--PAGE_BREAK--
18.19. Каноническое ур-е прямой линии на плоскости. Ур-е прямой, проходящей ч/з 2 точки. Ур-е с угловым коэффициентом.
y-y1=k1(x-x1)
y=k1x-k1x1+y1
y1-k1x1=b
y=k1x+b
ур-е прямой с угловым коэффициентом k.
Пусть даны 2 точки M1(x1,y1), M2(x2,y2) и x1¹x2, y1¹y2. Для составления уравнения прямой М1М2 запишем уравнения пучка прямых, проходящих через точку М1: y-y1=k(x-x1). Т.к. М2лежит на данной прямой, то чтобы выделить ее из пучка, подставим координаты точки М2 в уравнение пучка М1: y-y1=k(x-x1) и найдем k:
Теперь вид искомой прямой имеет вид:
или:
— Ур-е прямой, проходящей ч/з 2
20,21. Угол м/ду прямыми на плоскости. Условия || и
^
.
а)
S1{l1,m1} S2{l2,m2},
или
p:y=k1x+b1, k1=tgj1
q:y=k2x+b2, k2=tgj2=>tgj=tg(j2-j1)=
=(tgj2-tgj1)/(1+ tgj1tgj2)=
=(k2-k1)/(1+k1k2).
б) p||q, tgj=0, k1=k2
в)p^q, то
22. Расстояние от точки до прямой на плоскости и до плоскости в пространстве.
1. Ax+By+C=0, M0(x0,y0)
2. Пусть плоскость задана ур-ем Ax+By+Cz+D=0
23. Кривые линии 2-го порядка.
Кривые 2го порядка описываются с помощью общего ур-я:
Ax2+2Bxy+Cy2+2Dx+2Ey+F=0, где
а) Каноническое ур-е эллипса
— Каноническое ур-е эллипса
Если a=b, то x2+b2=a2— ур-е окружности.
б) Ур-е гиперболы: x2/a2-y2/b2=1
в) ур-е параболы: y2=2pxили y=ax2
г) ур-е сферы: x2+y2+z2=а2 (r2=(x-a)2+(y-b)2+(z-c)2)
д) ур-е эллипса: x2/a2-y2/b2+z2/c2=1
24. Парабола и ее свойства.
Множество точек плоскости, координаты которых по отношению к системе декартовых координат удовлетворяет уравнению y=ax2, где х и у — текущие координаты, а- нек. число, наз. параболой.
Если вершина нах. в О(0,0), то ур-е примет вид
y2=2px-симметрично отн. оси ОХ
х2=2pу-симметрично отн. оси ОУ
Точка F(p/2,0) наз. фокусом параболы, а прямая x=-p/2 — ее директриса.
Любой точке М(х, у), принадлежащей параболе, расстояние до фокуса = r=p/2
Св-ва:
1. парабола предст. собой ¥точек плоскости, равноотстающих от фокуса и от директрисы y=ax2.
25.Эллипс и его св-ва:
Кривая второго порядка наз. эллипсом если коэффициенты А и L имеют одинаковые знаки
Аx2+Cy2=d
ур.-е
наз. канонич. ур.-ем эллипса, где При а=в представляет собой ур-е окружности х2+y2=а2
Точки F1(-c,0) и F2(c,0) — наз. фокусами эллипса а.
Отношение e=с/а наз. его эксцентриситетом (0
Точки A1,A2,B1,B2-вершины эллипса.
Св-во:
Для любой точки эллипса сумма расстояний этой точки до фокусов есть величина постоянной, =2а.
26. Гипербола и ее св-ва.
Кривая 2го порядка наз. гиперболой, если в ур-ии Ax2+Cy2=d, коэффициент А и С имеют противоположные знаки, т.е. А*С
б) Если d>0, то каноническое ур-е гиперболы примет вид: x2/a2-y2/b2=1, F1(c,o) и F2(-c,0) — фокусы ее, e>0, e=c/a— эксцентриситет.
Св-во:
для любой точки гиперболы абсолютная величина разности ее расстояний до фокусов есть величина постоянная = 2а.
б) если d=0, ур-е примет вид x2/a2-y2/b2=0, получаем 2 перекрестные прямые х/а±у/b=0
в) если d
27. Понятие о поверхностях 2го порядка.
Алгебраическим ур-ем 2ой степени наз. ур-е вида Ax2+Bxy+Cy2+Dx+ey+F=0, где A,B,C,D,e,F— действительные числа
Линии, которые в системе декартовых координат определяются алгебраическим ур-ем 2ой степени наз. линиями 2го порядка.
28. Функции. Определение способа задания. Классификация функций. Основные элементарные функции.
Функция — это зависимость одной величины от другой.
Если существует взаимооднозначное соответствие между переменной х одного множества и переменной у другого множества, то она называется функциональной зависимостью. y=f(x).
Определение способа задания:
-аналитически (y=kx+b)
-графический (график)
-таблично
-алгоритмически (с помощью ЭВМ)
Классификация функций:
Элементарные:— функции, которые получаются из основных элементарных ф-ций с помощью алгебраических действий (+,-,*,/, введение в степень). Основные элементарные ф-ции:
1. y=xn— степенная
2. y=ax— показательная
3. y=logax— логарифмическая
4. y=sinx, y=cosx— тригонометрические.
Сложные:
Y=f(U), где U=j(x), Y=f[j(x)]
Если ф-ция у зависит от промежуточного аргумента U, который зависит от независимой переменной х, то y=f[j(x)] называется сложным заданием х.
29. Определение пределов последовательности и ф-ции. Осн. св-ва пределов ф-ции 1ой переменной.
а) Предел последовательности:
y=f(Un), гдеU1,U2,...Un, аUn=n/(n2+1)
Предел: число а называется пределом переменной xn, если для каждого “+” как угодно малого числа e(эпсилон) существует такой номер N, что при n>Nразность |xn-a|
limxn=a
n®¥
-e
a-e
б) Предел ф-ции:
y=f(x) число а называется пределом переменной х, если разность м/ду ними есть б.м.в. |x-a|®0, |x-a|
Число А называется пределом ф-ции f(x) при х®а, если для каждого, как угодно малого на период заданного числа e. -e>0, найдется такое как угодно малое на период заданного d>0, что будут выполняться неравенства: Если |x-a|
Основные св-ва:
1.Если величина имеет предел, то только 1.
2. limC=C, где С- постоянная величина
3. Если a-б.м.в., то lima=0
4. предела б.б.в. не существует
5. если limy=a, то y=a+a, где a-б.м.в.
30. Основные теоремы о пределах.
1. Предел суммы = суммы пределов:
limx=a, limy=b, тогда x=a+a, y=b+b, где aи b— б.м.в. x+y=(a+a)+(b+b)=(a+b)+(a+b), где a+b=w— б.м.в.
x±y=(a±b)+w, тоlim(x±y)=a±b=limx+limy.
2. Теорема о пределе производной: если сомножители имеют пределы, то и произведение имеет предел, равный произведению пределов сомножителей.
limx=a, limy=b, то на основании 5го св-ва
x=a+a
y=b+b, где aи b— б.м.в.
x*y=(a+a)*(b+b)=a*b+(ab+ab+ab), то
сумма б.м.в. = d(дельта)
xy=ab+d
xy®ab,
limxy=ab=limx*limy
3. Следствие: постоянная величина выноситься за знак предела.
limCx=limC*limx=C*limx
4. Предел от частного = частному пределов (кроме limx/limy=0
limx/y=limx/limy, т.к. limx=a, limy=b
x=a+a, y=b+b
x/y=(a+a)/(b+b)
31. 1й, 2й замечательный пределы.
1
й
: limsinx/x=1, limx/sinx=1. x
®
j
lim((Sina)/a)=1
x®
SDOAC
SDOAC=1/2*OC*AD, OA=OC=1, то
SDOAC=1/2*OC*OA*Sina=1/2*Sina
SсектораOAC=1/2*OA*OC*a=1/2*a(т.к. OA=OC)
SDOCB=1/2*OC*BC=1/2*OC*OC*tga=1/2*tga
1/2*Sina
sina
1cosa
limCosa
a®0 a®0 существования
предела ф-ции
lim((Sina)/a)=1
a®
2ой: lim(1+1/n)n=e»2.7183
n®¥
Зная, что 1/n=a— б.м.в., то n=1/aи
x®¥ a®
lim(1+1/n)1/a=e
a® продолжение
--PAGE_BREAK--
32. Основные приемы нахождения пределов.
1. Подстановка: при х®х0и х0Îобласти определения ф-ции f(x), предел ф-ции f(x)= его частному значению при х=х0
limf(x)=f(x0)
x®x
2. Сокращение: при х®¥и х®х0 f(x)/g(x)=0/0, то сокращают числитель и знаменатель на множитель, стремящийся к 0.
3. уничтожение иррациональности (* числитель и знаменатель на 1 число).
4.деление на наивысшую степень х: при х®¥и х®х0 f(x)/g(x)=0/0, то делим числитель и знаменатель на наивысшую степень.
