Содержание
1. История открытия и названия нуклеиновых кислот
2. Нахождение нуклеиновых кислот в природе
3. Получение нуклеиновых кислот
4. Химические свойства нуклеиновых кислот
5. Применение нуклеиновых кислот
6. Занимательные факты о нуклеиновых кислотах
1. История открытия нуклеинов и их названия
Открытие нуклеиновых кислот связано с именем молодого врача из города Базеля (Швейцария) Фридриха Мишера. После окончания медицинского факультета Мишер был послан для усовершенствования и работы над диссертацией в Тюбинген (Германия) в физиолого-химическую лабораторию, возглавляемую Ф. Гоппе-Зейлером. Тюбингенская лаборатория в то время была известна ученому миру. Пройдя практику по органической химии, Мишер приступил к работе в биохимической лаборатории. Ему было поручено заняться изучением химического состава гноя. Молодой ученый не возражал против предложенной темы, так как считал лейкоциты, присутствующие в гное, одними из самых простых клеток.
Путём многочисленных опытов он получил из гнойных клеток вещество ядерного происхождения. Мишер был уверен именно в ядерном его источнике. Поэтому он начал более тщательное выделение ядер. В то время еще никто в биохимических лабораториях не пытался выделить ядра или какие-либо другие субклеточные компоненты, так что и здесь он был пионером.
Продолжив дальше очищать ядро от других клеточных фрагментов, он получил странное вещетво. Оно не разлагалось протеолитическими ферментами, значит, не являлось белком. Отсутствие растворимости в горячем спирте указывало на то, что это вещество не являлось и фосфолипидом. По-видимому, оно относилось к новому классу биохимических соединений.
Но Мишер с большой горячностью настаивал на точности своих результатов и добивался разрешения опубликовать их в печати. Тогда Гоппе-Зейлер решил проверить данные Мишера лично. Он и два его ассистента (одним из них был русский химик Любавин) в течение года шаг за шагом прошли все этапы аналитической работы Мишера и полностью подтвердили его данные, выделив нуклеин из клеток крови и из дрожжей.
В 1871 г. работа Мишера вместе с подтверждающими ее контрольными работами Гоппе-Зейлера и его ассистентов увидела свет. Существование нуклеина как специфического ядерного вещества стало научным фактом. Вскоре методика Мишера была применена для выделения нуклеина из различных тканей.
Термин «нуклеиновые кислоты» был предложен в 1889: нуклеиновыми они были названы потому, что впервые были открыты в ядрах клеток, а кислотами -- из-за наличия в их составе остатков фосфорной кислоты. Позже было показано, что нуклеиновые кислоты построены из большого числа нуклеотидов (от нескольких десятков до сотен миллионов). В состав каждого нуклеотида входит азотистое основание, углевод (пентоза) и фосфорная кислота.
2. Нахождение нуклеиновых кислот в природе
Нуклеиновые кислоты в природе встречаются во всех живых клетках. Живые клетки, за исключением сперматозоидов, в норме содержат значительно больше рибонуклеиновой, чем дезоксирибонуклеиновой кислоты. На методы выделения дезоксирибонуклеиновых кислот оказало большое влияние то обстоятельство, что, тогда как рибонуклеопротеиды и рибонуклеиновые кислоты растворимы в разбавленном (0,15 М) растворе хлористого натрия, дезоксирибонуклеопротеидные комплексы фактически в нем нерастворимы.
Поэтому гомогенизированный орган или организм тщательно промывают разбавленным солевым раствором, из остатка с помощью крепкого солевого раствора экстрагируют дезоксирибонуклеиновую кислоту, которую осаждают затем добавлением этанола.
В клетках эукариот (например, животных или растений) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеотид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами. Кроме того, одно- или двухцепочечные молекулы ДНК могут образовывать геном ДНК-содержащих вирусов.
3. Получение нуклеиновых кислот
В клетках нуклеиновые кислоты связаны с белками, образуя нуклеопротеиды. Выделение нуклеиновых кислот сводится к очистке их от белков. Для этого препараты, содержащие нуклеиновые кислоты, обрабатывают ПАВ и экстрагируют белки фенолом. Послед, очистка и фракционирование нуклеиновых кислот проводятся с помощью ультрацентрифугирования, различных видов жидкостной хроматографии и гель - электрофореза. Для получения индивидуальных нуклеиновых кислот обычно используют различные варианты последнего метода.
