Наука о клетках - структурных и функциональных единицах почти всех живых организмов. В многоклеточном организме все сложные проявления жизни возникают в результате координированной активности составляющих его клеток. Задача цитолога - установить, как построена живая клетка и как она выполняет свои нормальные функции. Изучением клеток занимаются также патоморфологи, но их интересуют изменения, происходящие в клетках во время болезни или после смерти. Несмотря на то что учеными давно уже было накоплено немало данных о развитии и строении животных и растений, только в 1839 были сформулированы основные концепции клеточной теории и началось развитие современной цитологии.
Клетки - это самые мелкие единицы живого, о чем наглядно свидетельствует способность тканей распадаться на клетки, которые затем могут продолжать жить в "тканевой" или клеточной культуре и размножаться подобно крошечным организмам. Согласно клеточной теории, все организмы состоят из одной или многих клеток. Из этого правила есть несколько исключений. Например, в теле слизевиков (миксомицетов) и некоторых очень мелких плоских червей клетки не отделены друг от друга, а образуют более или менее слитную структуру - т. н. синцитий. Однако можно считать, что такое строение возникло вторично в результате разрушения участков клеточных мембран, имевшихся у эволюционных предков этих организмов. Многие грибы растут, образуя длинные нитевидные трубки, или гифы. Эти гифы, часто разделенные перегородками - септами - на сегменты, тоже можно рассматривать как своеобразные вытянутые клетки. Из одной клетки состоят тела протистов и бактерий.
Между бактериальными клетками и клетками всех других организмов существует одно важное различие: ядра и органеллы ("маленькие органы") бактериальных клеток не окружены мембранами, и поэтому эти клетки называют прокариотическими ("доядерными"); все другие клетки называют эукариотическими (с "настоящими ядрами"): их ядра и органеллы заключены в мембраны. В этой статье рассматриваются только эукариотические клетки. См. также
КЛЕТКА.
Открытие клетки.
Изучение мельчайших структур живых организмов стало возможным лишь после изобретения микроскопа, т.е. после 1600. Первое описание и изображения клеток дал в 1665 английский ботаник Р. Гук: рассматривая тонкие срезы высушенной пробки, он обнаружил, что они "состоят из множества коробочек". Каждую из этих коробочек Гук назвал клеткой ("камерой"). Итальянский исследователь М. Мальпиги (1674), голландский ученый А. ван Лёвенгук, а также англичанин Н. Грю (1682) вскоре привели множество данных, демонстрирующих клеточное строение растений. Однако ни один из этих наблюдателей не понял, что действительно важным веществом был наполнявший клетки студенистый материал (впоследствии названный протоплазмой), а казавшиеся им столь важными "клетки" были просто безжизненными целлюлозными коробочками, в которых содержалось это вещество. До середины 19 в. в трудах ряда ученых уже просматривались зачатки некой "клеточной теории" как общего структурного принципа. В 1831 Р. Броун установил существование в клетке ядра, но не сумел оценить всю важность своего открытия. Вскоре после открытия Броуна несколько ученых убедились в том, что ядро погружено в полужидкую протоплазму, заполняющую клетку. Первоначально основной единицей биологической структуры считали волокно. Однако уже в начале 19 в. почти все стали признавать непременным элементом растительных и животных тканей структуру, которую называли пузырьком, глобулой или клеткой.
Создание клеточной теории.
Количество прямых сведений о клетке и ее содержимом чрезвычайно возросло после 1830, когда появились усовершенствованные микроскопы. Затем в 1838-1839 произошло то, что называют "завершающим мазком мастера". Ботаник М. Шлейден и анатом Т. Шванн практически одновременно выдвинули идею клеточного строения. Шванн предложил термин "клеточная теория" и представил эту теорию научному сообществу. Согласно клеточной теории, все растения и животные состоят из сходных единиц - клеток, каждая из которых обладает всеми свойствами живого. Эта теория стала краеугольным камнем всего современного биологического мышления.
Открытие протоплазмы.
Сначала незаслуженно большое внимание уделяли стенкам клетки. Однако еще Ф. Дюжарден (1835) описал живой студень у одноклеточных организмов и червей, назвав его "саркодой" (т.е. "похожим на мясо"). Эта вязкая субстанция была, по его мнению, наделена всеми свойствами живого. Шлейден тоже обнаружил в растительных клетках мелкозернистое вещество и назвал его "растительной слизью" (1838). Спустя 8 лет Г. фон Моль воспользовался термином "протоплазма" (примененным в 1840 Я. Пуркинье для обозначения субстанции, из которой формируются зародыши животных на ранних стадиях развития) и заменил им термин "растительная слизь". В 1861 М. Шультце обнаружил, что саркода содержится также в тканях высших животных и что это вещество идентично как структурно, так и функционально т. н. протоплазме растений. Для этой "физической основы жизни", как определил ее впоследствии Т. Гексли, был принят общий термин "протоплазма". Концепция протоплазмы в свое время сыграла важную роль; однако уже давно стало ясно, что протоплазма не однородна ни по своему химическому составу, ни по структуре, и этот термин постепенно вышел из употребления. В настоящее время главными компонентами клетки обычно считают ядро, цитоплазму и клеточные органеллы. Сочетание цитоплазмы и органелл практически соответствует тому, что имели в виду первые цитологи, говоря о протоплазме.
