2
Содержание
Введение
Слово "экология" образовано то греческого "oikos", что означает дом (жилище, местообитание, убежище), и "logos" - наука. В буквальном смысле экология - это наука об организмах "у себя дома". Наука, в которой особое внимание уделяется "совокупности или характеру связей между организмами и окружающей средой". В настоящее время исследователи считают, что экология - это наука, изучающая отношения живых организмов между собой и окружающей средой, или наука, изучающая условия существования живых организмов, взаимосвязи между средой, в которой они обитают.
Впервые определение экосистемы как совокупности живых организмов с их местообитанием было дано Тэнсли в 1935 году. При экосистемном подходе к изучению экологии в центре внимания ученых оказываются поток энергии и круговорот веществ между биотическим и абиотическим компонентом экосферы. Экосистемный подход выдвигает на первый план общность организации всех сообществ, независимо от местообитания и систематического положения входящих в них организмов. Вместе с тем в экосистемном подходе находит приложение концепция гомеостаза (саморегуляции), из которой становится понятным, что нарушение регуляторных механизмов, например в результате загрязнения среды, может привести к биологическому дисбалансу. Экосистемный подход важен также при разработке в будущем научно обоснованной практики ведения сельского хозяйства, а также в других сферах общества.
Цель работы рассмотрение структуры общей экологии.
Основными задачами, которые решались в ходе работы являются:
1. Рассмотрение предмета экологии
2. Общей структуры экологии и ее функций
Сущность общей экологии. Основные понятия
Термин экология (экос - дом, логос - учение, гр) в науку ввел немецкий биолог Эрнест Геккель (рис.1.1). В 1866 году в работе "Всеобщая морфология организмов" он писал: “... суммы знаний, относящихся к экономике природы: изучению всей совокупности взаимоотношений животного с окружающей его средой, как органической, так и неорганической, и, прежде всего - его дружественных или враждебных отношений с теми животными и растениями, с которыми он прямо или косвенно вступает в контакт".
Это определение удерживает экологию в рамках биологических наук. В последующем, содержание понятия экологии многократно расширялось. Под ней стали понимать науку, изучающую среду обитания всех живых существ, включая человека. Казалось бы, уместно ограничить содержание экологии лишь природной средой. Однако, воздействуя на природную среду и изменяя ее, человек тем самым меняет условия существования не только растений и животных, но и самого себя, того общества, которое попадает под воздействие этого производства и природы, и созданных им изменений. Потому правомерно рассматривать всю окружающую человека среду. И не только природную, но также социальную и производственную, порой от природы основательно оторванную. Поскольку взаимодействие организмов между собой и окружающей их средой всегда системно, то есть всегда реализуется в форме некоторых систем взаимосвязей, поддерживающихся обменом вещества, энергии и информации, основным объектом исследования экологии являются экосистемы. Самой крупной в иерархии экосистем является биосфера. Учение о биосфере - это обширная область знания о функционировании и развитии биосферы, включающая в себя целый ряд научных направлений естественнонаучного и общественного профиля.
Структура общей экологии
Учение о биосфере в том числе включает в себя общую экологию, которая состоит из четырех основных разделов: биоэкологии, геоэкологии, экологии человека и прикладной экологии (рис.1).
Биоэкология состоит из экологий естественных биологических систем: особей, видов (аутоэкология), популяций и сообществ (синэкология) и экологии биоценозов. Еще одно подразделение биоэкологии составляет эволюционная экология, рассматривающая экологические аспекты эволюции.
Геоэкология изучает биосферные оболочки Земли, в том числе подземную гидросферу, как компоненты окружающей среды, минеральную основу биосферы и происходящие в них изменения под влиянием природных и техногенных процессов. Геоэкологические исследования носят комплексный характер и включают в себя изучение ландшафтов, почв, поверхностных и подземных вод, горных пород, воздуха, растительного покрова. Геоэкология, таким образом, требует интеграции геологии и географии, почвоведения и геохимии, гидрогеологии и гидрологии, горных наук в единую систему знаний о геологической и географической средах как единой геоэкологической среде.
Экология человека - комплекс дисциплин, исследующих взаимодействие человека как биологической особи (биоэкология человека) и личности с окружающей его природной, социальной и культурной средами. Здоровье людей связано с экологической обстановкой и образом жизни (медицинская экология), на человека оказывает влияние среда морали, воззрений, традиций и трудно уловимой духовности (экология духа).
Прикладная экология представлена комплексом дисциплин, связанных с различными областями человеческой деятельности и взаимоотношений между человеком и природой. Она исследует механизмы техногенных и антропогенных воздействий на экосистемы, формирует экологические критерии и нормативы в промышленности, транспорте и сельском хозяйстве (экология природно-технических геосистем (ПТГС) и сельскохозяйственная экология). Инженерная экология изучает законы формирования техносферы и способы инженерной защиты природной среды. Экологический менеджмент изучает управление взаимодействием общества и природы на основе использования экономических, административных, социальных, технологических и информационных факторов с целью достижения планируемого качества (состояния) окружающей среды. Экологическое образование формирует экологическое мышление, под которым понимается состояние человеческого познания и нpавственности, обеспечивающее анализ и последующий синтез взаимосвязанных природных и техногенных объектов и процессов, как основу прогнозирования их развития и приоритетного выбора оптимальных в экологическом отношении решений и действий.
Таким образом, в последние десятилетия экология фактически вышла за рамки только биологии и переживает колоссальное развитие в различных направлениях. Разве что информатика испытывает аналогичное бурное развитие и на наших глазах происходит информатизация. Информатика тоже вышла за рамки только одной науки - математики. Современная экология не только изучает законы функционирования природных и техногенных систем, но и ищет пути гармонического взаимоотношения природы и общества. От характера которого зависит не только здоровье людей и их экономическое процветание, но и сохранение человека как биологического вида. Решение экологических проблем требует огромной работы во всех областях науки и техники. Поэтому идеи и проблемы экологии всемерно проникают в другие научные дисциплины и внедряются в общественное развитие. Этот процесс называется экологизацией. Ниже приведены примеры разных определений термина экология, которые в сущности показывают различные векторы ее развития:
1) одна из биологических наук, изучающая живые системы в их взаимодействии со средой обитания;
2) комплексная наука, синтезирующая данные естественных и общественных наук о природе и взаимодействии общества и природы;
3) особый общенаучный подход к исследованию проблем взаимодействия организмов, биосистем и среды (экологический подход);
4) совокупность научных и практических проблем взаимоотношений человека и природы (экологические проблемы).