Современные методы химического синтеза нуклеиновых кислот позволяют получать крупные фрагменты ДНК, в том числе целые гены. Методические основы химически - ферментативных методов синтеза ДНК разработаны X. Кораной.
Они включают:
Ш химический синтез комплементарных, взаимоперекрывающихся олигонуклеотидов, из которых затем в результате комплементационных взаимодействий выстраиваются дуплексы - фрагменты молекулы синтезируемой ДНК с несовпадающими разрывами в обеих цепях;
Ш соединение (лигирование) таких олигонуклеотидов в составе дуплекса с помощью фермента Т4 ДНК-лигазы. Сборку протяженных ДНК из синтетически однотяжевых олигонуклеотидов проводят в несколько этапов. Сначала собирают небольшие дуплексы с "липкими" концами (однотяжевыми комплементарными участками), из которых затем последовательно формируют более протяженные структуры. Таким образом могут быть получены искусственные фрагменты ДНК большой длины и с любой нуклеотидной последовательностью. С помощью генетической инженерии возможно клонирование (получение в индивидуальном виде и размножение) искусственных ДНК.
Несмотря на малую эффективность этого метода, были синтезированы олигонуклеотиды, содержащие до 16 звеньев, из которых были собраны первые синтетические гены. Фосфодиэфирный метод образования межнуклеотидных связей, использованный Кораной, имеет историческое значение. Однако разработанные им приемы введения и избирательные удаления защитных групп широко используются в других методах синтеза нуклеиновых кислот.
Важным шагом в совершенствовании синтеза олигонуклеотидов явилась разработка так называемого фосфотриэфирного метода. Образующийся динуклеотид после частичного деблокирования фосфата конденсируют аналогичным образом с другими динуклеотидом и т.д. Применение этого способа, в котором используют защиту фосфатной группы, позволило значительно сократить время синтеза и повысить выходы олигонуклеотидов.
Параллельно этим методам, которые осуществляют в растворах, разрабатывались твердофазные способы синтеза нуклеиновых кислот. В последнем случае процесс проводят в двухфазной системе; нуклеозидный компонент связан ковалентно с нерастворимым полимером, а нуклеотидный компонент и необходимые реагенты находятся в растворе.
Обычно в этом случае на первой стадии нуклеозид присоединяют с помощью "якорной" группы к нерастворимому полимеру. Затем его 5-гидроксильную группу деблокируют и конденсируют с нуклеотидным компонентом. У образующегося полностью защищенного динуклеозидмонофосфата деблокируют защитную группу в положении 5 и присоединяют следующему нуклеотид и т.д.
Наиболее распространенные методы твердофазного синтеза олигонуклеотидов основаны на использовании нуклеотидного компонента, содержащего Р(III). В так называемом амидофосфитном способе нуклеотидным компонентом является эфир 3-амидофосфита дезоксинуклеозида. Достаточно устойчивые амидофосфиты при протонировании в присутствии тетразола превращаются в сильные фосфорилирующие агенты. После завершения синтеза удаляют защитные группы с межнуклеотидных фосфатов, отделяют олигонуклеотид от носителя, деблокируют группы Np гетероциклов. Липофильную группу (МеО)2Тr удаляют после первого хроматографического разделения.
Стандартность операций в твердофазном синтезе олигонуклеотидов явилась основой для автоматизации процесса. Принцип работы автомата-синтезатора основан на подаче в реактор с помощью насоса (под контролем микропроцессора) защищенных нуклеотидных компонентов реагентов и растворителей по заданной программе в колонку, содержащую полимерный носитель с закрепленным на нем первым нуклеозидом. После окончания синтеза и отделения полностью защищенного олигонуклеотида от полимерного носителя проводят деблокирование, очистку и анализ синтезированных фрагментов ДНК. Так, с помощью гидрофосфорильного метода в автомате - синтезаторе за несколько часов получают 30-40-звенные олигонуклеотиды; возможен синтез более чем 100-звенных фрагментов ДНК. Разработаны синтезаторы, позволяющие проводить одновременно синтез несколько олигонуклеотидов.
