--PAGE_BREAK--4. Модель равновесных цен
Рассмотрим теперь балансовую модель, двойственную к модели Леонтьева – так называемую модель равновесных цен. Пусть, как и прежде, А – матрица прямых затрат, х = (х1, х2, …, хn)Т – вектор валового выпуска. Обозначим через р = (р1, р2, …, рn)Т вектор цен, i координата которого равна цене единицы продукции i-й отрасли; тогда, например, первая отрасль получит доход, равный р1 х1. Часть своего дохода эта отрасль потратит на закупку продукции у других отраслей. Так, для выпуска единицы продукции, ей необходима продукция первой отрасли в объеме а11, второй отрасли в объеме а21, и т.д., n-й отрасли в объеме аn1. На покупку этой продукции ею будет затрачена сумма, равная а11 р1 + а21 р2 + … + аn1 рn. Следовательно, для выпуска продукции в объеме х1 первой отрасли необходимо потратить на закупку продукции других отраслей сумму, равную х1(а11р1+а21р2+…+ аn1рn). Оставшуюся часть дохода, называемую добавленной стоимостью, мы обозначим через V1 (эта часть дохода идет на выплату зарплаты и налогов, предпринимательскую прибыль и инвестиции).
Таким образом, имеет место следующее равенство:
х1р1 = х1(а11р1+а21р2+…+ аn1рn) + V1.
Разделив это равенство на х1 получаем:
р1 = а11 р1 + а21 р2 + … + аn1 рn + v1,
где v1 = V1/х1 – норма добавленной стоимости (величина добавленной стоимости на единицу выпускаемой продукции). Подобным же образом получаем для остальных отраслей
р2 = а12 р1 + а22 р2 + … + аn2 рn + v2,
рn = а1n р1 + а2n р2 + … + аnn рn + vn.
Найденные равенства могут быть записаны в матричной форме следующим образом:
р = АТр + v,
где v = (v1, v2, …, vn)Т – вектор норм добавленной стоимости. Как мы видим, полученные уравнения очень похожи на уравнения модели Леонтьева, с той лишь разницей, что х заменен на р, у – на v, А – на АТ.
Вывод
Модель равновесных цен позволяет, зная величины норм добавленной стоимости, прогнозировать цены на продукцию отраслей. Она также позволяет прогнозировать изменение цен и инфляцию, являющиеся следствием изменения цены одной из отраслей.
Балансовый метод – это метод взаимного сопоставления ресурсов (материальных, трудовых, финансовых) и потребностей в них. Среди множества разновидностей балансового метода наиболее распространен межотраслевой баланс, увязывающий источники и направления использования ресурсов. Как правило, при применении балансового метода производятся вариантные расчеты с помощью вычислительной техники
Межотраслевой баланс представляет собой экономико-математическую модель народного хозяйства, что позволяет проводить многовариантные расчеты структуры общественного производства по заданному объему и структуре конечного продукта. Это имеет важное значение на предварительной стадии составления плана для осуществления вариантов расчетов пропорций, темпов и отраслевой структуры экономики, а также на последующих стадиях планирования для повышения уровня сбалансированности отраслей и анализа межотраслевых связей. Таким образом, разработка межотраслевого баланса является одной из предпосылок развития методологии оптимального планирования.
Данные полученные по модели межотраслевого баланса, дают возможность судить о тенденциях развития технического прогресса, о насыщении экономики производственными фондами, капитальными вложениями, трудовыми ресурсами и т.д. Такой анализ возможен на основе сопоставления матриц прямой и полной фондо-, капитало-, трудоемкости и др.
Межотраслевой баланс, разработанный в трудовых единицах, дает информацию, необходимую для построения рациональной системы цен.
Итак, балансовый метод заключает в себе использование балансов для взаимного сопоставления ресурсов (материальных, трудовых, финансовых) и потребностей в них.
Задача 1
Компания производит продукцию двух видов А и В. Обе требуют работы двух цехов сборочного и отделочного. Сведения о производстве:
Цех
Продукция
Вместе необходимо рабочих часов
А
В
Сборочный
3
5
15
Отделочный
5
2
10
Валовая прибыль на единицу
5
32
Компания заинтересована в наибольшей прибыльности этих комбинаций продукции. Найти сколько надо производить продукции А и В, чтобы валовая прибыль была максимальная.
Решение
Введем переменные:
х1 – количество продукции вида А;
х2 – количество продукции вида В.
Строим математическую модель:
Fмах = 5х1 + 32х2 при условиях:
3х1 + 5х2 ≤ 15;
5х1 + 2х2 ≤ 10.
х1 ≥ 0, х2 ≥ 0, т.к. продукция выпускаемая не может быть отрицательной.