5) наука, изучающая общие законы функционирования экосистем различного порядка.
В более обобщенном смысле, под экологией понимается область знаний, рассматривающая совокупность природных объектов, явлений и процессов, по отношению к объекту или субъекту, принимаемому за центральный объект этой совокупности. Этим центральным объектом может быть тот или иной вид растения или животного, популяция (сообщество организмов одного вида, обитающих в пределах единого ареала) или человек, как один из видов живых существ обитающих на Земле и при этом оказывающий воздействие на ее природу несравнимо большее, чем любой другой вид или популяция, или какое то производство.
Современная экология, таким образом, представляет собой значительный цикл знаний, вобравшей в себя разделы биологии, географии, геологии, химии, физики, социологии, психологии, культурологии, экономики, педагогики и технических наук. Отсюда вытекает многообpазие объектов, методов и сpедств экологических исследований, многие из котоpых оказываются заимствованы из смежных областей знаний. В отношении экологии человека - это медицина, биология, психология, санитария и гигиена, гигиена окружающей среды, социология и демография, биохимия и, конечно же, комплексный мониторинг здоровья людей определенного региона, административной территории, связанных с тем или иным производством. Все это имеет прямое отношение к экологии вообще и экологии человека, в частности. В каком-то смысле, годы учебы - тоже процесс экологический. Потому, что на всем протяжении этого нелегкого пути познания нового, каждый из студентов представляет собой некий центр, к которому сходятся знания, от Вашей реакции и действий зависят результаты учебы, а в широком перспективном плане - уровень благополучия Вас, Вашей семьи и близких.
Экология изначально возникла как наука о среде обитания живых организмов: растений, животных (в том числе и человека), грибов, бактерий и вирусов, о взаимоотношениях между организмами и средой их обитания и о взаимоотношениях организмов друг с другом. Само же слово "экология" возникло гораздо позже в сравнении со временем появления собственно экологических знаний. Оно было введено немецким биологом Эрнстом Геккелем (1869 г) и образовано от греческого слова "ойкос" - дом, жилище. До 30-х годов ХХ столетия общей экологии, как общепризнанной науки, еще не существовало. Долгое время экология была представлена всевозможными частными экологическими дисциплинами: экологией растений, экологией животных, экологией грибов и т.д. Эти дисциплины формировались в рамках соответствующих таксономических разделов биологии - ботаники, зоологии, микологии и др., как подразделения этих наук.
По мере накопления знаний о взаимодействии живых организмов со средой обитания исследователи поняли, что на Земле существуют своеобразные системы, состоящие из живых организмов и неживого вещества. Для них характерен высокий уровень организации, наличие прямых и обратных связей между компонентами (частями этих систем), способность к поддержанию своего состояния при всевозможных возмущениях, т.е. эти системы состоят из упорядоченно взаимодействующих и взаимозависимых компонентов, образующих единое целое. Они были названы экологическими, или экосистемами.
Экосистемы всюду вокруг нас. Там, где есть жизнь, там есть и экосистемы. А жизнь на Земле повсюду: и в толще океана на дне самых глубоких морских желобов, и в атмосфере на высоте нескольких десятков километров, и в глубоких пещерах, куда никогда не проникает луч света, и на поверхности ледников в Антарктиде и в высокой Арктике. Самая большая экосистема - биосфера, или экосфера, Земли. Она включает всю совокупность живых организмов планеты, взаимодействующих с неживой природой, и через нее проходит энергия Солнца, обеспечивая устойчивое равновесие биосферы.
Но далеко не все свойства экосистем можно охарактеризовать, изучая лишь их отдельные компоненты (высшие растения, животных, грибы, бактерии) или отдельные уровни организации (генный уровень, клеточный, или более высокий - системы организмов). Только изучая все составляющие биоты в совокупности и с учетом средообразующих факторов можно получить полные и объективные сведения об экосистемах разного ранга и предсказать ход их развития, степень устойчивости к разрушающим факторам и способность к самовосстановлению при воздействии последних.
Экосистемы и являются специфическим объектом изучения общей экологии. Таким образом, общая экология - это наука об экосистемах, которые включают в себя живые организмы и неживое вещество, с которым эти организмы постоянно взаимодействуют. По определению Всеволода Анатольевича Радкевича (1998: 7)"… Экология - это наука, исследующая закономерности жизнедеятельности организмов в их естественной среде, и с учетом изменений, которые вносит в эту среду деятельность человека…". Сходное, но более точное определение экологии дает Игорь Александрович Шилов (2001: 9), трактуя ее "... как науку о закономерностях формирования, развития и устойчивости биологических систем разного ранга в их взаимоотношениях со средой…". Следовательно, предметом ее исследований является макросистемы: популяции, биоценозы, экосистемы, и их динамика во времени и пространстве.
Уровни организации живой материи. Аутэкология и синэкология
Чтобы лучше понять содержание общей экологии, следует рассмотреть концепцию уровней организации жизни (биологический спектр).
Все уровни живой материи можно представить в виде иерархической схемы (по Ю. Одуму, 1975):
1) Генный, или молекулярный уровень. Именно с него начинают проявляться свойства живого вещества. Его системы представляют собой активные крупные молекулы - липиды, белки, углеводы, нуклеиновые кислоты, в которых идут процессы обмена веществ, связанные с фото - и хемосинтезом, формируются ДНК и РНК, отвечающие за наследственность. Предметом изучения на этом уровне являются законы передачи наследственности, а изучает их наука ГЕНЕТИКА. Сами по себе, вне органа, вне организма эти молекулы функционировать не могут.
2) Клеточный уровень. Молекулы объединяются в клетки, и только тогда в них формируются вещества, необходимые для жизнедеятельности органов и организмов. Предметом изучения на клеточном уровне служат законы превращения вещества и энергии внутри клеток. Наука - ЦИТОЛОГИЯ.
На схеме не указан тканевый уровень - на этом уровне однородные, одинакового происхождения клетки, взаимодействуя между собой, образуют ткани, изучением которых занимается ГИСТОЛОГИЯ.
3) Органный - более высокий уровень организации живого вещества, нежели предыдущие три. Органы образуются в результате взаимодействия нескольких типов тканей. На этом уровне изучаются системы разных органов: побеговые и генеративные - у растений, системы органов дыхания, пищеварения, размножения - у животных. А изучает эти системы БИОМОРФОЛОГИЯ и АНАТОМИЯ.
4) Организменный - первый, самый низший уровень из изучаемых общей экологией. В организме взаимодействие систем органов сводится в единую систему индивидуального организма. Он может существовать самостоятельно! Вне организмов жизнь не проявляется. На этом уровне изучаются жизненные циклы отдельных особей, законы образования фенотипов и генотипов. Науки - ФИЗИОЛОГИЯ, АНАТОМИЯ, ЗООЛОГИЯ, ЭВОЛЮЦИОННОЕ УЧЕНИЕ и др.
5) Популяционно-видовой - промежуточный между "организменным и надорганизменным" уровнями. Любой вид растений, животных приспосабливается к внешней среде, не как сумма отдельных особей-организмов, а как единое функциональное целое - популяция. В популяции свои законы (внутривидовые конкуренция и агрегация), свои иерархические взаимоотношения, своя структура. На данном уровне изучаются законы сохранения популяцией и ее видом генотипических признаков. Науки - СИСТЕМАТИКА, БИОЛОГИЯ и ЭКОЛОГИЯ РАСТЕНИЙ, ЖИВОТНЫХ.
6) Экосистемный, биогеоценотический - изучаются надорганизменные системы, взаимоотношения популяций, группировок, организмов внутри экосистемы, т.е. на конкретном участке с однородными условиями среды. Изучение первичной продуктивности, круговорота веществ (углерода, кислорода, фосфора, воды и пр) в пределах биогеоценоза. Науки - ФИТОЦЕНОЛОГИЯ, БИОГЕОЦЕНОЛОГИЯ, ОБЩАЯ ЭКОЛОГИЯ.
7) Биосферный - самый высокий, рассматривается взаимоотношения между собой макроэкосистем, биогеоценозов (лес-степь, лес-болото, лес-тундра и др.), изучаются закон круговорота веществ, энергии в глобальном аспекте.
Взаимодействие живого вещества (материи) с другим веществом (или энергией) на каждом уровне организации обусловливает формирование и существование определенных упорядоченных систем. Все эти системы взаимозависимы одна от другой и между уровнями организации нет резких разрывов. Невозможно даже представить существование генов вне клеток, клеток вне органов, органов вне организмов и т.д.
Учитывая тесную функциональную связь между организменным, популяционно-видовым и экосистемным уровнями и автономность существования их систем, основным содержанием общей экологии следует считать исследования взаимоотношений живых организмов (особей) между собой и со средой обитания на популяционно-биоценотическом уровне и уровнях биологических систем еще более высокого ранга (биогеоценозов и биосферы), а наименьшей единицей является организм, или особь.
В зависимости от того, какой уровень организации экосистем изучается, экология подразделяется на отрасли аутэкологию и синэкологию.
Аутэкология изучает жизненные циклы и отношение к факторам среды отдельных особей или видов. Цель ее заключается в том, чтобы выявить характер приспособления их к жизни в конкретном сообществе, их роль в экосистеме. Некоторые ученые (Радкевич, 1997) считают, что аутэкология изучает взаимоотношение с внешней средой только отдельных особей, а взаимоотношения ценопопуляций со средой изучает демэкология, взаимоотношения видов - эйдэкология.
Синэкология, она же биоценология, изучает все комплексы видов (ценопопуляций) в сообществах, т.е. экосистемы, изучает законы их совместного сосуществования в биоценозе в зависимости от условий внешней среды. Она базируется на аут-, дем - и эйдоэкологии, но ей присущ общебиологический характер, поскольку ее исследования направлены на многовидовые взаимоупорядоченные комплексы, существующие в строго определенной физико-химической среде.
Жизнедеятельность экосистем чрезвычайно сложна. Живое и неживое вещество в экосистемах структурировано и охвачено бесчисленными превращениями или процессами, в ходе которых автотрофными и хемотрофными организмами захватываются из внешней среды атомы многих химических элементов (углерод, водород, кислород, сера, фосфор, калий, кальций, магний, железо, медь и др.) и энергия, которые затем используются другими организмами: консументами (потребители растительной массы) и грибами, а потом, по мере гибели организмов-продуцентов, грибов и консументов, переходят к организмам-редуцентам, разлагающим мертвое органическое вещество и возвращающим составляющие это вещество атомы во внешнюю среду.
При этом энергия химических связей организмов-продуцентов и организмов-хемосинтетиков частично используется консументами, грибами и редуцентами, а частично высвобождается во внешнюю среду в виде тепла, в виде образующихся при выделении растениями в атмосферу окислов кислорода.
Или консервируются в виде химических связей сложных органических веществ, накапливающихся в почве (гумус) и литосфере (торф, бурые и каменные угли). Все процессы идут непрерывно, подчиняясь своим законам. На естественные природные процессы накладываются антропогенные. Последние, как правило, сказываются негативно на функционировании экосистем. Изучить и понять эти закономерности и есть главная задача общей экологии.
Положение общей экологии в системе наук
В буквальном переводе слово "экология" означает учение о "доме" (от греч. "ойкос" - местообитание, жилище, дом, и "логос" - учение). Впервые этот термин и общее определение экологии было сделано немецким биологом Э. Геккелем в 1866 г. в труде "Всеобщая морфология организмов". Он определил экологию как предмет, изучающий совокупность всех взаимосвязей между животными и окружающей их средой (неорганической и органической). Из этого определения вытекает следующее биоцентрического направления: экология - одна из биологических наук, изучающая живые системы в их взаимодействии со средой обитания. Однако современная экологическая проблематика требует более широкого определения. Одно из них: экология - это комплексное научное направление, которое обобщает, синтезирует данные естественных и социальных наук о природной среде и ее взаимодействии с человеческим обществом (рис.2).
Рис.2. Структура экологических наук
Как же соотносятся между собой все экологические науки?
Как экосистемы образованы разными группами организмов, так и общая экология характеризуется сложной структурой, подразделяясь на множество направлений в свою очередь, состоящих из частных наук (рис.1). Сначала появились многие частные экологические дисциплины, гораздо позже - комплексные. Общая же экология формируется только сегодня и "подпитывается" всеми частными. Несмотря на нерешенность своих самых фундаментальных проблем, она переживает самый настоящий бум популярности.
Разумеется, общая экология тесно связана со всеми частными (экология растений, экология животных, микробиология, экология океана, экология человека и др.) и комплексными (геоботаника, лесоведение, почвоведение, ландшафтоведение, гидробиология, биоценология и др.) экологическими, но она не есть простая сумма этих наук. Общеизвестно, что частные науки изучают всесторонне конкретные объекты органического мира ("все об одном"), а общие - весь органический мир в одном направлении ("немного обо всем"). Для частных наук наиважнейшей единицей является организм или совокупность организмов одного вида, для комплексных наук - конкретные условия среды (почва, лес, вода) и взаимоотношения живых организмов с этими условиями, а для общей экологии - экосистема ранга биогеоценоза, т.е. вся совокупность видов, слагающих биоценоз, и вся совокупность факторов среды, определяющих существование данного биоценоза с учетом неизбежного антропогенного воздействия, а организм или вид - наименьшей единицей.
Чтобы вскрыть законы взаимоотношений составных частей экосистем необходимо иметь представление о разных аспектах функционирования этих составных частей, поэтому выделение отраслей и дисциплин в общей экологии, классифицирование их также целесообразно, как и в любой другой биологической науке.
Авторы существующих классификаций обращают внимание на сложность и многогранность общей экологии.
Какие же направления выделяются в общей экологии?
По размерам объектов изучения (экосистемные исследования) в общей экологии всеми исследователями выделяются:
аутэкология (особи, организм и их среда),
демэкология, или популяционная экология (популяция и ее среда),
синэкология (биоценоз, экосистема и их среда),
географическая (крупные геосистемы, географические процессы с участием живых систем их среды),
глобальная экология, или мегаэкология (биосфера)
Указанные подразделения объективно отражают организацию проведения исследований на различных уровнях биологического спектра. Последние две отрасли слишком молодые и еще не имеют специальных названий или они не устоялись (мегаэкология, панэкология, биосферология).
Юджин Одум и В.А. Радкевич выделяют в экологии 3 основных блока: биоэкология, экосистемы и земные сферы, человек и природа.
1. Биоэкология - самое раннее направление, положения его являются фундаментальными для остальных направлений. Основу биоэкологии составляют экологии систематических, или таксономических, отделов органического мира:
экология микроорганизмов
экология грибов
экология растений
экология животных
Последние три, в свою очередь, делятся на более мелкие.
2. Экосистемы и земные сферы - самое обширное направление, в нем рассматриваются связи между живыми материями и неживыми (абиотическими) факторами, связи между организмами и сообществами в составе основных биомов (совокупности сообществ (экосистем) природных зон) суши и Мирового океана. В этот блок входят:
лесная экология
экология степей
экология пустынь
экология тундр
экология почв
экология атмосферы
экология гидросферы
экология литосферы
космическая экология
экология гор
экология островов
экология океанов и др.
3. Человек и природа - сюда входят науки, изучающие взаимосвязь и взаимодействие человека со средой обитания, и прикладная экология человека с целью связать разработки по вышеуказанным двум разделам с практическими проблемами:
инженерная экология
химическая экология
промысловая экология
сельскохозяйственная экология
экология города
экология и медицина
экология и культура
экология и право
экология и политика
экологическое образование и др.
К предыдущей классификации близка классификация Анатолия Сергеевича Степановских (2001), но она более детальная, состоит из следующих направлений, или разделов.
1. По отношению к предметам изучения:
экология микроорганизмов
экология грибов
экология растений
экология животных
экология человека
2. По отношению к условиям среды обитания:
экология почв, почвоведение
экология атмосферы
экология гидросферы
экология литосферы
космическая экология
3. По отношению к типу растительного покрова:
лесная экология
экология степей
экология пустынь,
экология тундр и т.д.
4. По отношению к ландшафтному (географическому) положению:
экология гор,
экология островов,
экология океанов и т.д.
5. По отношению к фактору времени:
палеоэкология,
археоэкология,
историческая экология, и др.
6. С каждым годом все более актуальными становятся проблемы взаимоотношений природы и Человека, что привело к формированию такого современного направления, как экология ноосферы, или социальная экология. Ее проблемы выходят за рамки экологии, как биологической науки, и наряду с экосистемным подходом включают экономическо-хозяйственный, социальный, политический аспекты. Они представлены многочисленными "экологиями":
радиационная экология,
химическая экология,
промысловая экология
инженерная экология
экология города
сельскохозяйственная экология
экология и медицина
экология и культура
экология и право
экология и политика
экологическое образование и др.
Первый раздел классификации А.С. Степановских, за исключением "экологии человека", аналогичен разделу "Биоэкология", последний - седьмой, разделу "Человек и природа", а остальные - разделу "Экосистемы и земные сферы" классификации Ю. Одума и В.А. Радкевича.
И.А. Шилов выделяет 5 направлений.
1. Ландшафтная экология - одно из наиболее ранних направлений. Изучает приспособление организмов к разной географической среде, формирование биоценозов различных ландшафтов, их влияние на среду обитания. Имеет исключительно высокое прикладное значение, т.к. физико-географическими условиями определяются набор видов и основные законы формирования и жизни сообществ.
2. Функциональная, или физиологическая экология - исследует механизмы, с помощью которых осуществляется адаптация (приспособление) биологических систем разного уровня к изменению условий среды. Большинство адаптивных механизмов имеют физиологическую природу и изучение важно для решения многих проблем, например при интродукции растений, в медицине, для контроля численности диких животных и др.
3. Количественная экология изучает продуктивность и структуру разных экосистем, их динамику. Ее данные являются основой для математического моделирования биогеоценотических процессов, или теоретической экологии. Необходима для разработки природоохранных мероприятий, построения экологических прогнозов, профилактики эпидемий и т.д.
4. Эволюционная экология выявляет экологические закономерности эволюционного процесса, пути и формы становления видовых адаптаций, позволяет реконструировать экосистемы прошлого Земли (палеоэкология) и роль человека в их преобразовании (археоэкология).
5. Социальная экология изучает процессы, протекающие на уровне ноосферы. С возникновением новых проблем возникли и новые частные науки (социология, радиационная экология, экологическое образование, инженерная экология, космическая экология и др.). Особое положение занимает экология человека, изучающая современное положение современного человечества в глобальных экосистемах.
5. Эволюция и общая экология
Почему так поздно сформировалась, так долго формировалась и так стремительно начала развиваться общая экология? История ее отражает процесс развития жизни и цивилизации на Земле. Чтобы лучше понять это, осуществим краткий экскурс в Эволюцию жизни на Земле. Следы жизни обнаружены в самых древних горных породах, которые сформировались около 3 миллиардов лет назад. Именно тогда жили на нашей планете организмы, чьи следы запечатлены в этих породах. Эти организмы были чрезвычайно примитивными, они были одноклеточными или колониальными, не имели скелета и размножались простым делением клеток надвое, в клетках их не было сформированного ядра. Даже наружный скелет - твердый панцирь клеток - у них отсутствовал, поэтому в геологической летописи планеты сохранилось так мало следов той древнейшей жизни.
Эволюция живых организмов вначале привела к появлению живых существ с обособленным клеточным ядром и внутриклеточными органоидами - рибосомами, митохондриями и др. Для них уже было характерно бесполое и половое размножение. Доказано, что миллиард лет назад такие организмы на нашей планете населяли океан.
Примерно 600-700 миллионов лет назад появились первые позвоночные животные - рыбы, обитавшие в мировом океане и морях. Царство растений тогда было представлено многочисленными водорослями, как одноклеточными, так и многоклеточными, образующими, как и теперь, настоящие подводные леса на мелководьях.
Выход живых существ на сушу сдерживался тем, что в атмосфере Земли, вплоть до кембрийского периода, было очень мало кислорода. Из-за этого у планеты отсутствовал озоновый слой (верхний слой атмосферы, состоящий из трехатомных молекул кислорода и отдельных атомов кислорода), который поглощает жесткое космическое излучение. Дело в том, что кванты жесткого электромагнитного излучения обладают очень высокой энергией и, ударяя в органические молекулы, легко их разрушают, поглощаясь при этом и не достигая поверхности планеты. Слой воды толщиной 2-3 м может поглощать кванты жесткого излучения не хуже озонового слоя. Именно поэтому на первых этапах эволюции жизнь была только в морях и океанах и не спешила выходить на сушу. В процессе поглощения электромагнитного излучения и фотосинтеза водорослей в гидросфере и атмосфере постепенно накапливался свободный кислород.
Примерно 500 миллионов лет назад живые организмы появились и на суше. На суше эволюция живых существ проходила более быстрыми темпами. Из животных сушу сначала завоевали членистоногие. Из позвоночных животных первыми на сушу выбрались двоякодышащие рыбы, от которых произошли земноводные. Земноводные в свою очередь дали начало пресмыкающимся, от которых произошли птицы и в меловом периоде - около 70 миллионов лет назад - млекопитающие. Человек относится к классу млекопитающих (отряд приматов, семейство гоминид - человекообразные).
Первые люди, согласно последним научным данным, обитали в Африке около 3 миллионов лет назад. Они ходили прямо на двух ногах, имели ступню, не отличающуюся от ступни современного человека, и довольно развитые руки с отстоящим, как у современного человека, большим пальцем; могли издавать членораздельные звуки, пользовались огнем и изготавливали примитивные орудия, разбивая камни и кости. По мере эволюции живых организмов увеличивалось биологическое разнообразие, интенсифицировался обмен веществ, совершенствовались механизмы размножения, усложнялось поведение животных и жизненные циклы растений. Одновременно удлинялись пищевые цепи, благодаря которым, однажды захваченные живыми существами из внешней среды атомы химических элементов и энергия, все дольше не возвращались во внешнюю среду.
Разумеется, по мере эволюции изменялась и среда обитания живых организмов, а также и скорость ее изменений. Содержание кислорода за последний миллиард лет в атмосфере выросло с 1% до 21%. При этом резко снизилось содержание в атмосфере Земли углекислого газа - до 0,3%. Ученые выяснили, что современный состав атмосферы Земли создан и поддерживается живыми организмами.
Баланс углекислого газа между атмосферой, океаном, почвой и живыми организмами поддерживается миллионами видов живых организмов. Если он нарушится, то содержание углекислоты в атмосфере резко возрастет, усилится так называемый парниковый эффект, и атмосфера Земли начнет разогреваться. Экосистемы Земли - это фабрики, которые поддерживают этот баланс. (Схема заимствована у Н.Ф. Реймерса)
Если на Земле не будет жизни, то состояние ее атмосферы довольно скоро, буквально за несколько сотен или тысяч лет, вернется к своему безкислородному состоянию.
Ведь ни на Венере, ни на Марсе свободного кислорода в атмосферах практически нет. Зато очень много углекислого газа. Вероятно, такой когда-то была и атмосфера нашей планеты.
Таким образом, эволюция жизни на Земле - проблема не только биологическая, но и экологическая. Сегодня это понимают многие ученые, в том числе и палеонтологи, изучающие жизнь в отдаленные геологические эпохи. Человечество лишь в последние десятилетия начало всерьез осознавать важность для себя экологических проблем. Именно поэтому именно в наше время возникла потребность в общей экологии. Ведь вопрос стоит однозначно - быть или не быть на Земле технократической цивилизации.
Почему же столь важно и необходимо изучение природы на уровне экосистем? Потому что, зная законы формирования и функционирования экосистем, можно предвидеть и предупредить их разрушение в результате воздействия на них негативных факторов, предусмотреть охранные мероприятия и в итоге сохранить среду обитания человека, как вида.
Многие процессы являются общими для всех уровней. Их характеристики, установленные для одного уровня (клеточного, организменного) могут быть высокоинформативными и для других уровней (популяционного, экосистемного) и точно также одни и те же области наук м. б. общими для всех уровней организации. Но при изучении их используются разные методы, разные подходы, разные единицы учета и измерения. Соответственно и в интерпретации полученной информации по каждому уровню есть свои особенности.
Экологическая система
Экологическая система (экосистема) - совокупность совместно обитающих различных организмов и условий их существования, находящихся в закономерной взаимосвязи друг с другом. Термин "экосистема" ввел английский фитоценолог А. Тенсли в 1935г. Экосистемами являются, например, участок леса, река, море, аквариум, кабина космического корабля, географический ландшафт или даже вся биосфера.
Экологи используют также термин "биогеоценоз", предложенный советским ботаником В.Н. Сукачевым. Биогеоценоз (от "биос" - жизнь, "гео" - Земля, "ценоз" - сообщество) - сугубо наземные образования, имеющие свои четкие границы. Этим термином обозначается совокупность растений, животных, микроорганизмов, почвы и атмосферы на однородном участке суши. Биогеоценоз является синонимом экосистемы.
Схема биогеоценоза (по В.Н. Сукачеву, 1972)
Экологические постулаты Б. Компонера
В начале 70-х годов американский эколог Б. Коммонер сформулировал четыре положения, раскрывающие суть системы рационального природопользования. Эти положения стали называть "законами", хотя правильнее было бы назвать их "экологическими поговорками" - ведь любая поговорка отражает опыт предшествовавших поколений.
