- 10 -
ОСНОВНЫЕ ПОНЯТИЯ И РАСЧЕТНЫЕ ФОРМУЛЫ
Математическая модель системы в переменных пространства состояний имеет вид
, (2.1.1)
(2.1.2)
где мерный вектор параметров состояний; мерный вектор управляющих воздействий; мерный вектор возмущающих воздействий; l- мерный вектор выходов; А - матрица состояний системы размерности ; В - матрица управлений размерности ; Г - матрица возмущений размерности ; С - матрица выходов размерности ln; D - матрица компенсаций (обходов) размерности lm.
Решение векторного дифференциального уравнения (2.1.1) имеет следующий вид:
, (2.1.3)
где - экспоненциал матрицы А.
Подставляя выражение (2.1.3) в формулу (2.1.2), получаем интегральное уравнение движения системы в переменных «вход - выход».
Рассмотрение движения системы в переменных пространства состояний связано с трудностью решения дифференциальных уравнений n-го порядка, описывающих движение системы в переменных «вход - выход», и с хорошо разработанными методами решения систем дифференциальных уравнений первого порядка.
2.2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
ОСНОВНЫЕ ПОНЯТИЯ И РАСЧЕТНЫЕ ФОРМУЛЫ
Устойчивость или неустойчивость линейной многомерной системы (2.1.1) определяется ее свободным движением ( ), которое характеризуется собственными числами матрицы А, определяемыми из характеристического уравнения
(3.1.1)
Линейная система (2.1.1) устойчива тогда и только тогда, когда все вещественные части собственных (характеристических) чисел лj=лj(A) (j=1,…,n) имеют неположительные значения, т.е. Reлj. Если Reлj<0, то система асимптотически устойчива.
Характеристическое уравнение (3.1.1) можно записать в виде
???n????n-1??????n?????n??0. (3.1.2)
Условия устойчивости для системы n-го порядка записываются в виде определителей Гурвица, получаемых из квадратной матрицы коэффициентов характеристического уравнения (3.1.2).
.
Для устойчивости линейной системы по критерию Гурвица необходимо и достаточно, чтобы при б0>0 были положительными и все n диагональных определителей Гурвица, то есть ДI>0 (i=l,...,n). Положительность последнего определителя Гурвица
Дn=бnДn-1 (3.1.3)
при Дn-1>0 сводится к положительности свободного члена бn характеристического уравнения.
3.2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
ОСНОВНЫЕ ПОНЯТИЯ И РАСЧЕТНЫЕ ФОРМУЛЫ
Управляемость системы (2.1.1), (2.1.2) по состояниям определяется теоремой (критерием) Калмана: система будет управляемой тогда и только тогда, когда ранг матрицы управляемости Lc размерности равен n, то есть
rankn, (4.1.1)
где
. (4.1.2)
Если rank<n, то система будет частично управляемой, а при rank=0 - полностью неуправляемой.
Управляемость системы (2.1.1), (2.1.2) по выходам (критерий Калмана): система будет управляемой тогда и только тогда, когда ранг матрицы управляемости размерности равен l то есть
rank=l, (4.1.3)
где
. (4.1.4)
Если rank<l, то система будет частично управляемой по выходам, а при rank=0 - полностью неуправляемой.
Показатель степени n в выражениях (4.1.2), (4.1.4) соответствует размерности вектора состояний.
4.2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
5.1. ОСНОВНЫЕ ПОНЯТИЯ И РАСЧЕТНЫЕ ФОРМУЛЫ
Наблюдаемость системы (2.1.1), (2.1.2) определяется теоремой (критерием) Калмана: система будет вполне наблюдаемой тогда и только тогда, когда ранг матрицы наблюдаемости L0 размерности равен n, то есть
rankn, (5.1.1)
где
. (5.1.2)
Если rank<n, то система будет не вполне наблюдаемой, а при rank=0 - полностью ненаблюдаемой.
5.2. ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |