Строгое притяжение к нормальному закону для
стационарных последовательностей с равномерно сильным перемешиванием
С.А. Клоков, Омский государственный университет,
кафедра математического анализа
1. Введение. Обозначения. Постановка задачи
Пусть
- стационарная (в узком смысле)
последовательность случайных величин (с.в.), , - -алгебры,
порожденные семействами , . Говорят, что
удовлетворяет
условию равномерно сильного перемешивания (РСП), если коэффициент перемешивания
стремится
к нулю при .
Как
обычно, через обозначим
дисперсию суммы , а через - нормальную с.в. с нулевым математическим
ожиданием и единичной дисперсией. Символы и обозначают
сходимость по распределению и равенство распределений с.в., ·
- норму в L2, 1(A) - индикатор множества A. Через обозначим
срезку , через - дисперсию суммы . Вместе с
последовательностью будет
рассматриваться последовательность таких с.в.,
что и независимы. В
случае, если функции f и g связаны соотношением , где const -
абсолютная константа, будем писать , а если и , то .
Будем
считать известными определения правильно меняющихся и медленно меняющихся
функций (см., например, [5]).
Говорят,
что последовательность с.в. притягивается
к нормальному закону, если при некотором выборе нормирующих констант An и имеет место
соотношение , . В случае,
если с.в. имеют конечные
вторые моменты, дисперсия суммы и говорят, что к
последовательности применима центральная предельная теорема (ЦПТ).
Первые
предельные теоремы для слабо зависимых величин были доказаны И.А. Ибрагимовым в
начале 60-х годов. Условие РСП дает возможность доказывать результаты о
сходимости к нормальному закону без каких-либо предположений о скорости
перемешивания (стремления к нулю). В
этом случае будем говорить, что справедливо строгое притяжение к нормальному
закону. В [?] доказана
Теорема
1. Пусть - стационарная последовательность с.в.,
удовлетворяющая условию РСП, , для некоторого
и . Тогда к
последовательности применима ЦПТ.
Для
последовательности независимых одинаково распределенных с.в. ЦПТ справедлива,
если потребовать существование лишь вторых моментов. Исходя из этого, в [1]
высказана
Гипотеза
(Ибрагимов, 1965).
Пусть
- стационарная последовательность с.в.,
удовлетворяющая условию РСП, и . Тогда к
последовательности применима ЦПТ.
Пусть
- последовательность независимых одинаково
распределенных с.в., не имеющих вторых моментов. Тогда распределение принадлежит
области притяжения нормального закона тогда и только тогда, когда функция является ММФ.
Иосифеску сформулировал следующее предположение.
Гипотеза (Ибрагимов-Иосифеску).
Пусть
- стационарная последовательность с.в.,
удовлетворяющая условию РСП с , и H(x) - ММФ.
Тогда притягивается
к нормальному закону.
Гипотезы
Ибрагимова и Ибрагимова-Иосифеску не доказаны и не опровергнуты до сих пор.
Хорошо
известны два достаточных условия для медленного изменения H(x): существование
конечного второго момента () и правильное
изменение хвоста распределения одного слагаемого ( - ПМФ порядка
-2). В работе [4] доказана
Теорема
2. Пусть - стационарная последовательность с.в.,
удовлетворяющая условию РСП, причем . Пусть , выполнено
соотношение
(1)
где
h(x) - ММФ. Тогда притягивается
к нормальному закону.
В
настоящей работе показано, что теорема 2 остается справедливой, если на функцию
h(x) из (1) наложить более слабое ограничение, чем медленное изменение. В
монографии Е.Сенеты предложено обобщение понятия ММФ. Функция h(x) называется
SO-меняющейся [3], если существуют такие положительные постоянные C1 и C2, что
для всех выполнено
(2)
Очевидно,
что ММФ h(x) удовлетворяет (2), но не наоборот. Примерами SO-меняющихся функций
могут служить любые функции, отделенные от нуля и от бесконечности. Таким
образом, введенное расширение класса ММФ является нетривиальным.
Основным
результатом работы является обобщение теоремы 2:
Теорема
3. Пусть - стационарная последовательность с.в.,
удовлетворяющая условию РСП, и выполнено
соотношение
(3)
где
h(x) - SO-меняющаяся функция. Тогда притягивается
к нормальному закону.
