Реферат по предмету "Математика"


Использование дифференциальных уравнений в частных производных для моделирования реальных процес

--PAGE_BREAK--
удовлетворяющее однородным граничным условиям

                                              (9)

и начальным условиям

                                                 (10)

Уравнение (1) линейно и однородно, поэтому сумма частных решений также является решением этого уравнения. Имея достаточно большое число частных решений, можно попытаться при помощи суммирования их с некоторыми коэффициентами найти искомое решение.

Поставим основную вспомогательную задачу: найти решение уравнения


не равное тождественно нулю, удовлетворяющее однородным граничным условиям

                                                 (11)

и представимое в виде произведения


                                            (12)

где
X
(
x
) – функция только переменного
x
,
T
(
t
) – функция только переменного
t
.

Подставляя предполагаемую форму решения (12) в уравнение (1), получим:



или, после деления на XT,

                                                (13)
Чтобы функция (12) была решением уравнения (1), равенство (13) должно удовлетворяться тождественно, т. е. 0 ‹ х ‹ , t› 0. Правая часть равенства (13) является функцией только переменного t, а левая – только х. Фиксируя, например, некоторое значение х и меняя t(или наоборот), получим, что правая и левая части равенства (13) при изменении своих аргументов сохраняют постоянное значение

                                        (14)

где  – постоянная, которую для удобства последующих выкладок берем со знаком минус, ничего не предполагая при этом о ее знаке.

Из соотношения (14) получаем обыкновенные дифференциальные уравнения для определения функций  X(x) и T(t)

                            (15)

                            (16)

Граничные условия (11) дают:



Отсюда следует, что функция X(x) должна удовлетворять дополнительным условиям:

X(0) = X() = 0,                                                 (17)
Так как иначе мы имели бы


в то время как задача состоит в нахождении нетривиального решения. Для функции T(t) в основной вспомогательной задаче никаких дополнительных условий нет.

Таким образом, в связи с нахождением функции X(x) мы приходим к простейшей задаче о собственных значениях:
найти те значения параметра , при которых существуют нетривиальные решения задачи:
                                                 (18)

а также найти эти решения.Такие значения параметра  называются собственными значениями, а соответствующие им нетривиальные решения – собственными функциями задачи (18). Сформулированную таким образом задачу часто называют задачей Штурма – Лиувилля.

Рассмотрим отдельно случаи, когда параметр  отрицателен, равен нулю или положителен.

1.               При  ‹ 0 задача не имеет нетривиальных решений. Действительно, общее решение уравнения (15) имеет вид



Граничные условия дают:

Х (0) = С1 + С2 = 0;



т. е.



Но в рассматриваемом случае  – действительно и положительно, так что . Поэтому

С1 =0, С2 = 0

и, следовательно,

Х (х)0.

2.               При  = 0 также не существует нетривиальных решений. Действительно, в этом случае общее решение уравнения (15) имеет вид

Х (х) = С1х + С2.

Граничные условия дают:



т. е. С1 = 0 и С2 = 0 и, следовательно,

Х (х)0.

3.                При  › 0 общее решение уравнения может быть записано в виде



Граничные условия дают:



Если Х(х) не равно тождественно нулю, то D20, поэтому

                                                 (19)

или



где n— любое целое число. Следовательно, нетривиальные решения задачи (18) возможны лишь при значениях



Этим собственным значениям соответствуют собственные функции



где Dn– произвольная постоянная.

Итак, только при значениях , равных

                                                      (20)

существуют нетривиальные решения задачи (11)

                                                (21)

определяемые с точностью до произвольного множителя, который мы положили равным единице. Этим же значениям nсоответствуют решения уравнения (9)

                                   (22)

где Anи Bn– произвольные постоянные.

Возвращаясь к задаче (1), (9), (10), заключаем, что функции

                        (23)

являются частными решениями уравнения (1), удовлетворяющими граничным условиям (11) и представимыми в виде произведения (12) двух функций, одна из которых зависит только от х, другая – от t. Эти решения могут удовлетворить начальным условиям (10) нашей исходной задачи только для частных случаев начальных функций j(x) и y(x).

Обратимся к решению задачи (1), (9), (10) в общем случае. В силу линейности и однородности уравнения (1) сумма частных решений

                       (24)

также удовлетворяет этому уравнению и граничным условиям (9). Начальные условия позволяют определить Anи Bn. Потребуем, чтобы функция (24) удовлетворяла условиям (10)

                (25)

Из теории рядов Фурье известно, что произвольная кусочно-непрерывная и кусочно-дифференцируемая функция f(x), заданная в промежутке  , разлагается в ряд Фурье

                                         (26)

где    

                                            (27)

Если функции j(x) и  y(x) удовлетворяют условиям разложения в ряд Фурье, то

                   (28)

                  (29)

Сравнение этих рядов с формулами (25) показывает, что для выполнения начальных условий надо положить

                                       (30)

чем полностью определяется функция (24), дающая решение исследуемой задачи.

