Реферат по предмету "Медицина"


Физиология крови 2

--PAGE_BREAK--

Для образования эритроцитов требуются витамин В12 (цианокобаламин) и фолиевая кислота. Витамин В12 поступает в организм с пищей и именуется внешним фактором кроветворения. Для его всасывания нужно вещество
(гастромукопротеид), которое вырабатывается железами слизистой оболочки пилорического отдела желудка и носит заглавие внутреннего фактора кроветворения Касла. При недостатке витамина В12 развивается В12-дефицитная анемия, Это может быть либо при недостаточном его поступлении с пищей
(печень, мясо, яйца, дрожжи, отруби), либо при отсутствии внутреннего фактора (резекция нижней трети желудка). Считается, что витамин В12 способствует синтезу глобина, Витамин В12 и фолиевая кислота участвуют в синтезе ДНК в ядерных формах эритроцитов. Витамин В2 (рибофлавин) нужен для образования липидной стромы эритроцитов. Витамин В6 (пиридоксин) участвует в образовании гема. Витамин С провоцирует всасывание железа из кишечника, увеличивает действие фолиевой кислоты. Витамин Е (a -токоферол) и витамин РР (пантотеновая кислота) укрепляют липидную оболочку эритроцитов, защищая их от гемолиза.

Для обычного эритропоэза необходимы микроэлементы. Медь помогает всасыванию железа в кишечнике и способствует включению железа в структуру гема. Никель и кобальт участвуют в синтезе гемоглобина и гемсодержащих молекул, утилизирующих железо. В организме 75% цинка находится в эритроцитах в составе фермента карбоангидразы. Недочет цинка вызывает лейкопению. Селен, взаимодействуя с витамином Е, защищает мембрану эритроцита от повреждения свободными радикалами.

Физиологическими регуляторами эритропоэза являются эритропоэтины, образующиеся основным образом в почках, а также в печени, селезенке и в маленьких количествах постоянно присутствующие в плазме крови здоровых людей. Эритропоэтины усиливают пролиферацию клеток-предшественников эритроидного ряда – КОЕ-Э (колониеобразующая единица эритроцитарная) и ускоряют синтез гемоглобина. Они стимулируют синтез информационной РНК, нужной для образования энзимов, которые участвуют в формировании гема и глобина. Эритропоэтины увеличивают также кровоток в сосудах кроветворной ткани и увеличивают выход в кровь ретикулоцитов. Продукция эритропоэтинов стимулируется при гипоксии различного происхождения: пребывание человека в горах, кровопотеря, анемия, заболевания сердца и легких. Эритропоэз активируется мужскими половыми гормонами, что обусловливает большее содержание эритроцитов в крови у парней, чем у женщин. Катализаторами эритропоэза являются соматотропный гормон, тироксин, катехоламины, интерлейкины. Торможение эритропоэза вызывают особенные вещества – ингибиторы эритропоэза, образующиеся при увеличении массы циркулирующих эритроцитов, к примеру у спустившихся с гор людей. Тормозят эритропоэз дамские половые гормоны (эстрогены), кейлоны. Симпатическая нервная система активирует эритропоэз, парасимпатическая – тормозит. Нервные и эндокринные влияния на эритропоэз осуществляются, по-видимому, через эритропоэтины.

Об интенсивности эритропоэза судят по числу ретикулоцитов – предшественников эритроцитов. В норме их количество составляет 1 – 2%.
Созревшие эритроциты циркулируют в крови в течение 100 – 120 дней.

Разрушение эритроцитов происходит в печени, селезенке, в костном мозге посредством клеток мононуклеарной фагоцитарной системы. Продукты распада эритроцитов также являются катализаторами кроветворения.

Лейкоциты

Лейкоциты, либо белые кровяные тельца, представляют собой бесцветные клеточки, содержащие ядро и протоплазму, размером от 8 до 20 мкм.