Основные свойства живых клеток.
Изучение живых клеток пролило свет на их жизненно важные функции. Было установлено, что последние можно разбить на четыре категории: подвижность, раздражимость, метаболизм и размножение.
Подвижность проявляется в различных формах:
1) внутриклеточная циркуляция содержимого клетки;
2) перетекание, обеспечивающее перемещение клеток (например, клеток крови);
3) биение крошечных протоплазматических выростов - ресничек и жгутиков;
4) сократимость, наиболее развитая у мышечных клеток.
Раздражимость выражается в способности клеток воспринимать стимул и реагировать на него импульсом, или волной возбуждения. Эта активность выражена в наивысшей степени у нервных клеток.
Метаболизм включает все превращения вещества и энергии, протекающие в клетках.
Размножение обеспечивается способностью клетки к делению и образованию дочерних клеток. Именно способность воспроизводить самих себя и позволяет считать клетки мельчайшими единицами живого. Однако многие высокодифференцированные клетки эту способность утратили.
В конце 19 в. главное внимание цитологов было направлено на подробное изучение строения клеток, процесса их деления и выяснение их роли как важнейших единиц, обеспечивающих физическую основу наследственности и процесса развития.
Развитие новых методов.
Вначале при изучении деталей строения клеток приходилось полагаться главным образом на визуальное исследование мертвого, а не живого материала. Необходимы были методы, которые позволяли бы сохранять протоплазму, не повреждая ее, изготавливать достаточно тонкие срезы ткани, проходящие и через клеточные компоненты, а также окрашивать срезы, чтобы выявлять детали клеточного строения. Такие методы создавались и совершенствовались в течение всей второй половины 19 в. Совершенствовался и сам микроскоп. К числу важных достижений в его устройстве следует отнести: осветитель, расположенный под столиком, для фокусировки пучка света; апохроматический объектив для корректировки недостатков окрашивания, искажающих изображение; иммерсионный объектив, дающий более четкое изображение и увеличение в 1000 раз и более.
Было также обнаружено, что основные красители, например гематоксилин, обладают сродством к содержимому ядра, а кислотные красители, например эозин, окрашивают цитоплазму; это наблюдение послужило основой для создания разнообразных методов контрастного или дифференциального окрашивания. Благодаря этим методам и усовершенствованным микроскопам постепенно накапливались важнейшие сведения о строении клетки, ее специализированных "органах" и различных неживых включениях, которые клетка либо сама синтезирует, либо поглощает извне и накапливает.
Закон генетической непрерывности.
Фундаментальное значение для дальнейшего развития клеточной теории имела концепция генетической непрерывности клеток. В свое время Шлейден считал, что клетки образуются в результате своего рода кристаллизации из клеточной жидкости, а Шванн в этом ошибочном направлении пошел еще дальше: по его мнению, клетки возникали из некой "бластемной" жидкости, находящейся вне клеток.
Сначала ботаники, а затем и зоологи (после того как разъяснились противоречия в данных, полученных при изучении некоторых патологических процессов) признали, что клетки возникают только в результате деления уже существующих клеток. В 1858 Р. Вирхов сформулировал закон генетической непрерывности в афоризме "Omnis cellula e cellula" ("Каждая клетка из клетки"). Когда была установлена роль ядра в клеточном делении, В. Флемминг (1882) перефразировал этот афоризм, провозгласив: "Omnis nucleus e nucleo" ("Каждое ядро из ядра"). Одним из первых важных открытий в изучении ядра было обнаружение в нем интенсивно окрашивающихся нитей, названных хроматином. Последующие исследования показали, что при делении клетки эти нити собираются в дискретные тельца - хромосомы, что число хромосом постоянно для каждого вида, а в процессе клеточного деления, или митоза, каждая хромосома расщепляется на две, так что каждая клетка получает типичное для данного вида число хромосом. Следовательно, афоризм Вирхова можно распространить и на хромосомы (носители наследственных признаков), поскольку каждая из них происходит от предсуществующей.
