
0.10 ( 0.03
7 0.77 ( 0.09
0.11 ( 0.04
8 1.29 ( 0.11
0.13 ( 0.06 [pic]
Заключение
Факториальные моменты выявляют динамическую флуктуацию и подавляют статистический шум. Они позволяют нам обнаруживать динамику процесса из экспериментальных измерений. С помощью этого метода мы можем исследовать корреляции высоких порядков (до 8 порядка в настоящей работе). На основе этого подхода мы можем говорить, что имеется сильное указание относительно существования второго класса взаимодействий с большим PT вторичных частиц. В этой проблеме корреляции высоких порядков очень важны. В адрон-адронных столкновениях в настоящее время при коллайдерных энергиях большой вклад в поведение скейлинга обеспечивают Бозе-Эйнштейновские корреляции, но не от обычного статистического источника . Имеется ясное указание на PT зависимость процессов интермиттенси. Данные анализа для всех частиц и для частиц с PT больше или меньше чем 0.3/0.15 ГэВ/c в тех же самых событиях обнаружили сильную чувствительность к поперечному импульсу. Результаты показывают, что наклоны (q увеличиваются от 2 до 4 раз, когда ограничиваются анализом треков с PT Подобный, но меньший эффект наблюдается, если обрезание PT сдвинуть до 0.30 ГэВ/c. Наши результаты для событий с малыми PT соответствуют степенному закону (9). Напротив, для событий с большим PT, выражение (10) выглядит как очень многообещающий кандидат поведения показателей интермиттенси.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат ΚΕΙΜΕΝΟ ΠΑΡΟΥΣΙΑΣΗΣ ΕΘΝΙΚΗΣ ΑΝΤΙΣΤΑΣΗΣ 28. 10. 2008
Реферат Философские взгляды представителей "Милетской" школы
Реферат Разработка программы на языке Borland Object Pascal Ide Borland Delphi
Реферат Young Goodman Brown Essay Research Paper Throughout
Реферат Покушение на Петра Аркадьевича Столыпина
Реферат Региональные инвестиционные соглашения в Северной Америке
Реферат Бухгалтерский учет и его роль в управлении предприятии
Реферат Обеспечение пожарной безопасности производственных объектов 2
Реферат Sexual Harrasment In The Navy Essay Research
Реферат Человек в системе рыночных отношений
Реферат King Lear Stupidity Essay Research Paper There
Реферат Розробка технологічного процесу виготовлення гвинта
Реферат Протестантская этика и дух капитализма
Реферат Финансовое стимулирование привлечения иностранного капитала в национальную экономику Республики
Реферат Лингвистическая концепция Ф. де Соссюра и её развитие