Количество лейкоцитов в периферической крови взрослого человека колеблется в пределах 4,0 – 9,0х10' /л, либо 4000 – 9000 в 1 мкл. Увеличение количества лейкоцитов в крови именуется лейкоцитозом, уменьшение – лейкопенией.
Лейкоцитозы могут быть физиологическими и патологическими (реактивными).
посреди физиологических лейкоцитозов различают пищевой, миогенный, эмоциональный, а также лейкоцитоз, возникающий при беременности.
Физиологические лейкоцитозы носят перераспределительный характер и, как правило, не достигают больших характеристик. При патологических лейкоцитозах происходит выброс клеток из органов кроветворения с преобладанием юных форм. В более тяжеленной форме лейкоцитоз наблюдается при лейкозах.
Лейкоциты, образующиеся при этом заболевании в лишнем количестве, как правило, малодифференцированы и не способны делать свои физиологические функции, в частности, защищать организм от патогенных микробов. Лейкопения наблюдается при повышении радиоактивного фона, при применении неких фармакологических препаратов. В особенности выраженной она бывает в итоге поражения костного мозга при лучевой болезни. Лейкопения встречается также при неких тяжелых инфекционных заболеваниях (сепсис, милиарный туберкулез). При лейкопениях происходит резкое подавление защитных сил организма в борьбе с бактериальной инфекцией.

Лейкоциты в зависимости от того, однородна ли их протоплазма либо содержит зернистость, делят на 2 группы: зернистые, либо гранулоциты, и незернистые, либо агранулоциты. Гранулоциты в зависимости от гистологических красок, какими они окрашиваются, бывают трех видов: базофилы (окрашиваются основными красками), эозинофилы (кислыми красками) и нейтрофилы (и основными, и кислыми красками). Нейтрофилы по степени зрелости делятся на метамиелоциты (молодые), палочкоядерные и сегментоядерные. Агранулоциты бывают двух видов: лимфоциты и моноциты.

В поликлинике имеет значение не лишь общее количество лейкоцитов, но и процентное соотношение всех видов лейкоцитов, получившее заглавие лейкоцитарной формулы, либо лейкограммы.

Лейкоцитарная формула здорового человека (в %)

Гранулоциты
Агранулоциты

Нейтрофилы
Базофилы
Эозинофилы
Лимфоциты
Моноциты

молодые
Палочко-ядерные
Сегменто-ядерные

0 – 1
1 – 5
45 – 65
0 – 1
1 – 5
25 – 40
2 — 8

При ряде заболеваний характер лейкоцитарной формулы изменяется. Увеличение количества молодых и палочкоядерных нейтрофилов именуется сдвигом лейкоцитарной формулы влево. Он свидетельствует об обновлении крови и наблюдается при острых инфекционных и воспалительных заболеваниях, а также при лейкозах.

Все виды лейкоцитов выполняют в организме защитную функцию. Но воплощение её различными видами лейкоцитов происходит по-различному.

Нейтрофилы являются самой бессчетной группой. Основная их функция – фагоцитоз микробов и товаров распада тканей с последующим перевариванием их при помощи лизосомных ферментов (протеазы, пептидазы, оксидазы, дезоксирибонуклеазы). Нейтрофилы первыми приходят в очаг повреждения. Так как они являются сравнимо небольшими клеточками, то их называют микрофагами. Нейтрофилы оказывают цитотоксическое действие, а также продуцируют интерферон, владеющий противовирусным действием.
Активированные нейтрофилы выделяют арахидоновую кислоту, которая является предшественником лейкотриенов, тромбоксанов и простагландинов. Эти вещества играются важную роль в регуляции просвета и проницаемости кровеносных сосудов и в запуске таковых действий, как воспаление, боль и свертывание крови.

По нейтрофилам можно найти пол человека, так как у дамского генотипа имеются круглые выросты – “барабанные палочки”.

Рис 4. Половой хроматин (“барабанные палочки”) в гранулоците дамы.
Эозинофилы также владеют способностью к фагоцитозу, но это не имеет серьезного значения из-за их маленького количества в крови. Основной функцией эозинофилов является обезвреживание и разрушение токсинов белкового происхождения, чужеродных белков, а также комплекса антиген- антитело. Эозинофилы продуцируют фермент гистаминазу, который разрушает гистамин, освобождающийся из поврежденных базофилов и тучных клеток при разных аллергических состояниях, глистных инвазиях, аутоиммунных заболеваниях. Эозинофилы осуществляют противоглистный иммунитет, оказывая на личинку цитотоксическое действие. Поэтому при этих заболеваниях возрастает количество эозинофилов в крови (эозинофилия). Эозинофилы продуцируют плазминоген, который является предшественником плазмина – главенствующего фактора фибринолитической системы крови. Содержание эозинофилов в периферической крови подвержено дневным колебаниям, что связано с уровнем глюкокортикоидов. В конце второй половины дня и рано утром их на 20~ меньше среднесуточного уровня, а в полночь – на 30% больше.

Базофилы продуцируют и содержат биологически активные вещества (гепарин, гистамин и др.), Чем и обусловлена их функция в организме. Гепарин препятствует свертыванию крови в очаге воспаления. Гистамин расширяет капилляры, что способствует рассасыванию и заживлению. В базофилах содержатся также гиалуроновая кислота, влияющая на проницаемость сосудистой стены; фактор активации тромбоцитов (ФАТ); тромбоксаны, способствующие агрегации тромбоцитов; лейкотриены и простагландины. При аллергических реакциях (крапивница, бронхиальная астма, лекарственная заболевание) под влиянием комплекса антиген-антитело происходит дегрануляция базофилов и выход в кровь биологически активных веществ, в том числе гистамина, что описывает клиническую картину заболеваний.

Моноциты владеют выраженной фагоцитарной функцией. Это самые крупные клеточки периферической крови и их называют макрофагами. Моноциты находятся в крови 2-3 дня, потом они выходят в окружающие ткани, где, достигнув зрелости, преобразуются в тканевые макрофаги (гистиоциты). Моноциты способны фагоцитировать микробы в кислой среде, когда нейтрофилы не активны.
Фагоцитируя микробы, погибшие лейкоциты, поврежденные клеточки тканей, моноциты очищают место воспаления и подготавливают его для регенерации.
Моноциты синтезируют отдельные составляющие системы комплемента.
Активированные моноциты и тканевые макрофаги продуцируют цитотоксины, интерлейкин (ИЛ-1), фактор некроза опухолей (ФНО), интерферон, тем самым осуществляя противоопухолевый, противовирусный, противомикробный и противопаразитарный иммунитет; участвуют в регуляции гемопоэза. Макрофаги принимают роль в формировании специфического иммунного ответа организма.
Они распознают антиген и переводят его в так называемую иммуногенную форму
(презентация антигена). Моноциты продуцируют как причины, усиливающие свертывание крови (тромбоксаны, тромбопластины), так и причины, стимулирующие фибринолиз (активаторы плазминогена).

Лимфоциты являются центральным звеном иммунной системы организма. Они осуществляют формирование специфического иммунитета, синтез защитных антител, лизис чужеродных клеток, реакцию отторжения трансплантата, обеспечивают иммунную память. Лимфоциты образуются в костном мозге, а дифференцировку проходят в тканях. Лимфоциты, созревание которых происходит в вилочковой железе, именуются Т-лимфоцитами (тимусзависимые). Различают несколько форм Т-лимфоцитов. Т–киллеры (убийцы) осуществляют реакции клеточного иммунитета, лизируя чужеродные клеточки, возбудителей инфекционных заболеваний, опухолевые клеточки, клеточки-мутанты. Т-хелперы (ассистенты), взаимодействуя с В-лимфоцитами, превращают их в плазматические клеточки, т.Е. Помогают течению гуморального иммунитета. Т-супрессоры (угнетатели) заблокируют лишние реакции В-лимфоцитов. Имеются также Т-хелперы и Т- супрессоры, регулирующие клеточный иммунитет. Т-клеточки памяти хранят информацию о ранее работающих антигенах.

В-лимфоциты (бурсозависимые) проходят дифференцировку у человека в лимфоидной ткани кишечника, небных и глоточных миндалин. В-лимфоциты осуществляют реакции гуморального иммунитета. Большая часть В-лимфоцитов являются антителопродуцентами. В-лимфоциты в ответ на действие антигенов в итоге сложных взаимодействий с Т-лимфоцитами и моноцитами преобразуются в плазматические клеточки. Плазматические клеточки вырабатывают антитела, которые распознают и специфически связывают соответствующие антигены.
Различают 5 главных классов антител, либо иммуноглобулинов: JgA, JgG, JgМ,
JgD, JgЕ. Посреди В-лимфоцитов также выделяют клеточки-киллеры, хелперы, супрессоры и клеточки иммунологической памяти.

О-лимфоциты (нулевые) не проходят дифференцировку и являются как бы резервом Т- и В-лимфоцитов.

Лейкопоэз

Все лейкоциты образуются в красном костном мозге из единой стволовой клеточки. Предшественники лимфоцитов первыми ответвляются от общего древа стволовых клеток; формирование лимфоцитов происходит во вторичных лимфатических органах.

Лейкопоэз стимулируется специфическими ростовыми факторами, которые воздействуют на определенные предшественники гранулоцитарного и моноцитарного рядов. Продукция гранулоцитов стимулируется гранулоцитарным колониестимулирующим фактором (КСФ-Г), образующимся в моноцитах, макрофагах, Т-лимфоцитах, а угнетается – кейлонами и лактоферрином, секретируемыми зрелыми нейтрофилами; простагландинами Е. Моноцитопоэз стимулируется моноцитарным колониестимулирующим фактором (КСФ-М), катехоламинами. Простагландины Е, a — и b -интерфероны, лактоферрин тормозят продукцию моноцитов. Огромные дозы гидрокортизона препятствуют выходу моноцитов из костного мозга. Принципиальная роль в регуляции лейкопоэза принадлежит интерлейкинам. Одни из них усиливают рост и развитие базофилов
(ИЛ-3) и эозинофилов (ИЛ-5), остальные стимулируют рост и дифференцировку Т- и
В-лимфоцитов (ИЛ-2,4,6,7). Лейкопоэз стимулируют продукты распада самих лейкоцитов и тканей, микроорганизмы и их токсины, некие гормоны гипофиза, нуклеиновые кислоты,

Жизненный цикл различных видов лейкоцитов различен, Одни живут часы, дни, недельки, остальные на протяжении всей жизни человека.

Лейкоциты разрушаются в слизистой оболочке пищеварительного тракта, а также в ретикулярной ткани.

Тромбоциты

Тромбоциты, либо кровяные пластинки – плоские клеточки неверной округлой формы диаметром 2 – 5 мкм. Тромбоциты человека не имеют ядер. Количество тромбоцитов в крови человека составляет 180 – 320х10'/л, либо 180 000 – 320
000 в 1 мкл. Имеют место дневные колебания: днем тромбоцитов больше, чем ночью. Увеличение содержания тромбоцитов в периферической крови именуется тромбоцитозом, уменьшение – тромбоцитопенией.

Главной функцией тромбоцитов является роль в гемостазе. Тромбоциты способны прилипать к чужеродной поверхности (адгезия), а также склеиваться меж собой ~агрегация) под влиянием разнообразных обстоятельств. Тромбоциты продуцируют и выделяют ряд биологически активных веществ: серотонин, адреналин, норадреналин, а также вещества, получившие заглавие пластинчатых факторов свертывания крови. Тромбоциты способны выделять из клеточных мембран арахидоновую кислоту и превращать её в тромбоксаны, которые, в свою очередь, повышают агрегационную активность тромбоцитов. Эти реакции происходят под действием фермента циклооксигеназы. Тромбоциты способны к передвижению за счет образования псевдоподий и фагоцитозу инородных тел, вирусов, иммунных комплексов, тем самым, выполняя защитную функцию.
Тромбоциты содержат огромное количество серотонина и гистамина, которые влияют на величину просвета и проницаемость капилляров, определяя тем самым состояние гистогематических барьеров.

Тромбоциты образуются в красном костном мозге из гигантских клеток мегакариоцитов. Продукция тромбоцитов регулируется тромбоцитопоэтинами.
Тромбоцитопоэтины образуются в костном мозге, селезенке, печени. Различают тромбоцитопоэтины кратковременного и долгого деяния. Первые усиливают отщепление тромбоцитов от мегакариоцитов и ускоряют их поступление в кровь.
Вторые способствуют дифференцировке и созреванию мегакариоцитов.

