Реферат по предмету "Математика"


Численное интегрирование определённых интегралов

АННОТАЦИЯ
В данной работе будут рассмотрены три метода приближённого интегрирования определённого интеграла: метод прямоугольников, метод трапеций и метод Симпсона. Все эти методы будут подробно выведены с оценкой погрешности каждого из них. Для более полного восприятия материала в работу помещён раздел, в котором подробно расписано решение, всеми тремя методами, определённого интеграла. В материале имеются иллюстрации, с помощью которых, можно более глубоко вникнуть в суть рассматриваемой темы.
СОДЕРЖАНИЕ
Введение…………………………………………………………3
Основная часть………………………………………………....4
-формула прямоугольников………………………………....6
-формула трапеций…………………………………………..8
-формула Симпсона…………………………………………10
Практика……………………………………………………….15
Заключение…………………………………………………….19
Список литературы…………………………………………….20
ВВЕДЕНИЕ
Цель данной курсовой работы – изучение методов приближённого интегрирования. Для некоторых подынтегральных функций [pic] интеграл можно вычислить аналитически или найти в справочниках. Однако в общем случае первообразная [pic] может быть не определена: либо первообразные не выражаются через элементарные функции, либо сами подынтегральные функции не являются элементарными. Это приводит к необходимости разработки приближенных методов вычисления определенных интегралов. Наиболее общеупотребительными приближенными методами вычисления одномерных определенных интегралов являются, так называемые, "классические" методы численного интегрирования: метод прямоугольников, метод трапеций, метод парабол (основанные на суммировании элементарных площадей, на которые разбивается вся площадь под функцией [pic]). Хотя эти методы обычно предпочтительней в случае малых размерностей, они практически не годятся для вычисления многомерных интегралов, для их вычисления используются другие методы, однако в этой работе они рассмотрены не будут.
ОСНОВНАЯ ЧАСТЬ
I.Определение интеграла и его геометрический смысл.
В начале узнаем, что такое определённый интеграл. Возможны два различных подхода к определению определённого интеграла.
ОПРЕДЕЛЕНИЕ 1: приращение F(b)-F(a) любой из преобразованных функций F(x)+c при изменении аргумента от x=a до x=b называют определённым интегралом от a до b функции f и обозначается [pic].
Причём функция F является первообразной для функции f на некотором промежутке D, а числа а и b принадлежат этому промежутку. Это можно записать следующим образом:
[pic] (1) это формула Ньютона-Лейбница.
ОПРЕДЕЛЕНИЕ 2:
[pic]Если при любой последовательности разбиений отрезка [a;b] таких, что ?=max?xi>0 (n>?) и при любом выборе точек[pic] интегральная сумма ?k=[pic]f(?i) ?xi стремится к одному и тому же конечному пределу А, то это число А и есть определённый интеграл, т.е.[pic] limn>? ?k = lim?>0 [pic]f (?i) ?xi=A(2).
Где ?хi=xi-xi-1 (i=1,2,…,n) ?=max?xi – начало разбиения [pic] произвольная точка из отрезка[xi-1;xi]
сумма всех произведений f(?i)?xi(i=1,…,n). Простыми словами, определенный интеграл есть предел интегральной суммы, число членов которой неограниченно возрастает, а каждое слагаемое стремится к нулю.
ГЕОМЕТРИЧЕСКИЙ СМЫСЛ:
[pic]Всякая непрерывная на отрезке [a,b] функция f интегрируема на отрезке [a,b], функция f неотрицательна, но определённый интеграл [pic] численно равен S криволинейной трапеции, ограниченной графиком функции f, осью абсцисс и прямыми x=a и x=b, S=[pic]f(x)dx.
II.Приближённые методы вычисления.
Как мы уже отметили, если функция f непрерывна на промежутке, то на этом промежутке существует функция F такая, что F’=f, то есть существует первообразная для функции f, но не всякая элементарная функция f имеет элементарную первообразную F. Объясним понятие элементарной функции.
Функции: степенная, показательная, тригонометрическая, логарифмическая, обратные тригонометрическим называются основными элементарными функциями. Элементарной функцией называется функция, которая может быть задана с помощью формулы, содержащей лишь конечное число арифметических операций и суперпозиций основных элементарных.
Например следующие интегралы: ?e-xdx; ?[pic]; ?dx/ln|x|; ?(ex/x)dx; ?sinx2dx; ?ln|x|sinxdx существуют, но не выражаются в конечном виде через элементарные функции, то есть относятся к числу интегралов, «не берущихся» в элементарных функциях.