5. сведение к известным пределам: lim((Sinx)/x)=1
x®¥
lim(1+1/n)x=e
x®¥
33. Непрерывность ф-ции в точке и на интервале.
x=x+Dx, Dx=x-x
Dy=f(x0+Dx)-f(x0)
Ф-ция y=f(x) наз. непрерывной в точке x, если она определена в окрестности этой точки, а limDy=0. (б.м. приращению аргумента соответствует б.м. приращению ф-ции).
limDy=lim[f(x)-f(x0)]=limf(x)-limf(x0)=0, то
limf(x)=limf(x0)
x®x
Ф-ция непрерывна в точке х0, если ее предел = значению этой ф-ции в точке х0
Ф-ция явл. непрерывной на интервале, если она непрерывна в каждой его точке.
34. Признаки существования а) предела ф-ции и б) предела последовательности.
а) если все значения ф-ции f(x) заключены между значениями ф-ции j(x) и g(x), которые имеют 1 предел при х®а, то и limf(x)=A
j(x)
б) Если последовательность монотонно возрастает и ограниченна сверху, то она имеет предел.
Последовательность монотонно возрастает, если последующий член>предыдущего (xn+1>xn)
Последовательность ограничена сверху, если существует такое М, что xn
35. Бесконечно малые величины и их св-ва:
величина называется б.м.в. в каком-то процессе, если она в этом процессе бесконечно уменьщается.(r=m/V, если V®¥, то r®0)
Св-ва б.м.в.:
-сумма или разность конечного числа б.м.в. есть б.м.в. (aи b-б.м.в., то a±b=б.м.в.)
-произведение б.м.в. на величину ограниченную есть б.м.в. (U
-произведение б.м.величин=б.м.в.
-произведение б.м.в. на постоянную = б.м.в
36. Бесконечно большие величины и их св-ва.
б.б.в — величина для которой |Xn|®¥(при xn=1/n, n®0, то xn®¥)
Св-ва:
-величина обратная б.б.в. явл. б.м.в. (1/¥=0; 1/0=¥)
-сумма б.б.в. (с одинаковым знаком) есть б.б.в.
-произведение 2х б.м.величин=б.м.в.
-частное от деления 2х б.б.в = неопределенность
38. Св-ва непрерывных ф-ций: в
в отрезке:
1. Если ф-ция y=f(x) непрерывна на [a,b] и f(a)*f(b)
2. Если ф-ция y=f(x) непрерывна на [a,b], то она ограничена на этом промежутке.
3. Если ф-ция y=f(x) непрерывна на [a,b], то она достигает на этом отрезке minmи maxM(теорема Вейерштрасса).
в точке:
1. если ф-ция f(x) и g(x) непрерывна в х0, то их сумма, произведение, частное (при j(х0)¹0) явл-ся ф-циями, непрерывными в х0
2. если ф-ция y=f(x) непрерывна в х0, и f(x)>0, то существует окрестность х0, в которой f(x)>0
3. если y=f(U) непрерывна в U, а U=j(x) непрерывна в U=j(x), то сложная ф-ция y=f[j(x)] непрерывна в х0.
39. Задачи, приводящие к понятию производной. Определение производной и ее геометрический смысл.
1. ncp.=DS/Dt, n=lim(DS/Dt), гдеDt®
2. pcp.=Dm/Dl, pT=lim(Dm/Dl), гдеDl®
Dy=f(x+Dx)-f(x), y=f(x)
lim(Dy/Dx)=lim((f(x+Dx)-f(x))/Dx)
Dx®0 Dx®
Смысл производной — это скорость изменения ф-ции при изменении аргумента.
y=f(x+Dx)-f(x), y=f(x). производной в точке а называется предел отношения приращения ф-ции к приращению аргумента:
lim(Dy/Dx)=lim((f(x+Dx)-f(x))/Dx)=dy/dx
Dx®0 Dx®
Вычисление производной: lim(Dy/Dx)=y` Dx®
1) еслиy=x, Dy=Dx, y`=x=lim(Dy/Dx)=1.
2) если y=x2, Dy=(x+Dx)2-x2=x2+2xDx+Dx2-x2=Dx(2x-Dx),
(x2)`=lim((Dx(2x+Dx))/Dx)=lim(2x+Dx)=2x
x®0 Dx®
Геометрический смысл производной.
KN=Dy, MK=Dx
DMNK/tg2=Dy/Dx
вычислим предел левой и правой части:
limtga=lim(Dy/Dx) Dx®
tga=y`
a®a
При Dx®0 секущая MN®занять положение касательной в точке M(tga=y`, a®a)
Геометрический смысл производной заключается в том, что есть tgугла наклона касательной, проведенной в точке x.
40. Основные правила дифференцирования.