Задачу можно решить графическим методом и можно решить или проверить симплекс-методом.
Для решения графическим методом запишем граничные прямые:
1) 3х1 + 5х2 = 15;
2) 5х1 + 2х2 = 10.
Строим граничные прямые на плоскости, но для этого найдем точки для построения прямых:
1) х2 = 0; х1 = 5; х1 = 0; х2 = 3;
2) х2 = 0; х1 = 2; х1 = 0; х2 = 5.
ОДЗ – многоугольник ОАВСD.
Для определения ОДЗ (области допустимых значений) необходимо найти направление полуплоскостей.
Для испытания берем точку О(0;0) и подставляем её координаты в неравенство (1) и (2), если неравенство удовлетворяется, то полуплоскость направлена к точке (0;0). При наложении полуплоскостей друг на друга получим ОДЗ.
Строим вектор целевой функции С, перпендикулярно к нему проводим линию уровня (пунктирная линия). Перемещаем линию уровня по ОДЗ в направлении вектора целевой функции С и самая дальняя точка от начала координат – это точка А(0;3) в ней хопт.
Подставим координаты (0;3) в целевую функцию и получим её максимальное значение
Fmах = 5*0 + 3*32 = 96 ед. стоимости в точке А(0;3).
Для получения прибыли равной 96 ед.ст. необходимо включить в план продукцию типа В.
Задача 2
Фирма дополнительно освоила выпуск продукции четырех видов В1, В2, В3, В4. Для выпуска это продукции необходимо сырьё четырех видов А1, А2, А3, А4, которое фирма может ежемесячно покупать в ограниченном количестве. Количество сырья каждого вида, которое необходимо для производства каждого вида ассортимента продукции, а также ежемесячное поступление каждого вида сырья приведены в таблице.
Виды сырья
Ежемесячное поступление сырья
Затраты сырья на единицу каждого изделия
В1
В2
В3
В4
А1
1290
2
4
6
8
А2
990
2
2
6
А3
620
1
1
2
А4
300
1
1
Прибыль от реализации единицы изделия
8
10
12
18
Построить математическую модель и определить, какой ассортимент продукции и в каком количестве должна производить фирма, чтобы прибыль от реализации была максимальной.
Решение
Введем переменные:
х1 – количество продукции типа В1;
х2 – количество продукции типа В2;
х3 – количество продукции типа В3;
х4 – количество продукции типа В4.
Строим математическую модель задачи:
Fmах = 8х1 + 10х2 + 12х3 + 18х4
при условиях:
2х1 + 4х2 +6х3 + 8х4 ≤ 2110;
2х1 + 2х2 + 0*х3 + 6х4 ≤ 1810;
0*х1 + х2 + х3 + 2х4 ≤ 1440;
х1 + 0*х2 + х3 + 0*х4 ≤ 1120.
хj ≥ 0; j = 1,4.
Приводим систему ограничений к каноническому виду:
2х1 + 4х2 +6х3 + 8х4 + х5 = 2110;
2х1 + 2х2 + 6х4 + х6 = 1810;
х2 + х3 + 2х4 + х7 = 1440;
х1 + х3 + х8 = 1120.
хj ≥ 0; j = 1,8.
Приводим систему ограничений к виду удобному для решения. Для этого проверим наличие единичного базиса в системах ограничений и так как он есть, то решаем задачу прямым симплекс-методом.
№ оп.пл.
Базис
С
bi
8
10
12
18
х1
х2
х3
х4
х5
х6
х7
х8
х5
2110
2
4
6
1
х6
1810
2
2
6
1
х7
1440
1
1
2
1
х8
1120
1
1
1
Fj — Сj
-8
-10
-12
-18
х4
18
263,75
0,25
0,5
0,75
1
0,125
х6
227,5
-1
-4,5
-0,75
1
х7
912,5
-0,5
-0,5
-0,25
1
х8
1120
1
1
1
Fj — Сj
4747,5
-3,5
-1
1,5
2,25
х4
18
150
1
1
0,5
-0,5
х1
8
455
1
-2
-9
-1,5
2
х7
1140
-1
-5
-1
1
1
х8
665
2
10
1,5
-2
1
Fj — Сj
6340
-8
-30
0,1667
7
х3
12
50
0,3333
1
0,3333
0,1667
0,1667
х1
8
905
1
1
3
0,5
0,5
х7
1390
0,6667
1,6667
0,1667
0,1667
1
х8
165
-1,333
-3,333
-0,333
-0,333
1
Fj — Сj
7840
2
10
2
2
Ответ: Fmах = 7840 ед. стоимости; хопт = (905; 0; 50; 0; 0; 0; 1390; 165).
Для получения прибыли равной 7840 ед. стоимости необходимо включить в план продукцию первого и третьего вида в количествах:
В1 = 905 ед.;
В3 = 50 ед.,
При этом остались недоиспользованные ресурсы в количествах:
А3 = 1390 ед.
А4 = 165 ед.
продолжение
--PAGE_BREAK--Задача 3
Для откорма группы животных на ферме необходимо наличие в ежедневном рационе не менее как В1, единиц питательных веществ В2 и т.д. – не менее как Вm. Указанные питательные вещества содержатся в n разных кормовых продуктах, которые можно закупить.
Составить такой ежедневный кормовой рацион, при котором будет удовлетворена потребность в питательных и затраты на откорм будут минимальны.
Питательные вещества
Кормовые продукты
Суточная необходимость
Вi = В0 + n1
В1
В2
В3
В4
А1
1
2
2
1
64 + 9
А2
3
1
1
39 + 9
А3
2
1
3
35 + 9
Стоимость 1 кг кормов
2
1
3
4
Составить математическую модель и решить ЗЛП.
Решение
Введем переменные:
х1 – количество кормового продукта В1
х2 – количество кормового продукта В2
х3 – количество кормового продукта В3
х4 – количество кормового продукта В4
Строим математическую модель:
Fmах = 2х1 + х2 + 3х3 + 4х4
при условиях:
х1 + 2х2 + 2х3 + х4 ≥ 155;
3х2 + х3 + х4 ≥ 130;
2х1 + х2 + 3х4 ≥ 126;
хj ≥ 0; j = 1,4.
Приведем систему ограничений к каноническому виду:
х1 + 2х2 + 2х3 + х4 – х5 = 155;
3х2 + х3 + х4 – х6 = 130;
2х1 + х2 + 3х4 – х7 = 126;
хj ≥ 0; j = 1,7.
Приведем систему ограничений к виду удобному для решения:
х1 + 2х2 + 2х3 + х4 – х5 + х8 = 155;
3х2 + х3 + х4 – х6 + х9 = 130;
2х1 + х2 + 3х4 – х7 + х10 = 126;
хj ≥ 0; j = 1,10.
Переменные х8, х9, х10 являются искусственными и они введены на знак «=», поэтому для корректировки задачи эти переменные вводят в целевую функцию с коэффициентом +М.
Fmin = 2х1 + х2 + 3х3 + 4х4 + Мх8 + Мх9 + Мх10.
Задача решается модифицированным симплекс-методом (метод искусственного базиса).
№
о/п
Ба-
зис
С
bi
С1=2
С2=1
С3=3
С4=4
С5=0
С6=0
С7=0
С8=М
С9=М
С10=М
Х1
Х2
Х3
Х4
Х5
Х6
Х7
Х8
Х9
Х10
х8
М
155
1
2
2
1
-1
1
х9
М
130
1
1
-1
1
х10
М
126
2
1
3
-1
1
Fj — Сj
-2
-1
-3
-4
М
411
3
6
3
5
-1
-1
-1
х8
М
1
4/3
1/3
-1
2/3
1
х2
1
1
1/3
1/3
-1/3
х10
-1/3
8/3
1/3
-1
1
Fj — Сj
-2
-8/3
-
-1/3
М
151
3
1
3
-1
1
-1
х8
М
27
>
-1
-1
1/2
1/2
1
х2
1
1
1/3
1/3
-1/3
х1
2
1
-1/6
4/3
1/6
-1/2
Fj — Сj
126
-3
-1
-1
М
27
3/2
-1
-1
1/2
1/2
х3
3
18
1
-2/3
-2/3
1/3
х2
1
1
5/9
2/9
-4/9
-1/9
х1
2
1
11/9
-1/9
2/9
-4/9
Fj — Сj
180
-3
-2
1
х6
54
3
-2
-2
1
1
х2
1
1
4/3
-1/3
-2/3
1/3
х1
2
1
-2/3
5/3
1/3
-2/3
Fj — Сj
126
-3
-1
-1
Каждый опорный план проверяем на оптимальность.
В 5-м опорном плане в индексной строке все разности Fj — Сj ≤ 0, следовательно этот план является оптимальным (F→min).
Можно записать ответ:
Fmin = 126 ед.стоимости,
Хопт = (97/3 = 32,33; 184/3 = 61,33; 0; 0; 0; 54).
Для получения минимальной себестоимости на изготовление кормовой продукции равной 126 ед. ст. необходимо включить в план кормовые продукты 1-го В1 = 32,33 ед. и второго вида В2 = 61,33 ед. и остались недоиспользованы ресурсы по А3 в количестве 54 ед.
продолжение
--PAGE_BREAK--