Синтез олигорибонуклеотидов ферментативным путем осуществляют обычно с использованием рибонуклеаз или полинуклеотидфосфорилаз.
В качестве нуклеотидного и нуклеозидного компонента применяют мономеры или олигонуклеотиды. Эту реакцию используют для синтеза ди-, три- и тетрарибонуклеотидов. При увеличении длины олигорибонуклеотида начинает преобладать обратная реакция (гидролиз олигонуклеотида).
Химический синтез олигорибонуклеотидов проводят в основном с использованием тех же приемов, как и при синтезе ДНК.
4. Химические свойства нуклеиновых кислот
Нуклеиновые кислоты:
ь хорошо растворимы в воде
ь практически не растворимы в органических растворителях.
ь очень чувствительны к действию температуры и критических значений уровня pH.
ь молекулы ДНК с высокой молекулярной массой, выделенные из природных источников, способны фрагментироваться под действием механических сил, например при перемешивании раствора.
ь нуклеиновые кислоты фрагментируются ферментами -- нуклеазами.
Химические свойства РНК.
Напоминают свойства ДНК, однако наличие дополнительных групп ОН в рибозе и меньшее (в сравнении с ДНК) содержание стабилизированных спиральных участков делает молекулы РНК химически более уязвимыми. При действии кислот или щелочей основные фрагменты полимерной цепи Р(О)-О-СН2 легко гидролизуются, группировки А, У, Г и Ц отщепляются легче. Если нужно получить мономерные фрагменты, сохранив при этом химически связанные гетероциклы, используют деликатно действующие ферменты, называемые рибонкулеазами.
Химические свойства ДНК.
В воде ДНК образует вязкие растворы, при нагревании таких растворов до 60°С или при действии щелочей двойная спираль распадается на две составляющие цепи, которые вновь могут объединиться, если вернуться к исходным условиям. В слабокислых условиях происходит гидролиз, в результате частично расщепляются фрагменты - Р-О-СН2- с образованием фрагментов - Р-ОН и НО-СН2 , соответственно результате образуются мономерные, димерные (сдвоенные) или примерные (утроенные) кислоты, представляющие собой звенья, из которых была собрана цепь ДНК.
Участие ДНК и РНК в синтезе белков - одна из основных функций нуклеиновых кислот. Белки - важнейшие компоненты каждого живого организма. Мышцы, внутренние органы, костная ткань, кожный и волосяной покров млекопитающих состоят из белков. Это полимерные соединения, которые собираются в живом организме из различных аминокислот. В такой сборке управляющую роль играют нуклеиновые кислоты, процесс проходит в две стадии, причем на каждой из них определяющий фактор - взаимоориентация азотсодержащих гетероциклов ДНК и РНК.
Основная задача ДНК - хранить записанную информацию и предоставлять в тот момент, когда начинается синтез белков. В связи с этим понятна повышенная химическая устойчивость ДНК в сравнении с РНК.
Природа позаботилась о том, чтобы сохранить по возможности основную информацию неприкосновенной
5. Применение нуклеиновых кислот
Последнее десятилетие характеризуется интенсивным развитием технологий, которые ориентированы на создание устройств, позволяющих получать информацию о свойствах различных сред (объектов) в форме электрического сигнала. В сенсорных технологиях чувствительный элемент способен "узнать" исследуемое вещество среди множества родственных и преобразовать полученную информацию о его присутствии в ответ, фиксируемый в цифровой или аналоговой форме. Наибольшее развитие имеют аналитические устройства, использующие в качестве узнающего элемента биомакромолекулы - биосенсоры.
Принцип действия биодатчиков, использующих частицы жидкокристаллической дисперсии, состоит в следующем: азотистые основания в молекулах ДНК, фиксированных в структуре холестерической жидкокристаллической дисперсии, тем или иным способом "узнают" молекулы биологически активного соединения (БАС) и "адресуют" их в определенные места на поверхности ДНК. Образование комплекса "ДНК-БАС" приводит к появлению первичного (в частности, оптического) сигнала. Пространственная структура холестерика многократно усиливает генерируемый в системе первичный сигнал и делает видимыми результаты действия биологически активного соединения на ДНК: в спектре кругового дихроизма появляется аномальная полоса (полосы) в области поглощения биологически активного соединения. Амплитуда этой полосы пропорциональна концентрации биологически активного соединения, а знак полосы несет информацию о способе ориентации его молекул по отношению к парам оснований ДНК.