В 1865 было установлено, что мужская половая клетка (сперматозоид, или спермий) представляет собой полноценную, хотя и высокоспециализированную клетку, а спустя 10 лет О. Гертвиг проследил путь сперматозоида в процессе оплодотворения яйцеклетки. И наконец, в 1884 Э. ван Бенеден показал, что в процессе образования как сперматозоида, так и яйцеклетки происходит модифицированное клеточное деление (мейоз), в результате которого они получают по одному набору хромосом вместо двух. Таким образом, каждый зрелый сперматозоид и каждая зрелая яйцеклетка содержат лишь половинное число хромосом по сравнению с остальными клетками данного организма, и при оплодотворении происходит просто восстановление нормального числа хромосом. В итоге оплодотворенная яйцеклетка содержит по одному набору хромосом от каждого из родителей, что является основой для наследования признаков и по отцовской, и по материнской линии. Кроме того, оплодотворение стимулирует начало дробления яйцеклетки и развитие нового индивида.
Представление о том, что хромосомы сохраняют свою идентичность и поддерживают генетическую непрерывность от одного поколения клеток к другому, окончательно сформировалось в 1885 (Рабль). Вскоре было установлено, что хромосомы качественно отличаются друг от друга по своему влиянию на развитие (Т. Бовери, 1888). Начали появляться также экспериментальные данные в пользу высказанной ранее гипотезы В. Ру (1883), согласно которой даже отдельные части хромосом влияют на развитие, структуру и функционирование организма.
Таким образом, еще до конца 19 в. было сделано два важных заключения. Одно состояло в том, что наследственность есть результат генетической непрерывности клеток, обеспечиваемой клеточным делением. Другое - что существует механизм передачи наследственных признаков, который находится в ядре, а точнее - в хромосомах. Было установлено, что благодаря строгому продольному расщеплению хромосом дочерние клетки получают совершенно такую же (как качественно, так и количественно) генетическую конституцию, как исходная клетка, от которой они произошли.
Законы наследственности.
Второй этап в развитии цитологии как науки охватывает 1900-1935. Он наступил после того, как в 1900 были вторично открыты основные законы наследственности, сформулированные Г. Менделем в 1865, но не привлекшие к себе внимания и надолго преданные забвению. Цитологи, хотя и продолжали заниматься изучением физиологии клетки и такими ее органеллами, как центросома, митохондрии и аппарат Гольджи, основное внимание сосредоточили на строении хромосом и их поведении. Проводившиеся в это же время эксперименты по скрещиванию быстро увеличивали объем знаний о способах наследования, что привело к становлению современной генетики как науки. В результате возник "гибридный" раздел генетики - цитогенетика.
Новые методы, особенно электронная микроскопия, применение радиоактивных изотопов и высокоскоростного центрифугирования, появившиеся после 1940-х годов, позволили достичь огромных успехов в изучении строения клетки. В разработке единой концепции физико-химических аспектов жизни цитология все больше сближается с другими биологическими дисциплинами. При этом ее классические методы, основанные на фиксации, окрашивании и изучении клеток под микроскопом, по-прежнему сохраняют практическое значение.
Цитологические методы используются, в частности, в селекции растений для определения хромосомного состава растительных клеток. Такие исследования оказывают большую помощь в планировании экспериментальных скрещиваний и оценке полученных результатов. Аналогичный цитологический анализ проводится и на клетках человека: он позволяет выявить некоторые наследственные заболевания, связанные с изменением числа и формы хромосом. Такой анализ в сочетании с биохимическими тестами используют, например, при амниоцентезе для диагностики наследственных дефектов плода.
Большинство живых организмов состоят из клеток, обладающих всеми свойствами живых организмов: обменом веществ и энергии, ростом, размножением и передачей по наследству своих признаков. В многоклеточном организме клетка является структурной, функциональной и генетической единицей организма. Клетки открыты в 1665 г. английским физиком Робертом Гуком. В 1677 г. голландский ученый А. Левенгук с помощью созданного им микроскопа обнаружил одноклеточные организмы, эритроциты, сперматозоиды и провел много других интересных наблюдений. Чешский ученый Я.Е. Пуркинье в 1830 г. обнаружил в клетках протоплазму. Р. Броун в 1833 г. открыл клеточное ядро. В 1839 г. немецкие ученые Теодор Шванн и Маттиас Шлейден, обобщив данные о строении растительных и животных клеток, сформулировали основные положения клеточной теории.
Клетки организма человека разнообразны по величине (от нескольких нм до 150 нм) и по форме (шаровидные, веретенообразные, плоские, кубические призматические, цилиндрические, звездчатые и отростчатые).
Клетка состоит из ядра, цитоплазмы, клеточной мембраны и органоидов, выполняющих жизненно важные функции. Различают мембранные (митохондрии, эндоплазматическая сеть, пластинчатый комплекс, лизосомы) и немембранные органоиды (рибосомы, полисомы, центриоли).
