Реферат по предмету "Наука и техника"


Лазерная диагностика

Дифракционные средства лазерной диагностики

Дифракционные явления в оптике в обыденном представлении негативны, как причина ограниченности возможностей оптических систем, в том числе лазерных
метрологических, навигационных и гироскопических приборов. Известны и полезные практические применения классической дифракции света, например, для измерения
размеров отверстий, диаметров нитей и числа их в скрутке, показателей преломления и ряда других. Однако, есть важный аспект этих явлений - дифракционное
обратное рассеяние (ДОР) на локальных неоднородностях в оптическом резонаторе, придающий им особый статус. Высокая чувствительность фазы
результирующей ДОР к смещению выделенной локальной неоднородности (ВЛН) по оси резонатора лазера делает дифракцию средством управления характеристиками
генерации как линейного, так и кольцевого лазера, а также тонким измерительным инструментом в области физических параметров. Укажем, например, возможность
реализации внутрирезонаторного доплеровского измерителя скорости потока на основе ДОР, прямого измерения относительного превышения накачки над порогом и
самих значений потерь резонатора и усиления активной среды [1] и др. В данной работе приведен пример достаточно простого определения на основе ДОР некоторых
физических параметров, измерение которых традиционными способами считается весьма трудоемким, например: коэффициента конвективной теплоотдачи, величины
поляризационного оптического дихроизма поглощения - по термической реакции ВЛН, определяющей ДОР в резонаторе лазера, на поглощаемую ею энергию оптического
излучения.

Запишем поля бегущих встречных волн в резонаторе лазера с частотой генерации w в виде
E2,1(z, t) = E2,1(t)exp{- j(w t ± kz + F2,1(t))}, где E1,2(t), F1,2(t) - медленные вещественные амплитуды и
фазы волн, обозначим F(t)= F1(t) - F2(t) - разность фаз. В линейном лазере Fє Const(t), т.к. встречные волны жестко связаны отражением
на зеркалах, а в кольцевом лазере F(t) зависит от присутствующих в резонаторе локальных неоднородностей (в т.ч. диафрагм), создающих кроме дополнительных
потерь каждой из волн, также линейную связь встречных волн вследствие их обратного рассеяния. Обозначим M, Q - амплитуду и фазу результирующего
(эффективного) комплексного коэффициента связи встречных волн на всех неоднородностях резонатора, создающих обратное рассеяние, m, u - амплитуду и
фазу парциального коэффициента ДОР от одной выделенной локальной неоднородности. Характер зависимости фазы результирующего коэффициента связи Q
от u (фазы ДОР на ВЛН) определяется соотношением амплитуд M, m. При m > Ѕ I1 - I2Ѕ в виде e = e 0 + m - M Cos(F + Q ); I = (c /e )2
- (1 + f2); F(t) = - Q (t) - Б (t); c , e 0 - усиление в активной среде и собственные потери резонатора без диафрагмы за проход, m
- ординарные дифракционные потери, вносимые диафрагмой, f - безразмерная отстройка частоты w от центра линии активной среды, Б(t) - известная функция
времени [2], зависящая от расщепления встречных волн и полосы захвата. В дифракционной картине от ОД - цилиндра радиуса r , в интерференционной
составляющей интенсивности дальней зоны наблюдения в направлении j вне резонатора можно записать разность фаз дифрагированных встречных волн в
геометрооптическом приближении F (t) = 2k [z0(t) - r 21/2 Sin(j /2 - p /2)] - F(t).В линейном лазере (F = Const(t)) модуляция
интенсивности I(t), обусловленная e (t), как и Ф(t) в дифракционной картине, однозначно характеризуют перемещение диафрагмы z0(t) по оси z.

В экспериментах в линейном лазере ОД в виде медной нити радиуса r =30 мкм и
длиной l0=50 мм, перпендикулярной оси z резонатора, имела форму дуги стрелкой вдоль z с высотой сегмента d0 » 2 мм. Проявление
ДОР от ОД состояло в том, что при прерывании потока энергии, освещающего участок ОД, погруженный в лазерный пучок с длиной волны l = 0.63 мкм, в
интенсивности генерации I(t) и в дифракционной картине Ф(t) возникали колебания длиной h макс= (3 - 5) периодов с затухающей частотой.
Детальное исследование проводилось с применением для управления ДОР от ОД внешних лазерных пучков ТМ или ТЕ поляризованных по отношению к нити,
фокусируемых на заданный участок нити, прерываемых заслонкой. Постоянная времени затухания t практически не зависела от обстоятельств опытов, но
асимптотическое значение hмакс существенно зависело от поляризации и интенсивности пучка, освещающего участок нити ОД, отражающих
свойств материала нити, высоты сегмента d0 и была аддитивна при совместном освещении участка нити несколькими пучками с разных сторон. Это
позволило объяснить реакцию ОД на изменение интенсивности изменением фазы ДОР от ОД (играющей роль ВЛН) вследствие перемещения по оси z участка нити,
погруженного в световой пучок, на величину h = 2(D z0)/l , h(t) = h макс
(1 - et/t ) по причине некоторого изменения (D d) стрелки дуги нити ОД при ее термическом удлинении вследствие изменения поглощаемой оптической
мощности. При мощности излучения внешнего источника W » 1.5 мВт максимальная величина hмакс= 5 получена с TE поляризацией света, а с TM вдвое
меньше (это объяснено различием коэффициентов поглощения q). Время релаксации t при такой аппроксимации, усредненное по большому числу экспериментальных
кривых, t = {0.21 ± 0.03] c.

Расчет удлинения нити в виде дуги большого радиуса с закрепленными концами показал,
что приращение стрелки прогиба много больше удлинения нити |D l| g). По
найденному c = (t -1 - g) = 4.22 c-1 определен коэффициент конвективной теплоотдачи k = 1.09Г (Г = 10-2 Вт/см2град,
учет второго члена ряда увеличивает k на » 10%), близкий с известными эмпирическими значениями (1.1 - 1.9)Г для контакта металлического цилиндра с
воздухом. Экспериментально определенное соотношение для TM, TE поляризации падающего поля h макс(TE) / h макс(TM) » 2
непосредственно дает величину поляризационного дихроизма поглощения света объектом, используемым в качестве ОД, измерение которого другими способами
затруднительно [3], а расчет требует строгого учета качества поверхности исследуемого образца. Это показывает перспективность использования ДОР как
инструмента физических и прикладных исследований.

Литература

В.Н.Смирнов, Г.А.Строковский // Сибирский физико-технический журнал - 1992, вып.2, с.121-127.

Э.Е.Фрадкин и др. Волновые и флуктуационные процессы в лазерах.-М.: Наука,1974.- 416с.

А.Б.Катрич // ЖТФ, 1983., вып.3, с.604 - 605.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.