Бывает, что на практике сталкиваются с вычислением интегралов от функций, которые заданы табличными и графическими способами, или интегралы от функций, первообразные которых выражаются через элементарные функции очень сложно, что не удобно, долго и не рационально. В этих случаях вычисление определённого интеграла по формуле Ньютона-Лейбница (1) сводит вычисление определённого интеграла от какой-либо функции к нахождению её первообразной. Значит, если первообразная не элементарна, надо вычислить определённый интеграл как-то по другому, поэтому прибегают к различным методам приближённого интегрирования.
В основе приближённых методов интегрирования лежит геометрический смысл определённого интеграла, который рассмотрен выше.
Формул приближённого интегрирования существует много. В данной курсовой работе будет рассмотрено три метода приближённого интегрирования: метод трапеций, метод прямоугольников и метод Симпсона.
1. Формула прямоугольников
Теперь рассмотрим первый вид приближённого вычисления:
требуется вычислить определённый интеграл: [pic].
Пусть на отрезке [a,b] задана непрерывная функция y=f(x). Разделим отрезок [a,b], аналогично как в формуле трапеций: точками a=x0,x1,x2,…,xn=b на n равных частей длины ?х, где ?х=(b-a)/n.
[pic]Обозначим через y0,y1,y2,…,yn-1,yn значение функции f(x) в точках x0, x1, x2…,xn, то есть, если записать в наглядной формуле:
Y0=f(x0), y1=f(x1), y2=f(x2)…yn,=f(xn).
В данном способе подынтегральную функцию заменяем функцией, которая имеет ступенчатый вид (на рис. выделена). Составим суммы: y0?x+ y1?x1+ y2?x2…+yn-1?x; Y1?x+ y2?x+…+yn?x
Каждое слагаемое этих сумм выражает площадь, полученных прямоугольников с основанием ?х, которое является шириной прямоугольника, и длиной выраженной через yi: Sпр=a*b=yi?x.
Каждая из этих сумм является интегральной суммой для f(x) на отрезке [a,b], и равна площади ступенчатых фигур, а значит приближённо выражает интеграл. Вынесем ?x=(b-a)/n из каждой суммы, получим:
[pic]f(x)dx??x(y0+y1+…+yn-1);
[pic]f(x)dx??x(y1+y2+…+yn). Выразив x, получим окончательно:
[pic]f(x)dx?((b-a)/n)(y0+y1+…+yn-1);(3)
[pic]f(x)dx?((b-a)/n)(y1+y2+…+yn);(3*)
Это и есть формулы прямоугольников. Их две, так как можно использовать два способа замены подынтегральной функции. Если f(x)- положительная и возрастающая функция, то формула (3) выражает S фигуры, расположенной под графиком, составленной из входящих прямоугольников, а формула (3*)- площадь ступенчатой фигуры, расположенной под графиком функции составленной из выходящих треугольников. Ошибка, совершаемая при вычислении интегралов по формуле прямоугольников, будет тем меньше, чем больше число n (то есть чем меньше шаг деления)[pic]. Для вычисления погрешности этого метода используется формула: Pnp=[pic], где [pic] Результат полученный по формуле (3) заведомо даёт большую площадь прямоугольника, так же по формуле (3*) даёт заведомо меньшую площадь, для получения среднего результата используется формула средних прямоугольников:[pic] (3**)
2.Формула трапеций.
Возьмём определённый интеграл ?f(x)dx, где f(x)- непрерывная подынтегральная функция, которую мы для наглядности будем предполагать положительной. При вычислении интеграла с помощью формулы трапеций подынтегральная функция f заменяется функцией, график которой представляет собой ломанную линию (на рисунке 2 красным цветом), звенья которой соединяют концы ординат yi-1 и yi (i=1,2,…,n).[pic]Тогда площадь криволинейной трапеции, ограниченной линиями x=a, x=b, y=0, y=f(x), а значит (следуя из геометрического смысла), и значение нужного нам интеграла, приблизительно равна сумме площадей обычных трапеций с основаниями yi-1 и yi и высотой h=(b-a)/n, так как (если более привычно выражать для нас) h это ?x,a ?x=(b-a)/n при делении отрезка на n равных отрезков при помощи точек x0=a


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Особенности создания математических формул в Web
Реферат Малибран, Мария
Реферат An Exemplum Essay Research Paper The Immigrant
Реферат Совершенствование деятельности промышленного предприятия по управлению производственными запасами на принципах логистики на примере ОАО "ЭКО"
Реферат Автоматизация квазидинамического расчёта напряженно-деформированного состояния газового стыка дизельного двигателя
Реферат Mark Essay Research Paper Mark is most
Реферат Толстой Китайскому народу от христианина
Реферат XXX Essay Research Paper XXXAmerica today
Реферат Федерация независимых профсоюзов России организационное строение, этапы становления
Реферат Let The Circle Be Unbroken Essay Research
Реферат Russia Between 8001584 Essay Research Paper The
Реферат Методика проведения урока с ортобиотическими компонентами
Реферат Violence In Sports Essay Research Paper Sports
Реферат An Ocean An Iowa Essay Research Paper
Реферат Научное объяснение его структура и основные разновидности Предсказание