Суть этих положений состоит в следующем:
Все связано со всем. Это положение об экосистемах и биосфере.
За все надо платить. Это всеобщий "закон" рационального природопользования. Платить нужно энергией за дополнительную очистку отходов, удобрением - за повышение урожая, санаториями и лекарствами - за ухудшение здоровья человека. Все надо куда-то девать. Это положение о хозяйственной деятельности человека, отходы от которой неизбежны, и потому необходимо думать и об уменьшении их количества, и о последующем захоронении этих отходов. Природа знает лучше. Это самое важное положение природопользования, которое означает, что нельзя пытаться покорять природу, а нужно сотрудничать с ней, используя биологические механизмы для очистки стоков и повышения урожая культурных растений. При этом нельзя забывать о том, что сам человек является биологическим видом, частью природы, а не ее властелином.
Экологические законы
Виды и методы экологических исследований
Методическую основу экологии как современной науки составляет сочетание системного подхода, натурных наблюдений, эксперимента и моделирования. Экологическая практика охватывает собой множество приемов и методов исследований, адекватных многообразию направлений экологии и потому здесь перечислены лишь некоторые из них.
Режимные систематические (мониторинговые) наблюдения за состоянием природных объектов и процессов и влияющими на них антропогенными (техногенными) факторами; аналитические исследования природных и искусственных (техногенных) объектов; исследования морфологических параметров природных объектов; статистические методы оценки процессов и явлений; дистанционные методы исследований и методы специальной картографии; методы математического моделирования; системный анализ; методы социальной демографии; паспортизация природных и искусственных объектов; экологический менеджмент; экологический аудит.
Как правило, в экологических исследованиях эти и другие применяемые методы исследований используются совместно или комплексиpуются.
Признаки и условия существования жизни
Жизнь, ее происхождение и развитие всегда, с древнейших времен волновали мысль человека. П. Кемп и К. Армс (1988) намечают 7 признаков живого организма:
1. Живые организмы характеризуются высокоупорядоченным строением. Химические вещества, из которых состоят живые, организмы сложны и обладают уровнями организации превышающими таковые у большинства веществ неживой (или косной) природы.
2. Живые организмы используют энергию окружающей их среды для поддержания и усиления своей высокой упорядоченности. Большая часть из них прямо или косвенно использует солнечную энергию. Зеленые растения используют эту энергию для синтеза питательных веществ, потребляемых как самими растениями, так и подавляющем большинством всех других организмов, обитающих на Земле.
3. Живые организмы активно реагируют на состояние окружающей среды и происходящие в ней изменения. Способность реагировать на внешние раздражения - универсальное свойство всех живых веществ.
4. Живые организмы развиваются. Рост, например, кристалла и рост органов любого живого существа принципиально отличны по структуре, сложности и многообразию свойств формирующихся органов.
5. Все живое размножается. Новые организмы возникают только в результате размножения других таких же организмов.
6. Каждому организму для того, чтобы выжить, развиваться и размножаться, необходима информация, заложенная в нем самом, в его генетическом аппарате, которая расщепляется и передается от каждого индивидуума к его потомкам. Генетический материал предопределяет возможные пределы развития организма, его структур, функций и реакции на окружающую его среду.
7. Живые организмы адаптированы к среде их обитания. Они сами и все их органы приспособлены своему образу жизни.
Каковы же условия этой внешней среды обитания, благоприятствующие возникновению, сохранению и развитию жизни?
Экология рассматривает пять таких условий, совокупность которых определяет эти возможности (Мамедов и Суравегина, 1966).
1. Достаточное количество кислорода и углекислого газа. А.С. Монин (1977) отмечает, что с биологической точки зрения критический уровень содержания свободного кислорода в атмосфере, при котором организмы переходят от анаэробного обмена веществ, к энергетически более эффективному окислению при дыхании, составляет около одной сотой от количества кислорода в современной атмосфере. Такое его содержание в атмосфере Земли было достигнуто, вероятно, в конце венда, около 600 млн. лет тому назад. С этого момента в морской среде происходит массовый взрыв биологической продуктивности и разнообразия организмов, однако, их выход на сушу еще долгое время сдерживался отсутствием озонового экрана атмосферы. Формирование последнего состоялось около 400 млн. лет тому назад, при содержании кислорода в приземном слое атмосферы порядка 10% от современного.
Теория спонтанного зарождения жизни, как альтернатива креационизму восходит к древнему Вавилону, Египту, Криту, Греции. Согласно воззрениям натурфилософов того времени некоторые частицы вещества, из тех, что образуют всю вселенную, содержат некое “активное начало” которое при определенных условиях может создать живой организм. Аристотель полагал, что активное начало есть в оплодотворенном яйце, солнечном свете, гниющем мясе. У Демокрита начало жизни было в иле, у Фалеса - в воде, у Анаксагора - в воздухе.
Научный поиск зарождения жизни. Если отвлечься от Божественного Начала, загадка зарождения жизни до конца еще не разгадана. Биологические факты свидетельствуют, что ныне живое возникает только от живого. В.И. Вернадский (рис.3), ссылаясь на итальянского биолога Франческо Реди, постулировавшего в 1688 году, что все живое может происходить только от живого, однозначно указывает, что:
Никогда не наблюдалось в условиях Земли зарождение живого от мертвого (обратите внимание на точность изложения мысли. Не категоричное "не может быть", как сейчас нередко с добавлением, "потому что не может быть никогда", а именно никогда не наблюдалось что не исключает, в принципе, вероятность такого хода события).
В геологической истории нет эпох отсутствия жизни. Современное живое вещество генетически родственно всем прошлым организмам.
И хотя в древнейших архейских горных породах уже есть признаки жизни, нет свидетельств ее одномоментного зарождения.
Но в истории формирования Земли был период, который не нашел отражения в геологической летописи, называемый В.И. Вернадским азойным периодом. Период, относящийся к космической истории Земли, как части Солнечной Системы. В отношении этого времени В.И. Вернадский указывает на такие возможности: "Не зная научно этого прошлого, мы не можем научно решить вопрос о генезисе в нем жизни, если он произошел в космические периоды истории Земли. Другого времени для этого нет, ибо в геологических временах зарождения жизни не было". И далее, "Признавая биогенез, согласно научному наблюдению, за единственную форму зарождения живого, неизбежно приходится допустить, что начала жизни в том космосе, который мы наблюдаем, не было, поскольку не было начала этого космоса. Жизнь вечна постольку, поскольку вечен космос, и передавалась всегда биогенезом. То, что верно для десятков и сотен миллионов лет, протекших от архейской эры до наших дней, верно и для всего бесчисленного хода времени космических периодов истории Земли. Верно и для всей Вселенной."Значит "... Остаются три возможности: жизнь создалась на Земле при космических стадиях ее истории в условиях, не повторяющихся в позднейшие геологические эпохи; жизнь была на Земле и в космические эпохи ее былого, она извечна; жизнь, извечная во вселенной, явилась новой на Земле, ее зародыши приносились в нее извне постоянно, но укрепились на Земле лишь тогда, когда на Земле оказались благоприятные для этого возможности". Этот механизм привнесения жизни на землю известен как идея панспермии.