Активность тромбоцитопоэтинов регулируется интерлейкинами (ИЛ-6 и ИЛ-11).
Количество тромбоцитопоэтинов повышается при воспалении, необратимой агрегации тромбоцитов, длительность жизни тромбоцитов составляет от 5 до 11 дней. Разрушаются кровяные пластинки в клеточках системы макрофагов.

Рис 5. Тромбоциты, прилипшие к стенке аорты в зоне повреждения эндотелиального слоя.
Система гемостаза

Кровь циркулирует в кровеносном русле в жидком состоянии. При травме, когда нарушается целостность кровеносных сосудов, кровь обязана свертываться. За все это в организме человека отвечает система РАСК – регуляции агрегатного состояния крови. Эта регуляция осуществляется сложнейшими механизмами, в которых принимают роль причины свертывающей, противосвертывающей и фибринолитической систем крови. В здоровом организме эти системы взаимосвязаны. Изменение функционального состояния одной из систем сопровождается компенсаторными сдвигами в деятельности другой. Нарушение функциональных взаимосвязей может привести к тяжелым патологическим состояниям организма, заключающимся либо в завышенной кровоточивости, либо во внутрисосудистом тромбообразовании.

К факторам, поддерживающим кровь в жидком состоянии, относятся следующие:
1) внутренние стены сосудов и форменные элементы крови заряжены отрицательно; 2) эндотелий сосудов секретирует простациклин ПГИ-2 – ингибитор агрегации тромбоцитов, антитромбин III, активаторы фибринолиза;
3) причины свертывающей системы крови находятся в сосудистом русле в неактивном состоянии; 4) наличие антикоагулянтов; 5) крупная скорость кровотока.

Свертывающие механизмы

Свертывание крови (гемокоагуляция) – это жизненно принципиальная защитная реакция, направленная на сохранение крови в сосудистой системе и предотвращающая смерть организма от кровопотери при травме сосудов.

главные положения ферментативной теории свертывания крови были разработаны
А. Шмидтом более 100 лет назад.

В остановке кровотечения участвуют: сосуды, ткань, окружающая сосуды, физиологически активные вещества плазмы, форменные элементы крови, основная роль принадлежит тромбоцитам. И всем этим заведует нейрогуморальный регуляторный механизм.

Физиологически активные вещества, принимающие роль в свертывании крови и находящиеся в плазме, именуются плазменными факторами свертывания крови.
Они обозначаются римскими цифрами в порядке их хронологического открытия.
некие из факторов имеют заглавие, связанное с фамилией больного, у которого в первый раз найден дефицит соответствующего фактора. К плазменным факторам свертывания крови относятся: Iф – фибриноген, IIф – протромбин,
IIIф – тканевой тромбопластин, IVф – ионы кальция, Vф – Ас-глобулин
(ассеlеrаnсе – ускоряющий), либо проакцелерин, VIф – исключен из номенклатуры, VIIф – проконвертин, VIIIф – антигемофильный глобулин А, IXф
– антигемофильный глобулин В, либо фактор Кристмаса, Xф – фактор Стюарта –
Прауэра, XIф – плазменный предшественник тромбопластина, либо антигемофильный глобулин С, XIIф – контактный фактор, либо фактор Хагемана,
XIIIф – фибринстабилизирующий фактор, либо фибриназа, XIVф – фактор Флетчера
(прокалликреин), XVф – фактор Фитцджеральда – Фложе (высокомолекулярный кининоген – ВМК).

большая часть плазменных факторов свертывания крови появляется в печени. Для синтеза неких из них (II, VII, IX, X) нужен витамин К, содержащийся в растительной еде и синтезируемый микрофлорой кишечника. При недостатке либо понижении активности факторов свертывания крови может наблюдаться патологическая кровоточивость. Это может происходить при тяжелых и дегенеративных заболеваниях печени, при недостаточности витамина К. Витамин
К является жирорастворимым витамином, поэтому его дефицит может обнаружиться при угнетении всасывания жиров в кишечнике, к примеру при понижении желчеобразования. Эндогенный дефицит витамина К наблюдается также при угнетении кишечной микрофлоры антибиотиками. Ряд заболеваний, при которых имеется дефицит плазменных факторов, носит наследственный характер.
Примером являются разные формы гемофилии, которыми болеют лишь мужчины, но передают их дамы.