Клетки, обладающие сходным строением, функцией и объединенные единством происхождения, вместе с межклеточным веществом образуют ткань. Межклеточное вещество представляет сложную систему, состоящую из основного бесструктурного (аморфного) вещества, в котором располагаются волокна с различным функциональным назначением (коллагеновые, эластические, ретикулиновые). Межклеточное вещество заполняет промежутки между клетками. Связь клеточных элементов с межклеточным веществом различно: одни клетки находятся с ним в очень тесной связи, другие клетки никакой морфологической связи с ним не имеют. Каждая ткань развивается из определенных эмбриональных зачатков, что обусловливает особенности ее структуры и функции. Различают четыре типа ткани: эпителиальную, соединительную, мышечную и нервную.
Сходство в строении клеток эукариот. Сейчас нельзя с полной уверенностью сказать, когда и как возникла на Земле жизнь. Мы также точно не знаем, как питались первые живые существа на Земле: ав-тотрофно или гетеротрофно. Но в настоящее время на нашей планете мирно сосуществуют представители нескольких царств живых существ. Несмотря на большое различие в строении и образе жизни, очевидно, что между ними сходств больше, чем различий, и все они, вероятно, имеют общих предков, живших в далекой архейской эре. О наличии общих "дедушек" и "бабушек" свидетельствует целый ряд общих признаков у клеток эукариот: простейших, растений, грибов и животных. К этим признакам можно отнести:
общий план строения клетки: наличие топлазмы, ядра, органоидов;
принципиальное сходство процессов в клетке;
кодирование наследственной информиновых кислот;
единство химического состава клеток;
сходные процессы деления клеток. Различия в строении клеток растений эволюции. Сравним строение и жизнь растений и животных.
Главное отличие между клетками этих двух царств заключается в способе их питания. Клетки растений, содержащие хлоропласты, являются автотрофами, т.е. сами синтезируют необходимые для жизнедеятельности органические вещества за счет энергии света в процессе фотосинтеза. Клетки животных - гетеротрофы, т.е. источником углерода для синтеза собственных органических веществ для них являются органические вещества, поступающие с пищей. Эти же пищевые вещества, например углеводы, служат для животных источником энергии. Есть и исключения, такие как зеленые жгутиконосцы, которые на свету способны к фотосинтезу, а в темноте питаются готовыми органическими веществами. Для обеспечения фотосинтеза в клетках растений содержатся пластиды, несущие хлорофилл и другие пигменты.
Так как растительная клетка имеет клеточную стенку, защищающую ее содержимое и обеспечивающую постоянную ее форму, то при делении между дочерними клетками образуется перегородка, а животная клетка, не имеющая такой стенки, делится с образованием перетяжки.
Особенности клеток грибов. Еще совсем недавно грибы относили к растениям, однако сейчас эта весьма своеобразная и большая по числу видов группа живых существ выделена в отдельное царство. Грибы, так же как и животные, - гетеротрофы, питаются готовыми органическими соединениями. Они могут быть сапротрофами, т.е. питаться органикой мертвых существ, паразитами, т.е. питаться живой органикой, или симбионтами высших растений, находясь с ними во взаимовыгодной связи. Пластид и хлорофилла клетки грибов не содержат. Среди грибов существуют и "хищники", образующие в почве клейкие петли, в которых запутываются мелкие круглые черви. После этого клетки грибницы проникают в пойманного червя, разрастаются в нем и высасывают его содержимое. У клеток грибов, как и у растений, есть клеточная стенка поверх плазматической мембраны. Часто в состав клеточной стенки у грибов входит хитин - вещество, образующее наружные покровы у членистоногих. Запасным питательным веществом в клетках грибов является углевод гликоген, как у животных, а не крахмал, как у растений. Тело гриба образовано нитевидными структурами в один ряд клеток - гифами. У некоторых грибов перегородки между клетками утрачиваются, и возникает грибница, состоящая из одной гигантской многоядерной клетки. Грибы не способны к активному движению, зато они могут расти неограниченно - это признаки, которые объединяют грибы с растениями.
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |
Реферат | Битва при Мюльберге |
Реферат | Мышление человека |
Реферат | Изделие и его элементы |
Реферат | Анализ деятельности, выявление проблем и перспектив развития муниципального музейно-выставочного центра г. Зеленогорска |
Реферат | Тренк, Франц фон дер |
Реферат | Китайцы в США |
Реферат | Капитан из Кёпеника |
Реферат | Беларусь в межвоенный период |
Реферат | Венгерская жужелица |
Реферат | Антропов, Алексей Петрович |
Реферат | Смоленская крепостная стена |
Реферат | История метеорологических наблюдений |
Реферат | Мария Терезия |
Реферат | Учет реализации и инвентаризация основных средств |
Реферат | Бой 12 декабря 1781 |