Обобщение
результата M. Пелиграда стало возможным благодаря уточнению доказательства
теоремы 2, данного в работе [4].
2.
Вспомогательные результаты
Из
(2) очевидным образом следует
Лемма
1. Пусть h(x) - SO-меняющаяся функция. Тогда для любого
фиксированного и для любой
функции достаточно
медленно.
Определим
последовательность соотношением .
Лемма
2. Пусть выполнено (3). Тогда
а)
для любого x0
или достаточно
медленно;
б)
если целое число k фиксировано или целочисленная последовательность достаточно
медленно, то .
Доказательство.
Из определения an легко выводится, что
(4)
Из
(4) и леммы 1 следует, что
(5)
Пункт
а) доказан. Теперь докажем б). Пусть D0 - некоторая
константа. Из (4) и леммы 1, аналогично (5), выводим для любого фиксированного
k или достаточно
медленно, что
.
Выбором
достаточно большой константы можно
добиться, что , откуда
следует, что . Выбирая
достаточно малую константу D = D2, получим, что . Таким
образом, .
Лемма
3. Пусть - схема серий
с.в. с конечными вторыми моментами, в каждой серии с.в. образуют
стационарную последовательность, удовлетворяющую условию РСП с одним и тем же
коэффициентом перемешивания причем . Пусть Tn,j ,. Тогда
(6)
Доказательство.
Первое неравенство в (6) доказано в предложении 3.3 из [4], а второе выведено в
[3, лемма3.3].
Лемма
4. Для любого фиксированного k или достаточно
медленно выполнено соотношение .
Доказательство.
Схема доказательства приведена в [?, теорема 18.2.3].
Лемма
5. Пусть k = k(n) - целочисленная последовательность, достаточно медленно
стремящаяся к бесконечности, и имеет место (3). Тогда
(7)
где
при .
Доказательство.
Для проведения оценки (7) используются идеи M. Пелиграда, предложенные в [4]. В
силу пункта б) леммы 2 существует такая константа C0,
что . Пусть - такая
числовая последовательность, что и zn =
o(Ck1/2). Тогда, имея в виду пункт а) леммы 2, легко видеть, что для
(8)
Из
(8) выводим
где
0 - некоторая константа. Пользуясь пунктом а)
леммы 2, нетрудно вычислить, что при .
3
Доказательство основного результата
В
работе А.Г. Гриня [?] введено понятие универсальной нормирующей
последовательности (УНП) . Там же
доказана
4.
Пусть - стационарная
последовательность, удовлетворяющая условию РСП. Для того чтобы притягивалась
к нормальному закону, достаточно, а если , и
необходимо, чтобы при любом . Пусть k =
k(n) - целочисленная последовательность, стремящаяся к бесконечности столь
медленно, что одновременно справедливы леммы 2, 4, 5. Тогда, имея в виду еще и
лемму 3, получаем
(9)
Вместе
с определением УНП (9) означает, что и an2 =
o(bn2). Пусть последовательность q = q(n) стремится к бесконечности столь
медленно, что an2 = o(q-1bn2). Пользуясь пунктом а) леммы 2, имеем для любого
при
. Согласно
теореме 4, последовательность притягивается
к нормальному закону. Теорема доказана.
Список литературы
Ибрагимов
И.А., Линник Ю.В. Независимые и стационарно связанные величины. М.: Наука,
1965. 524 с.
Гринь
А.Г. Об областях притяжения для сумм зависимых величин // Теория вероятн. и ее
применен. 1990. Т. 35. N2. С. 255-270.
Peligrad M. An invariance principle
for -mixing sequences. - Ann. Probab.
1985. V. 13. N4. Р.
1304-1313.
Peligrad M. On Ibragimov-Iosifescu
conjecture for -mixing sequences // Stochastic
Processes and their Applications. 1990. V. 35. P. 293-308.
Сенета
Е. Правильно меняющиеся функции. М.: Наука, 1985. 142 с.
Для
подготовки данной работы были использованы материалы с сайта http://www.omsu.omskreg.ru/