Итак, мы доказали, что ряд (24), где коэффициенты Anи Bnопределены по формуле (30), если он допускает двукратное почленное дифференцирование, представляет функцию u(x, t), которая является решением уравнения (1) и удовлетворяет граничным  и начальным условиям (9) и (10).

Замечание.Решая рассмотренную задачу для волнового уравнения другим методом, можно доказать, что ряд (24) представляет решение и в том случае, когда он не допускает почленного дифференцирования. При этом функция   должна быть дважды дифференцируемой, а   — один раз дифференцируемой.
    продолжение
--PAGE_BREAK--Глава 2. УРАВНЕНИЯ  ПАРАБОЛИЧЕСКОГО  ТИПА
§2.1. Задачи, приводящие к уравнениям гиперболического типа.
2.1.1.             
Уравнение распространения тепла в стержне.
Рассмотрим однородный стержень длины . Будем предполагать, что боковая поверхность стержня теплонепроницаема и что во всех точках поперечного сечения стержня температура одинакова. Изучим процесс распространения тепла в стержне.

Расположим ось Ох так, что один конец стержня будет совпадать с точкой х = 0, а другой – с точкой х = .








Рис. 2.1.

Пусть u (x, t) – температура в сечении стержня с абсциссой х в момент  t. Опытным путем установлено, что скорость распространения тепла, т. е. количество тепла, протекающего через сечение с абсциссой х за единицу времени, определяется формулой

                                                (1)

где S – площадь сечения рассматриваемого стержня, k – коэффициент теплопроводности.

Рассмотрим элемент стержня, заключенный между сечениями с абсциссами х1 и х2 (х2 – х1 = х). Количество тепла, прошедшего через сечение с абсциссой х1 за время t, будет равно

                                                   (2)

то же самое с абсциссой х2:

                                                  (3)

Приток Q1 —   Q2 в элемент стержня за время t будет равняться:

                       (4)

Этот приток тепла за время t затратился на повышение температуры элемента стержня на величину u:



или

                                       (5)

где с – теплоемкость вещества стержня,  – плотность вещества стержня (xS – масса элемента стержня).

Приравнивая выражения (4) и (5) одного и того же количества тепла , получим:

 

Это и есть уравнение распространения тепла (уравнение теплопроводности) в однородном стержне.

Чтобы решение уравнения (6) было вполне определено, функция u (x, t)  должна удовлетворять краевым условиям, соответствующим физическим условиям задачи. Краевые условия для решения уравнения (6) могут быть различные. Условия, которые соответствуют так называемой первой краевой задаче для , следующие:

u (x, 0) = φ(x),                                                     (7)

u (0, t) = ψ1(t),                                                   (8)

u (, t) = ψ2(t).                                                  (9)

Физическое условие (7) (начальное условие) соответствует тому, что при  в разных сечениях стержня задана температура, равная φ(x). Условия (8) и (9) (граничные условия) соответствуют тому, что на концах стержня при х = 0 и при х =  поддерживается температура, равная ψ1(t) и ψ2(t) соответственно.

Доказывается, что уравнение (6) имеет единственное решение в области  , удовлетворяющее условиям (7) – (9).
2.1.2. Распространение тепла в пространстве.
Рассмотрим процесс распространения тепла в трехмерном пространстве. Пусть u (x, y, z, t) – температура в точке с координатами (x, y, z) с момент времени t. Опытным путем установлено, что скорость прохождения тепла через площадку s, т. е. количество тепла, протекающего за единицу времени, определяется формулой (аналогично формуле  (1))

                                               (10)

где k – коэффициент теплопроводности рассматриваемой среды, которую мы считаем однородной и изотропной, n – единичный вектор, направленный по нормали к площадке  s в направлении движения тепла. Таким образом, можем записать:



где  – направляющие косинусы вектора n, или



Подставляя выражение  в формулу (10), получаем:

Q = -k n grad u s.

Количество тепла, протекающего за время ∆t через площадку ∆s, будет равно:

Qt = -k n grad u t s.

Вернемся к поставленной задаче. В рассматриваемой среде выделим малый объем V, ограниченный поверхностью S. Количество тепла, протекающего через поверхность S, будет равно:

                                   (11)

где n – единичный вектор, направленный по внешней нормали к поверхности S. Очевидно, что формула (11) дает количество тепла, поступающего в объем V (или уходящего из объема V) за время t. Количество тепла, поступившего в объем V, идет на повышение температуры вещества этого объема.

Рассмотрим элементарный объем υ. Пусть за время t его температура поднялась на u. Очевидно, что количество тепла, затраченное на это повышение температуры элемента υ, будет равно



где с – теплоемкость вещества, ρ – плотность. Общее количество тепла, затраченное на повышение температуры в объеме V за время t, будет



Но это есть тепло, поступающее в объем V за время t; оно определено формулой (11). Таким образом, имеет место равенство



Сокращая на t, получаем:

                                (12)

Поверхностный интеграл, стоящий в левой части этого равенства, преобразуем по формуле Остроградского (в векторной форме, где F – дивергенция векторного поля,  – замкнутая поверхность)



полагая F = k grad u:



Заменяя двойной интеграл, стоящий в левой части равенства (12), тройным интегралом, получим:

 

Применив теорему о среднем к тройному интегралу, стоящего слева, получим :

                            (14)

где P (x, y, z) – некоторая точка объема V.

Так как мы можем выделить произвольный объем V в трехмерном пространстве, где происходит распространение тепла, и так как мы предполагаем, что подынтегральная функция в равенстве (13) непрерывна, то равенство (14) будет выполняться в каждой точке пространства. Итак,

                                          (15)

Но



Подставляя в уравнение (15), получаем:

                              (16)

Если k – постоянное, то



и уравнение (15) в этом случае дает:



или, положив

                                     (17)

Коротко уравнение (17) записывается так:



где u – оператор Лапласа. Уравнение (17) и есть уравнениетеплопроводности в пространстве. Для того чтобы найти единственное решение, отвечающее поставленной задаче, нужно задать краевые условия.

Пусть имеем тело , поверхность которого . В этом теле рассматривается процесс распространения тепла. В начальный момент температура тела задана. Это соответствует тому, что известно значение решения при t = 0 – начальное условие:

u (x, y, z, 0) =  φ(x, y, z).                                                 (18)

Кроме того, должна быть известна температура в любой точке М поверхности  тела в любой момент времени t – граничное условие:

u (М, t) =  ψ(М, t).                                                  (19)

(Возможны и другие граничные условия.)

Если искомая функция u (x, y, z, t) не зависит от z, что соответствует тому, что температура не зависит от z, то получаем уравнение:

                                           (20)

-                уравнение распространения тепла на плоскости. Если рассматривается распространения тепла в плоской области D с границей С, то граничные условия, аналогично (18) и (19), формулируются так:

u (x, y, 0) = φ(x, y),

u (М, t) = ψ(М, t),

где φ и ψ – заданные функции, М – точка границы С.

Если же функция u не зависит ни от z, ни от y, то получаем уравнение



— уравнение распространения тепла в стержне.
§2.2. Температурные волны.
Задача о распространении температурных волн в почве является одним из первых примеров приложения математической теории теплопроводности, развитой Фурье, к изучению явлений природы.

Температура на поверхности земли носит, как известно, ярко выраженную суточную и годовую периодичность. Обратимся к задаче о распространении периодических температурных колебаний в почве, которую будем рассматривать как однородное полупространство . Эта задача является характерной задачей без начальных условий, так как при многократном повторении температурного хода на поверхности влияние начальной температуры будет меньше влияния других факторов, которыми мы пренебрегаем (например, неоднородность почвы). Таким образом, приходим к следующей задаче:

найти ограниченное решение уравнения теплопроводности

                            (1)

удовлетворяющее условию

u (0, t) = A cos t.                                                         (2)

Предполагается, что функции u (x, t) и m (t) ограничены всюду, т.е.



Запишем граничное условие в виде

                                               (2’)

Из линейности уравнения теплопроводности следует, что действительная и мнимая части некоторого комплексного решения уравнения теплопроводности каждая в отдельности удовлетворяет тому же решению.

Если найдено решение уравнения теплопроводности, удовлетворяющее условию (2’), то его действительная часть удовлетворяет условию (2), а мнимая – условию



Итак, рассмотрим задачу:

                                            (3)

Ее решение будем искать в виде

                                        (4)

где  и   — неопределенные пока постоянные.

Подставляя выражение (4) в уравнение (3) и граничное условие, находим:

,

откуда



Для  u (x, t) имеем:

                            (5)

Действительная часть этого решения

                  (6)

удовлетворяет уравнению теплопроводности  и граничному условию (2). Формула (6) в зависимости от выбора знака определяет не одну, а две функции. Однако только функция, соответствующая знаку минус, удовлетворяет требованию ограниченности. Таким образом, решение поставленной задачи получаем в виде

                            (7)

На основании полученного решения можно дать следующую характеристику процесса распространения температурной волны в почве. Если температура поверхности длительное время периодически меняется, то в почве также устанавливаются колебания температуры с тем же периодом, причем:

1.Амплитуда колебаний экспоненционально убывает с глубиной

,

т.е. если глубины растут в арифметической прогрессии, то амплитуды убывают в геометрической прогрессии (первый закон Фурье).