Иная точка зрения, выдвинутая и разработанная, в частности, академиком А.И. Опариным вам известна из школьного курса биологии. Она состоит в том, что первично живое вещество все-таки возникло из неживого в особо благоприятных для этого условиях дна мелководных теплых морей катархея, воды которых были богаты сложными органическими веществами неорганического происхождения. Там и могло начаться образование двойных сахарофосфатных спиральных нитей высокополимерных нуклеиновых кислот с закрепленными на них основаниями, служащими “кодами" для дальнейшего синтеза белков. Эти нити, при некоторых внешних условиях могли разворачиваться в одинарные спирали и синтезировать на каждой из них недостающую вторую спираль, то есть порождать пару себе подобных, передавая им информацию, заложенную в основаниях. Подобные полимеры, обеспечивающие достаточно длительное сохранение и воспроизводство уже можно рассматривать в качестве первичных организмов. Их развитие, в свою очередь, исключило условие дальнейшего самозарождения жизни. Энергетическими источниками подобного процесса могли служить грозовые разряды, энергия действующих вулканов или, возможно - ультрафиолетового излучения не сдерживаемого озоновым экраном.
Подобные условия и эффекты, напоминающие преобразование природных неорганических химических соединений в органические, были обнаружены в горячих газах курильского вулкана Алаид, в гидротермальных растворах источников Камчатки и Курильских островов, смоделированы в лабораторных условиях. Сложные органические вещества, вплоть до аминокислот, и синезеленых водорослей обнаружены в ряде каменных метеоритов, в частности, так называемых углистых хондритах.
Наиболее древние остатки жизнедеятельности организмов, обнаруженные в Трансваале в породах, возраст которых определяется 3,1-3,4 млрд. лет (напомним. что возраст планеты Земля составляет около 4,5 млрд. лет) представляют собой микроскопические изолированные палочки. длиной 0,45-0,7 мк и диаметров 0,18-0,32 мк, имеющие двухслойные оболочки толщиной 0,015 мк. Там же обнаружены нитеподобные образования, а также многочисленные шаровидные, дисковидные и многоугольные оболочки микроскопических водорослей. Палеонтологические данные позволяют, однако, полагать, что при любых причинах образования жизни, ее дальнейшее развитие состоит в непрерывном изменении, эволюционировании живых организмов. Согласно теории эволюции современные организмы возникли от более древних форм жизни, унаследовав от них ряд признаков и претерпели различные модификации.
Генетические основы эволюции. Любой организм содержит в себе информационный запас развития, который определяется содержащимся в нем генетическим материалом, унаследованным от организмов предыдущего поколения. Единицами такого генетического материала (и информации) являются гены. Однако гены могут нести не только сходные черты, но и различия, вызванные наследственными изменением генетического материала, называемым мутациями. Мутации могут, в свою очередь, вызываться ошибками при копировании генетического материала, возникать в результате химического воздействия или излучения. Они случайны, весьма редки (лишь у нескольких особей одна на 100 000) и в большинстве случаев неблагоприятны для своего носителя.
Помимо мутационной, изменчивость также возникает в результате смешивания генов при половом размножении, потому что каждый потомок получает половину генов от каждого из родителей. Общая сумма всех генов, имеющихся у данной популяции составляет ее генофонд.
Можно оценить, сколько раз встречается тот или иной ген в данной популяции и определить частоту его встречаемости, например в первом и втором поколении. Разница покажет нам изменения в генетическом фонде, то есть эволюцию, происходящую в популяции. Под популяцией в экологии понимается совокупность организмов одного вида, в той или иной степени изолированная от других таких же совокупностей, способная длительно существовать на единой территории, самовоспроизводиться и изменяться вследствие преимущественного размножения тех или иных групп входящих в ее состав особей. Таким образом, эволюция популяции есть изменение частоты встречаемости одного или нескольких генов в данной популяции, от поколения к поколению. Эволюционирующая компонента то есть компонента, изменяющаяся во времени, определяет популяцию, а не отдельный, входящий в нее организм. Однако, накопление изменений частоты некоторых генов в генофонде на протяжении многих поколений может привести к резким изменениям и в популяции.
Находки организмов, ныне не существующих на Земле, убеждали в том, что в разное время Землю заселяли разные их виды. Геолог Чарльз Лейаль (рис.1.4) опубликовал в 1830 г. первый том “Основания геологии", в котором доказывал постепенность геологического развития Земли.
В 1809 г. Жан Батист де Ламарк (рис.1.5) выдвинул идею, что организмы на протяжении всей своей жизни могут приобретать признаки, повышающие их приспособленность к среде обитания, эти признаки они могут передавать своим потомкам. Суть этой теории, получившей название ламаркизм, чаще всего иллюстрируют примором с шеей жирафы. Так как жирафам постоянно приходилось вытягивать шею, чтобы дотянуться до листьев на деревьях, рассуждал Ламарк, то их шеи вытягивались и они передавали такую удлиненную шею своим потомкам.
Однако вскоре появилась революционная теория эволюции путем естественного отбора выдвинутая Чарльзом Дарвиным (рис.1.6) и Альфредом Расселом Уоллесом (рис.1.7).
Примечательно, что за несколько дней до того, как Ч. Дарвин готовился передать свой доклад в издательство, Альфред Рассел Уоллес прислал ему свой очерк, посвященный вопросам эволюции. Между тем идеи, относящиеся к эволюции, были практически идентичны и Лейаль настоял на том, чтобы тот и другой материалы были опубликованы совместно. Соответственно в 1858 г. ими и была выдвинута теория эволюции на заседании лондонского Линеевского общества. А в 1858 г. была опубликована монография Ч. Дарвина “Происхождение видов" в которой была описана эволюция на основе механизма естественного отбора. Книга была иллюстрирована многочисленными примерами и вызвала множество споров, ибо противоречила библейским положениям о происхождении видов и утверждала, что эволюция может происходить и без вмешательства человека или божественного начала.