Вещества, находящиеся в тромбоцитах, получили заглавие тромбоцитарных, либо пластинчатых, факторов свертывания крови. Их обозначают арабскими цифрами.
К более принципиальным тромбоцитарным факторам относятся: ПФ-3 (тромбоцитарный тромбопластин) – липидно-белковый комплекс, на котором как на матрице происходит гемокоагуляция, ПФ-4 – антигепариновый фактор, ПФ-5 – благодаря которому тромбоциты способны к адгезии и агрегации, ПФ-6 (тромбостенин) – актиномиозиновый комплекс, обеспечивающий ретракцию тромба, ПФ-10 – серотонин, ПФ-11 – фактор агрегации, представляющий комплекс АТФ и тромбоксана.

Аналогичные вещества открыты и в эритроцитах, и в лейкоцитах. При переливании несопоставимой крови, резус-конфликте матери и плода происходит массовое разрушение эритроцитов и выход этих факторов в плазму, что является предпосылкой интенсивного внутрисосудистого свертывания крови, При многих воспалительных и инфекционных заболеваниях также возникает диссеминированное (распространенное) внутрисосудистое свертывание крови
(ДВС-синдром), предпосылкой которого являются лейкоцитарные причины свертывания крови.

По современным представлениям в остановке кровотечения участвуют 2 механизма: сосудисто-тромбоцитарный и коагуляционный.

Сосудисто-тромбоцитарный гемостаз

Благодаря этому механизму происходит остановка кровотечения из маленьких сосудов с низким артериальным давлением. При травме наблюдается рефлекторный спазм поврежденных кровеносных сосудов, который в дальнейшем поддерживается сосудосуживающими веществами (серотонин, норадреналин, адреналин), освобождающимися из тромбоцитов и поврежденных клеток тканей.
Внутренняя стена сосудов в месте повреждения изменяет свой заряд с отрицательного на положительный. Благодаря способности к адгезии под влиянием фактора Виллебранда, содержащегося в субэндотелии и кровяных пластинках, отрицательно заряженные тромбоциты прилипают к положительно заряженной раневой поверхности. Фактически сразу происходит агрегация – скучиванье и склеивание тромбоцитов с образованием тромбоцитарной пробки, либо тромба. Поначалу под влиянием АТФ, АДФ и адреналина тромбоцитов и эритроцитов появляется рыхлая тромбоцитарная пробка, через которую проходит плазма (обратимая агрегация). потом тромбоциты теряют свою структурность и соединяются в однообразную массу, образуя пробку, непроницаемую для плазмы (необратимая агрегация). Эта реакция протекает под действием тромбина, образующегося в маленьких количествах под действием тканевого тромбопластина. Тромбин разрушает мембрану тромбоцитов, что ведет к выходу из них серотонина, гистамина, ферментов, факторов свертывания крови. Пластинчатый фактор 3 дает начало образованию тромбоцитарной протромбиназы, что приводит к образованию на агрегатах тромбоцитов маленького количества нитей фибрина, посреди которых задерживаются эритроциты и лейкоциты. После образования тромбоцитарного тромба происходит его уплотнение и закрепление в поврежденном сосуде за счет ретракции кровяного сгустка. Ретракция осуществляется под влиянием тромбостенина тромбоцитов за счет сокращения актин-миозинового комплекса тромбоцитов. Тромбоцитарная пробка появляется в целом в течение 1 – 3 минут с момента повреждения, и кровотечение из маленьких сосудов останавливается.

В больших сосудах тромбоцитарный тромб не выдерживает высокого давления и вымывается. Поэтому в больших сосудах гемостаз может быть осуществлен методом формирования более прочного фибринового тромба, для образования которого нужен ферментативный коагуляционный механизм.

Коагуляционный гемостаз

Свертывание крови – это цепной ферментативный процесс, в котором последовательно происходит активация факторов свертывания и образование их комплексов. Сущность свертывания крови заключается в переходе растворимого белка крови фибриногена в нерастворимый фибрин, в итоге чего появляется прочный фибриновый тромб.    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.