2. Температурные колебания в почве происходят со сдвигом фазы. Время  запаздывания максимумов (минимумов) температуры в почве от соответствующих моментов на поверхности пропорционально глубине



(второй закон Фурье).

3. Глубина проникновения тепла в почву зависит от периода колебаний температуры на поверхности. Относительное изменение температурной амплитуды равно



Эта формула показывает, что чем меньше период, тем меньше глубина проникновения температуры. Для температурных колебаний с периодами Т1 и Т2 глубины x1 и x2, на которых происходит одинаковое относительное изменение температуры, связаны соотношением



(третий закон Фурье). Так, например, сравнение суточных и годовых колебаний, для которых Т2 = 365 Т1, показывает, что



т.е. что глубина проникновения годовых колебаний при одинаковой амплитуде на поверхности была бы в 19,1 раза больше глубины проникновения суточных колебаний.

Следует, однако, иметь в виду, что изложенная здесь теория относится к распространению тепла в сухой почве или горных породах. Наличие влаги усложняет температурные явления в почве, при замерзании происходит выделение скрытой теплоты, не учитываемое этой теорией.

Температуропроводность является одной из характеристик тела, важных для изучения его физических свойств, а также для различных технических расчетов. На изучении распространения температурных волн в стержнях основан один из лабораторных методов определения температуропроводности.

Пусть на конце достаточно длинного стержня поддерживается периодическая температура  (t). Представив эту функцию в виде ряда Фурье







где Т – период, и взяв температурные волны, соответствующие каждому слагаемому, получим, что температура u (x, t) для любого x будет периодической функцией времени и ее n-я гармоника равна





или



Эта формула показывает, что если произвести измерение температуры в каких-нибудь двух точках, x1 и x2, за полный период, то, находя коэффициенты an (x1), bn (x1), an (x2), bn (x2) при помощи гармонического анализа, можно определить коэффициент температуропроводности стержня а2.
    продолжение
--PAGE_BREAK--Глава 3. МОДЕЛИРОВАНИЕ С ПОМОЩЬЮ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ  В ЧАСТНЫХ ПРОИЗВОДНЫХ.
§3.1. Дифракция излучения на сферической частице.
Перейдем теперь к рассмотрению задачи о дифракции электромагнитных волн на сферической частице. Как известно, в случае монохроматического излучения частоты  система уравнений Максвелла сводится к системе уравнений для напряженностей электрического  и магнитного  полей:

                                      (1)

где   — волновое число для пустоты; с0– скорость света в вакууме. Обозначим через k= k0 m– волновое число в среде с комплексным показателем преломления m= n– ix. Показатели преломления и поглощения (nи x) называются оптическими постоянными, их зависимость от wобычно известна из эксперимента.

Задача о разыскании шести неизвестных функций () может быть сведена к задаче о разыскании двух функций – электрического и магнитного потенциалов (U1и U2), которые являются решениями колебательного уравнения. Получим их по методу Фурье в виде бесконечных сумм частных решений с неопределенными коэффициентами, которые определяются «сшиванием» значений внутри и снаружи сферы. Через найденные потенциалы составляющие полей легко вычисляются дифференцированием.

Пусть на сферическую частицу радиуса а, центр которой совмещен с началом координат, в отрицательном напрвлении оси Ozпадает линейно поляризованная плоская волна (рис 4.). Ось Oxявляется направлением электрических колебаний, а ось Oy– магнитных. Электрическое и магнитное поля в падающей волне описываются формулами:

                          (2)

где ka= mak– величина волнового вектора падающего излучения во внешней среде с вещественным показателем преломления ma.



Рис. 3.1. Сферическая система координат для изучения
дифракции света на шаре.

В дальнейшем в промежуточных формулах всюду будет опущен множитель Е0, который будет внесен в окончательные выражения для полей.

В сферической системе координат, в которой естественно решать данную задачу, уравнения Максвелла (1) имеют вид:

 

                                 (5)

                              (6)

                             (7)

                                    (8)

Падающее поле возбуждает в шаре внутреннее поле, а во внешнем пространстве – дифрагированное поле, причем все эти поля должны иметь оду и ту же временную зависимость, т.е. частоту. Произвольное электромагнитное поле будем представлять как суперпозицию двух типов колебаний. Первый тип назовем электрическими колебаниями и будем считать, что у этих колебаний радиальная составляющая магнитного поля во всех точках равна нулю:

                                                     (9)

Второй тип – магнитные колебания:

                                                     (10)
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.