Контрольная работа на тему:
«Матрицы, действия с ними»
Историческая справка
Понятие Матрица (в математике) было введено в работах У. Гамильтона и А. Кэли в середине 19 века. Основы теории созданы К. Вейерштрассом и Ф. Фробениусом (2-я половина 19 века и начало 20 века). И.А. Лаппо-Данилевский разработал теорию аналитических функций от многих матричных аргументов и применил эту теорию к исследованию систем дифференциальных уравнений с аналитическими коэффициентами. Матричные обозначения получили распространение в современной математике и её приложениях. Исчисление Матрица (в математике) развивается в направлении построения эффективных алгоритмов для численного решения основных задач.
Раскрытие темы
Понятие о матрице
Матрица – множество чисел, образующих прямоугольную таблицу, которая содержит m-строк и n-столбцов. Для обозначения матрицы используется надпись:
/>
aij, I – номер строки, j – номер столбца.
Элементы матрицы, стоящие на диагонали, идущие из верхнего левого угла называют главной диагональю, другую диагональ называют побочной.
/>пример 1.
Элементы главной диагонали: 1,6,5. Побочной диагонали: 3,6,3. (пример 1)
/>пример 2.
Если количество строк m матрицы не равно количеству столбцов n, то матрица называется прямоугольной (пример 2).
Если количество столбцов матрицы совпадают с количеством строк, то матрица называется квадратной (пример 1).
Количество строк или столбцов в квадратной матрице называются ее порядком.
Если все элементы квадратной матрицы, кроме элементов главной диагонали, равны нулю, то матрица называется диагональной (пример 3).
/>пример3
Если все числа главной диагонали равны единице, то матрица называется единичной (пример 4).
/>пример 4
Если в прямоугольной матрице m*n m=1, то получается матрица-строка (пример 5).
xT = (2 3 5). пример 5.
Если n=1, то получается матрица-столбец (пример 6).
/>пример 6.
Матрицы-строки матрицы-столбцы называются векторами.
Свойства матриц:
A + (B + C) = (A + B) + C
A + B = B + A
A(BC) = (AB) C
A (B + C) = AB + AC
(B + C) A = BA + CA
(AT) T = A
(A * B) T = BT * AT
Действия с матрицами
Сложение матриц
Матрицы одинакового размера можно складывать.
Суммой двух таких матриц А и В называется матрица С, элементы которой равны сумме соответствующих элементов матриц А и В. Символически будем записывать так: А+В=С.
Пример.
/>
Легко видеть, что сложение матриц подчиняется переместительному и сочетательному законам:
А+В=В+А
(А+В)+С=А+(В+С).
Нулевая матрица при сложении матриц выполняет роль обычного нуля при сложении чисел: А+0=А.
Вычитание матриц.
Разностью двух матриц А и В одинакового размера называется матрица С, такая, что
С+В=А
Из этого определения следует, что элементы матрицы С равны разности соответствующих элементов матриц А и В.
Обозначается разность матриц А и В так: С=А – В.
Пример.
/>
3. Умножение матриц
Рассмотрим правило умножения двух квадратных матриц второго порядка.
/>
Произведением матрицы А на матрицу В называется матрица С=АВ.
Правила умножения прямоугольных матриц:
Умножение матрицы А на матрицу В имеет смысл в том случае, когда число столбцов матрицы А совпадает с числом строк в матрице В.
В результате умножения двух прямоугольных матриц получается матрица, содержащая столько строк, сколько строк было в первой матрице и столько столбцов, сколько столбцов было во второй матрице.
/>
4. Умножение матрицы на число
При умножении матрицы A на число a все числа, составляющие матрицу A, умножаются на числоa. Например, умножим матрицу /> на число 2. Получим />, т.е. при умножении матрицы на число множитель «вносится» под знак матрицы.
Транспонирование матрицы
Транспонированная матрица – матрица AТ, полученная из исходной матрицы A заменой строк на столбцы.
Формально, транспонированная матрица для матрицы A размеров m*n– матрица ATразмеров n*m, определённая как AT[i, j] = A [j, i].
Например,
/>
Свойства транспонированных матриц
1. (AT)T= A
2. (A + B)T = AT+ BT
3. (AB)T= BTAT
4. detA = detAT
Список литературы
Баврин, Матросов В.Л. Высшая математика: Учебник для студентов ВУЗов – М.: 2002.
Беллман Р. Введение в теорию матриц. – М.: Мир, 1969
Дж. Голуб, Ч. Ван Лоун Матричные вычисления. – М.: Мир, 1999.