В последние годы возрос интерес к иммуностимуляторам. Впервые нуклеиновые кислоты стали применять в 1882 году по инициативе Горбачевского при инфекционных заболеваниях стрепто - и стафилококкового происхождения. В 1911 году Черноруцкий установил, что под влиянием дрожжевой нуклеиновой кислоты увеличивается количество иммунных тел.
Нуклеинат натрия: увеличивает фагоцитарную активность, активирует поли- и мононуклеары, увеличивает эффективность тетрациклинов при смешанной инфекции, вызванной стафилококком и синегнойной палочкой. При профилактическом введении нуклеинат натрия обусловливает и противовирусный эффект, так как обладает интерфероногенной активностью.
Нуклеинат натрия ускоряет формирование прививочного иммунитета, увеличивает его качество, позволяет уменьшить дозу вакцины. Этот препарат оказывает позитивный эффект при лечении больных с хроническим паротитом, язвенной болезнью, различными формами пневмонии, хроническим воспалением легких, бронхиальной астмой. Нуклеинат натрия увеличивает содержание РНК и белка в макрофагах в 1,5 раза и гликогена в 1,6 раза, увеличивает активность лизосомальных ферментов, следовательно, увеличивает завершенность фагоцитоза макрофагами. Препарат увеличивает содержание у человека лизоцима и нормальных антител, если их уровень был снижен.
Особое место среди препаратов нуклеиновых кислот занимает иммунная РНК макрофагов, которая представляет собой информационную РНК, которая вносит в клетку фрагмент антигена. То есть, идет неспецифическая стимуляция иммунокомпетентных клеток нуклеотидами.
Неспецифическими стимуляторами являются синтетические двухцепочечные полинуклеотиды, которые стимулируют антителообразование, увеличивают антигенный эффект неиммуногенных доз антигена, обладающего антивирусными свойствами, связанными с интерфероногенной активностью. Их механизм действия сложен и недостаточно выяснен. Двунитчатая РНК включается в систему регуляции синтеза белка в клетке, активно взаимодействуя с клеточной мембраной.
Но высокая стоимость препаратов, недостаточная их эффективность, наличие побочных явлений (тошнота, рвота, снижение артериального давления, увеличение температуры тела, нарушение функций печени, лимфопения - из-за прямого токсического действия на клетки), отсутствие схем использования делают применение препаратов ограниченным.
6. Занимательные факты
ь Почти полвека тому назад был открыт принцип структурной (молекулярной) организации генного вещества - дезоксирибонуклеиновой кислоты (ДНК). Структура ДНК дала ключ к механизму точного воспроизведения генного вещества. Так возникла новая наука - молекулярная биология.
ь Накопление знаний о генетическом коде, нуклеиновых кислотах и биосинтезе белков привело к утверждению принципиально новой идеи о том, что все начиналось вовсе не с белков, а с РНК.
ь Известно, что рибонуклеиновая кислота является основным переносчиком генетической информации от ДНК к белку. Поэтому многие заболевания связаны именно с неправильной передачей этой информации.
ь Достаточно неожиданно обнаружилось, что во внеклеточных жидкостях организма находится весьма заметное количество нуклеиновых кислот. До сих пор не понятно, как они туда попадают. Самым простым было бы предположить, что нуклеиновые кислоты оказываются во внеклеточном пространстве при гибели клеток. Однако, имеются факты, противоречащие этому предположению.
ь Расшифровка структуры ДНК (1953 г.) стала одним из поворотных моментов в истории биологии. За выдающийся вклад в это открытие Фрэнсису Крику, Джеймсу Уотсону, Морису Уилкинсу была присуждена Нобелевская премия по физиологии и медицине 1962 г.
! |
Как писать рефераты Практические рекомендации по написанию студенческих рефератов. |
! | План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом. |
! | Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач. |
! | Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты. |
! | Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ. |
→ | Виды рефератов Какими бывают рефераты по своему назначению и структуре. |