Теорема: Если f(x) и g(x) дифферен. в точке х, то:
Теорема о произв. сложной функции:
Если y(x)=f(u(x)) и существует f’(u) и u’(x), то существует y’(x)=f(u(x))u’(x).
Теорема о произв. обратной функции.
Таблица производных:
41. Дифференцирование сложных ф-ций:
Производная сложной ф-ции = произведению производной ф-ции по промежуточному аргументу и производной самого промежуточного аргумента по независимой переменной.
y`=f(x)*U`, или yx`=yU`*Ux`, или dy/dx=dy/dU=dU/dx
Например:
42. Дифференцирование обратной ф-ции.
y=f(x), то x=j(y) — обратная ф-ция.
Для дифференцируемой ф-ции с производной, не = 0, производная обратной ф-ции = обратной величине производной данной ф-ции, т.е. xy`=1/yx`.
Dy/Dx=1/(Dy/Dx) — возьмем предел от левой и правой части, учитывая, что предел частного = частному пределов:
lim(Dy/Dx)=1/(lim(Dy/Dx), т.е. yx`=1/xyили f`(x)=1/j`(x)
Например:
43. Производные степенных и тригонометрических функций.
Основные формулы:
44. Производные обратных тригонометрических функций.
Основные формулы:
Для сложных функций:
45. Производные показательных и логарифмических функций.
Основные формулы:
Если z=z(x) – дифференцируемая функция от x, то формулы имеют вид:
46. Логарифмическое дифференцирование. Вывод производной степенной ф-ции.
y=ax— показательная ф-ция, y=xn— степенная, y=xx— показательно-степенная.
y=[f(x)]j(x)— показательно-степенная ф-ция.
lny=xlnx— найдем производную от левой и правой части, считая у ф-цией х.
(1/y)*y`=(lny)
(x*lnx)`=x`lnx+x*(lnx)`=lnx+1
y`=y*(lnx+1)=xx(lnx+1)
Операция, которая заключается в последовательном применении к ф-ции y=f(x) сначала логарифмирование, а затем дифференцирование.
Степенная ф-ция:
1.y=xn, nlnx, y`/y=n/x=n*(x)-1
y`=y*n*(x-1)=n*xn*x-1=n*xn-1
2.y=eU, гдеU=sinx
U`=cosx, y`=(eU)`=eU*U`=esinx*cosx.
47. Производная высших порядков ф-ции 1й переменной.
y=f(x)
y``=(y`)`=lim((f`(x+Dx)-f`(x))/Dx)
x®
y```=(y``)`= lim((f``(x+Dx)-f``(x))/Dx)
f(n)(x)=[f(n-1)(x)]`
48. Производные 1,2-го порядка неявных ф-ций.
Неявной называется такая ф-ция у аргумента х, если она задана уравнением F(x,y)=0, не разрешенным относительно независимой переменной.
y=f(x), y=x2-1 — явные
F(x,y)=0, a2=x2+y2 — неявные ф-ции.
1)a2=x2+y2 — найдем производную, продифференцируем, считая у — сложной ф-цией х.
y`=2x+2y=0, т.к. а- постоянная
y*y`=-x, y`=-x/y
2) x3-3xy+y3=0
3x3-3(xy)`+3y2*y`=0 //:3
x2-(x`y+y`x)+y2*y`=0
y`y2-xy`=y-x2
y`=(y-x2)/(y2-x)
49. Дифференциал ф-ции и его геометрический смысл. Св-ва дифференциала.
limy=A, y=A+a
limDy/Dx=y`, Dy/Dx=y`+a, Dy=y`Dx+aDx
Dx®
Dy=y`Dx+e, где e-б.м.в., величина более высокого порядка малости,, чем Dx(a), и ее можно отбросить.
dy=y`Dx
Дифференциалом ф-ции наз. величина, пропорциональная б.м. приращению аргумента Dх и отличающаяся от соответствующего приращения ф-ции на б.м.в. более высокого порядка малости, чем Dх.
Если y=x, то dy=dx=x`Dx=Dx, dx=Dx
Если y¹x, то dy=y`dx, y`=dy,dx
Геометрический смысл: дифференциал — изменение ординаты касательной, проведенной к графику ф-ции в точке (x,f(x)) при изменении x0 на величину Dx
Св-ва:
1. (U±V)`=U`±V`, то(U±V)`dx=U`dx±V`dx, d(U±V)=d(U±V)
2. (UV)`=U`V+V`U, то(UV)`dx=V`dU+U`dV
3.d(c)=c`dx=0*dx=0
4. d(U/V)`=(V`dU-U`dV)/V2. продолжение
--PAGE_BREAK--