Основные экологические проблемы
По ходу курса мы познакомимся с современными экологическими проблемами, которые в перечислении Н.Ф. Реймерса (рис.1.9) с уточнениями и добавлениями, представляются следующими:
Изменение климата Земли в результате естественных геологических процессов, усиленных тепличным эффектом, вызываемым изменениями оптических свойств атмосферы выбросами в нее главным образом СО, СО2, других газов;
Замусоривание околоземного космического пространства (ОКП), последствия которого до конца пока не осмыслены, если не считать реальную опасность космическим аппаратам, включая спутники связи, локации поверхности земли и другие, широко использующиеся в современных системах взаимодействия между людьми, государствами и правительствами;
Сокращение мощности стратосферного озонового экрана с образованием так называемых "озоновых дыр", снижающих защитные возможности атмосферы против поступления к поверхности Земли опасной для живых организмов жесткой коротковолновой ультрафиолетовой радиации;
Химическое загрязнение атмосферы веществами, способствующими образованию кислотных осадков, фотохимического смога и других соединений, опасных для биосферных объектов, включая человека и создаваемых им искусственных объектов;
Загрязнение океана и изменение свойств океанических вод за счет нефтепродуктов, насыщения их углекислым газом атмосферы, в свою очередь загрязненной автотранспортом и теплоэнергетикой, захоронения в океанических водах высокотоксичных химических и радиоактивных веществ, поступления загрязнений с речным стоком, нарушения водного баланса прибрежных территорий в связи с регулирования рек;
Истощение и загрязнение всех видов источников и вод суши;
Радиоактивное загрязнение отдельных участков и регионов с тенденцией его расползания по поверхности Земли;
Загрязнение почв вследствие выпадения загрязненных осадков (например - кислотные дожди), неоптимального использования пестицидов и минеральных удобрений;
Изменение геохимии ландшафтов, в связи с теплоэнергетикой, перераспределением элементов между недрами и поверхностью Земли в результате горнометаллургического передела (например концентрация тяжелых металлов) или извлечения на поверхность аномальных по составу, высокоминерализованных подземных вод и рассолов;
Продолжающее накапливание на поверхности Земли бытового мусора и всякого рода твердых и жидких отходов;
Нарушение глобального и регионального экологического равновесия, соотношения экологических компонентов в прибрежной части суши и моря;
Продолжающееся, а местами - усиливающееся опустынивание планеты, углубление процесса опустынивания;
Сокращение площади тропических лесов и северной тайги, этих основных источников поддержания кислородного баланса планеты;
Освобождение в результате всех вышеуказанных процессов экологических ниш и заполнение ими иными, видами;
Абсолютное перенаселение Земли и относительное демографическое переуплотнение отдельных регионов, крайняя дифференциация бедности и богатства;
Ухудшение среды жизнеобитания в переуплотненных городах и мегаполисах;
Исчерпание многих месторождений минерального сырья и постепенный переход от богатых ко все более бедным рудам;
Усиление социальной нестабильности, как следствия все большей дифференциации богатой и бедной части населения многих стран, возрастания уровня вооруженности их населения, криминализации, природных экологических катаклизмов.
Снижение иммунного статуса и состояния здоровья населения многих стран мира, включая Россию, многократное повторение эпидемий, имеющих все более массовый и тяжелый по последствиям характер.
Заключение
Экология - это наука, изучающая взаимосвязи организмов с окружающей средой, т.е. совокупностью внешних функций, влияющих на их рост, развитие, размножение и выживаемость.
Главная цель данной работы рассмотрение структуры экологии и ее основных функций.
Экология - это наука, изучающая взаимосвязи организмов с окружающей средой, т.е. совокупностью внешних функций, влияющих на их рост, развитие, размножение и выживаемость.
Основным факторам, влияющим на формирование экологической обстановки на современном этапе.
Экология представляет собой экосистему. До некоторой степени условно функции экологии можно разделить на "абиотические", или физико-химические (температура, влажность, длина светового дня, содержание минеральных солей в почве и др.), и "биотические", обусловленные наличием или отсутствием других живых организмов (в том числе, являющихся объектами питания, хищниками или конкурентами).
Экосистема состоит из живого и неживого компонентов, называемых соответственно биотическим и абиотическим. Совокупность живых организмов биотического компонента является сообществом. Исследование экосистем включает, в частности, выяснение и описание тесных взаимосвязей, существующих между сообществом и абиотическим компонентом. Поэтому взаимодействие экологии и общества изучается и будет исследоваться и дальше, как основной компонент развития живой и неживой природы.
Список использованной литературы
1. Акимова Т.А., Хаскин В.В. Основы экоразвития. М.: Изд-во Рос. экон. академии, 2004,312с.
2. Алексеенко В.А., Алексеенко Л.П. Биосфера и жизнедеятельность: Учебное пособие. - М.: Логос, 2006. - 212 с.
3. Арустумов Э.А., Левакова И.В., Баркалова Н.В. Экологические основы природопользования: Учебное пособие. - М., 2005. - 236 с.
4. Андерсен Д.М. Экология и науки об окружающей среде: биосфера, экосистемы, человек. Л.: Гидрометеоиздат, 2005.165 с.
5. Бигон М., Харпер Дж., Таунсенд К. Экология особи, популяции и сообщества: В 2 т. М.: Мир, 2009. Т.1.660 с.; Т.2, 473 с.
6. Биосфера: Сб. / Под ред. М.С. Гилярова. М.: Мир, 2003.182 с.
7. Будыко М.М. Глобальная экология. М.: Мысль, 2002.319 с.
8. Вернадский В.И. Биосфера. М.: Мысль, 2007.376 с.
9. Голуб А.А., Струкова Е.Б. Экономика природопользования. М.: Аспект Пресс, 2005.188с.
10. Горелов А.А. Экология - наука-моделирование. М.: Наука, 2005. - 207 с
11. Горелов А.А. Экология - М.: Высшее образование, 2005. - 191 с. .
12. Израэль Ю.А. Экология и контроль состояния природной среды. М.: Гидрометеоиздат, 2004.556с.
13. Новиков Ю.Н. Экология, окружающая среда и человек. - М., 2003. - 560 с.
14. Пианка Э. Эволюционная экология. Мир: Мир, 2001.357 с.
15. Уиттекер Р. Сообщества и экосистемы. М.: Прогресс, 2003.
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |