Реферат по предмету "Математика"


АРТ-моделирование на фондовом рынке

--PAGE_BREAK--Проблемы, связанные с формализацией модели

Одним из наиболее существенных недостатков теории арбитражного ценообразования является неопределенность факторов, влияющих на доходность. Следовательно, основной проблемой теоретического этапа АРТ-моделирования является определение факторного подмножества.

Решение данной проблемы предполагает ответы на ряд вопросов:

Сколько и какие факторы войдут в многофакторную модель АРТ?

Данный вопрос актуален при построении не только модели АРТ, но и любой многофакторной модели, описывающей фондовый рынок.

Совершенно ясно, что не всё многообразие доступных для анализа показателей влияют на поведение цены актива. Однако понять, какие именно это факторы и сколько их, не так просто. Строить же модель сразу по всем доступным факторам не конструктивно — незначимые факторы могут значительно искажать любые результаты, полученные с помощью модели.

В исследовательских работах экономистов, посвященных анализу в области ценообразования акций на фондовом рынке, приводятся различные экономические индикаторы в качестве факторов, определяющих факторное подмножество в модели[8].

Действительно, набор факторов, используемых в анализе рынка ценных бумаг, очень широк. Среди них, как правило, выделяют:

/>                  макроэкономические показатели (темпы роста и прироста валового внутреннего дохода, уровень инфляции, цены на нефть и другие);

/>                  процентные ставки, разница между процентными ставками;

/>                  микроэкономические показатели работы компании (ставка дивидентов, соотношение «цена – доход», соотношение «балансная стоимость – рыночная стоимость»);

/>                  рыночные показатели ценной бумаги (размер капитализации, изменчивость дохода, ликвидность);

/>                  принадлежность к отрасли и т. д.

         Однако все эти факторы имеют некоторые общие характеристики. Во-первых, они отражают показатели общей экономической активности (промышленное производство, общие продажи и ВНП). Во-вторых, они отражают инфляцию. В-третьих, они содержат разновидности фактора процентной ставки (либо разность, либо саму ставку).

Таким образом, при определении факторов, влияющих на доходность, инвестор должен исходить из общеэкономических и отраслевых показателей.  Следует отметить, что выбор факторов для расчета ставки дисконтирования с помощью модели АРТ индивидуален для каждого предприятия, а значит, факторный набор может быть расширен на микроуровне.

 Одинаковы ли факторы риска для разных активов?

Второй вопрос является более тонким, чем первый. И более сложным. Если для решения первой проблемы можно было бы предложить интуитивное решение — отобрать несколько основных макроэкономических или отраслевых показателей, влияющих, по интуитивным ощущениям исследователя, на цены акций,  то для решения второй проблемы этого сделать нельзя. Ведь поведение каждого актива, вообще говоря, индивидуально. Поэтому состав и количество факторов риска у каждого актива могут быть своими. Из каких соображений одному активу поставить в соответствие один набор факторов, а другому — другой?

 Не меняется ли состав и количество факторов риска во времени?

Предположим, что каким-то образом удалось найти состав и количество факторов влияния для конкретного актива. Может ли через определённый интервал времени факторная структура измениться? Наши результаты исследований свидетельствуют о нестационарном характеревзаимосвязей на фондовом рынке. Это значит, что модель применима лишь в течение определённого срока, после которого возникает необходимость строить её заново. При этом факторы риска могут быть уже другими.

Могут ли факторы влиять на цену только через определённое время?

В самом вопросе уже заложен ответ на него — конечно, могут. Так, подорожание нефти может сказываться на ценах акций транспортных компаний не сразу, а какое-то время спустя. Если факторов несколько, то у каждого фактора может быть своё характеристическое время. Как найти эти времена? 

  Как ранжировать компании сразу по нескольким показателям?

Построив модель САРМ для множества активов, для выбора наиболее привлекательных активов была возможность сортировать их по чувствительности, систематическому или несистематическому риску. В многофакторном случае актив характеризуется набором систематических рисков, связанных с каждым фактором. Как анализировать их все?

Итак, построение модели арбитражного ценообразования, используемой для определения стоимости ценных бумаг, сопряжено с субъективным отношением инвестора к влияющим факторам. Поскольку инвестор в своем исследовании самостоятельно определяет круг показателей, по его мнению, тесно связанных с доходностью того или иного актива, и методы их анализа, это обуславливает определенную субъективность получаемой оценки.

Проблемы практического применения методов

АРТ-моделирования

Практические возможности использования модели арбитражного ценообразования для расчета ставки дисконта в российских условиях ограничены по нескольким причинам[9].

Во-первых, это недостаток информации. АРТ требует изучения статистических данных по предприятию и конкурентам, а также динамики экономических показателей. С этой точки зрения использовать ее можно только для компаний, акции которых торгуются на фондовом рынке.

Во-вторых, это отсутствие специальных методик расчета отдельных элементов в рамках модели арбитражного ценообразования, вынуждающее использовать проверенные способы расчета ставки дисконтирования для получения более обоснованных и надежных результатов.

И, в-третьих, сложность расчетов. Учитывая первые два момента, сложность расчетов может сделать использование АРТ попросту нецелесообразным исходя из соотношения затрат труда и качества полученных результатов.

На основании рассмотренных выше достоинств и недостатков теории арбитражного ценообразования можно сделать следующие выводы.

Так, с теоретической точки зрения модель АРТ обладает неоспоримыми преимуществами перед прочими моделями фондового рынка:

/>                  Модель АРТ расщепляет факторы риска на составляющие, приближая их к условиям, в которых действует конкретный бизнес;

/>                  АРТ использует относительно более слабые упрощающие анализ предположения (по сравнению, например, с моделью оценки капитальных активов САРМ).

Однако у модели АРТ есть и существенные недостатки, которые носят как теоретический, так и практический характер, а именно:

/>                  АРТ умалчивает о конкретных систематических факторах, влияющих на риск и доходность;

/>                  АРТ требует тщательной подготовки информации и подробного анализа деятельности предприятия и конкурентов, занимаемой рыночной ниши и макроэкономических условий.

В конечном счете, построение модели АРТ является крайне трудоемким процессом и требует значительных временных затрат на подготовку исследования (то есть сбор первичных данных) и проведение необходимых расчетов, однако в силу неразвитости российского фондового рынка выполнение всех необходимых процедур в конечном счете не может гарантировать получение реальной картины динамики доходности.


Глава III. АРТ-моделирование: теория и практика
§ 1. Эконометрический подход к моделированию фондового рынка:

от общего к частному

Для выявления экономических взаимосвязей (в частности, зависимостей на фондовом рынке) широко применяется аппарат экономико-статистического моделирования. Необходимость разработки специального математического аппарата для анализа экономических процессов обусловлена спецификой задач, особенностью экономической информации, а возможность применения статистических методов в качестве инструмента анализа – тем, что проявление закономерностей в экономике носит, как правило, статистический характер. Применительно к экономическим и финансовым процессам, ста­тисти­ческие методы принято называть эконо­метрическими.

Рассмотрим основные эконометрические приемы, необходимые для проведения нашего исследования в области оценки стоимости акций.

Проведение эконометрического исследования предполагает осуществление процедур корреляционно-регрессионного анализа[10].

Корреляционный анализ выборочных данных позволяет обнаружить и измерить тесноту статистической связи между переменными, которые рассматриваются как случайные величины. В целях анализа корреляции случайных величин на основе выборки, как правило, определяют выборочные коэффициенты корреляции и проверяют статистические гипотезы о значимости корреляционной связи.

В случае взаимосвязи нескольких случайных величин x1,x2, …, xp  анализу подвергают корреляционную матрицу. В этом случае выборка представляет из себя матрицу наблюдений Х = ||хij||, i= 1, …, n, j= 1, …, p, где n— объем выборки, p— число рассматриваемых случайных величин, i— индекс наблюдения в выборке, j— индекс переменной, величина хijсоответствует i-му наблюдению над j-й переменной.

Элементами корреляционной матрицы выступают линейные парные коэффициенты корреляции, вычисляемые между переменными выборки.

Линейный парный коэффициент корреляции является мерой линейной статистической связи двух случайных величин. Выборочный коэффициент парной корреляции определяют как

   ,                     (2)

где i— индекс наблюдения в выборке, i= 1, …, n, n— объем выборки, xi, yi, i= 1, …, n— наблюдения над случайными величинами Xи Yсоответственно.

Парный коэффициент корреляции характеризует степень приближения статистической связи к линейной. Он отражает взаимосвязь случайных величин и не зависит от того, какая из величин Xи Yявляется причиной, а какая — следствием.

Коэффициент корреляции обладает следующими свойствами:

1). Коэффициент не имеет размерности, следовательно, сопоставим для различных статистических показателей;

2). Величина коэффициента корреляции лежит в пределах от -1 до +1. Значение |ρx,y| = 1 свидетельствует о том, что между переменными существует функциональная зависимость, т. е. все наблюдения лежат на одной прямой (чем ближе |ρx,y| к 1, тем ближе эта связь к функциональной); если ρx,yравен или приближается к нулю, это указывает на отсутствие линейной связи между Xи Y, хотя допустимо существование нелинейной зависимости;

3). Если значение ρx,y> 0 (коэффициент корреляции положителен), то взаимосвязь величин прямая: с ростом Х увеличивается Y. Отрицательный коэффициент корреляции говорит об обратной взаимосвязи.

Наличие связи между Xи Yможет быть обнаружено, если: а) Х есть причина Y; б) Yесть причина Х; в) если Х и Yсовместно зависимые величины; г) если Х и Yявляются следствием некоторой общей для них причины.

В практике статистического анализа имеют место случаи, когда корреляционный анализ обнаруживает существование достаточно сильной зависимости признаков, в действительности не имеющих причинно-следственной связи между собой, – такие корреляции называют ложными.

Оценка коэффициента корреляции, определенная по выборке, является случайной величиной, поэтому необходимо проверить гипотезу о значимости, т. е. проверить предположение, существенно ли коэффициент корреляции отличается от нуля, или это случайное отклонение, связанное с выборкой. Если ρx,y— коэффициент корреляции в генеральной совокупности, то нулевая гипотеза может быть как:

                                                ,

и альтернативная ей

                                                .

В качестве критерия применяют статистику, которая для выборки (х, y) из нормальной генеральной совокупности будет иметь t-распределение. Ее вычисляют по формуле:

                                               .                               (3)

Расчетное значение критерия сопоставляют с табличным значением распределения Стьюдента tα, ν, где ν— число степеней свободы, ν= n— 2, α— уровень значимости. Если получают t> tα, ν, то нулевая гипотеза отвергается и можно утверждать, что коэффициент корреляции значим. В случае t

Прикладные цели регрессионного анализа в области экономики заключаются в следующем:

1). Установить наличие статистически значимой регрессионной связи между зависимой и объясняющими переменными;

2). Определить конкретный аналитический вид связи;

3). Спрогнозировать и восстановить значения исследуемого результирующего показателя по известным значениям объясняющих переменных.

Таким образом, построение эконометрической модели является основой любого эконометрического исследования. Она выступает в качестве средства анализа и прогнозирования в различных сферах: финансовой, производственной, инвестиционной, и применяется для исследования объектов самого разного уровня – от отдельных предприятий, отраслей, регионов до страны в целом.

Регрессионная модель представляет собой один из основных типов эконометрических моделей. Она отражает зависимость случайного результирующего показателя y  от одной или нескольких детерминированных объясняющих переменных Х = (x1, x2, …, xp).

Выявление регрессионной зависимости осуществляется на основе анализа данных о наблюдениях за экономическими процессами, которые образуют выборки из генеральной совокупности. При построении эконометрических моделей желательно, чтобы все выборочные распределения используемых показателей соответствовали нормальному закону распределения.

Математическую модель регрессионной зависимости можно записать следующим образом:

                                      ,                                           (4)

где f(X)представляет собой детерминированную составляющую модели, в которой Х выступает как вектор объясняющих переменных Х=(х 1, х 2,…, х p);

ε– остаточная компонента (возмущение модели).

Детерминированная составляющая модели f(X)выражает влияние существенных факторов на зависимый показатель yи описывает условное математическое ожидание:

                          .                                       продолжение
--PAGE_BREAK--(5) 

Случайная составляющая отражает суммарное влияние всех несущественных факторов.

В данном случае нас интересует множественная линейная регрессия стоимости ценных бумаг от различных экономических факторов.

Множественной регрессией называют модель, которая включает несколько предсказывающих или объясняющих переменных. Она полнее объясняет поведение зависимой переменной и позволяет сопоставить влияние включенных в уравнение регрессии факторов.

Если регрессия – линейная, то это означает, что факторные признаки линейно влияют на поведение исследуемого показателя.

В общем виде модель множественной линейной регрессии, включающая pобъясняющих переменных х1, ..., хpимеет вид:

    ,       (6)

где β 0, β 1, ..., β p– неизвестные оцениваемые параметры регрессии;

х1, х2, …, хp— влияющие факторы;ε – остаточная компонента.

Задача оценивания в данном случае заключается в том, чтобы с помощью метода наименьших квадратов найти такие оценки b, b1, …,bp, которые минимизировали бы квадраты отклонений наблюдаемых значений зависимой переменной yiот расчетных значений, вычисленных с помощью уравнения регрессии.

Функция, значение которой минимизируют с помощью МНК:

 .     (7)

Оценки параметров регрессии, получаемые по методу наименьших квадратов, обладают статистическими свойствами несмещенности, состоятельности и эффективности.

Свойство несмещенности оценок заключается в том, что оценки параметров bj, найденные с помощью линейного МНК, не содержат систематических ошибок при оценивании. Свойство состоятельности означает, что при росте объема выборки до бесконечности с вероятностью, близкой к единице, можно утверждать, что оценки параметров bjсходятся к оцениваемому параметру βj. Наконец, МНК-оценки являются эффективными, если они характеризуются наименьшей дисперсией в классе линейных оценок.

Чтобы получаемые оценки параметров обладали данными свойствами, необходимо выполнение предпосылок (условий) регрессионного анализа Гаусса-Маркова[12]:

1. Е (ε) = 0, т. е. математическое ожидание остатков равно нулю. Невыполнение данного условия приводит к тому, что оценки параметров теряют свойство несмещенности.

2. Условие гетероскедастичности, или одинакового разброса:

D(ε) = σ2, т. е. дисперсия возмущений в модели распределена равномерно, ее величина постоянна (дисперсия не может увеличиваться с ростом числа наблюдений). Выполнение данного условия позволяет получать эффективные оценки параметров bj.

3. Условие отсутствия автокорреляции: cov(εi, εj) = 0,  i, j= 1, …, n, т. е. отдельные наблюдения остаточной компоненты некоррелированы. Оценки метода МНК модели с автокорреляцией случайной составляющей теряют эффективность. Применение МНК в данном случае приводит к существенной недооценке параметров, в связи с чем теряют свое значение процедуры проверки гипотез и обоснованность предсказаний.  

4. cov(ε, xj) = 0, j= 1, …, p, т. е. объясняющие переменные не коррелируют с возмущениями модели.


5. ε N(0, σ2), т. е. случайная составляющая в модели нормально распределена. Нормальность распределения остаточной компоненты гарантирует, что оценки метода МНК будут иметь нормальное распределение.         

Качество построенного регрессионного уравнения, выступающего в качестве результата проведенного исследования, может быть оценено с помощью ряда показателей, которые можно отнести к группе абсолютных либо относительных.

Среди абсолютных показателей качества наиболее важную роль играют следующие:

1). Средняя ошибка аппроксимации:

                           (8)                                                                      

Допустимый уровень ошибки – до 10 %.

2). Оценки дисперсий.

– Оценка общей дисперсии:

                                                             (9)

Общая дисперсия характеризует разброс значений зависимого признака относительно среднего уровня.

– Оценка объясненной дисперсии:

                                                    (10)

Объясненная дисперсия характеризует вариацию зависимого признака, объясненную построенным уравнением регрессии.


– Оценка остаточной дисперсии:

                                                        (11)

Остаточная дисперсия отражает разброс значений относительно линии регрессии (модельных значений) и может служить показателем точности воспроизведения значений зависимой переменной. В случае высокой остаточной дисперсии точность прогнозов результирующего показателя будет невелика и практическое использование построенного уравнения малоэффективным. Напротив, чем меньше остаточная дисперсия, тем больше уверенности в том, что уравнение регрессии подобрано верно.

Большое значение остаточной дисперсии может быть обусловлено неверным выбором функции или отсутствием статистической взаимосвязи между зависимой и объясняющими переменными, включенными в уравнение регрессии.

3). На практике часто используют величинустандартного отклонения от линии регрессии, называемую также стандартной ошибкой регрессии или стандартной ошибкой оценивания:

                                                                         (12)

Рассмотренные показатели качества линейной регрессионной модели являются абсолютными, поскольку размер дисперсии напрямую зависит от показателя y.

Среди относительных показателей качества регрессии основным является коэффициент детерминации.

Коэффициент детерминации вычисляют как отношение сумм квадратов:

 (13)       или   .  (14)

Коэффициент детерминации показывает долю объясненной уравнением регрессии дисперсии зависимой переменной и выражается в долях.

Коэффициент детерминации изменяется от 0 до 1. Высокое значение R2говорит о том, что включенные в уравнение регрессии факторы в основном объясняют вариацию значений зависимого признака. Если же значение R2 невелико, то можно сделать вывод о том, что факторы, оказывающие существенное влияние на результирующий показатель, в уравнение регрессии не вошли.

Однако существует ряд ограничений, сужающих возможности применения данного показателя для анализа.

Прежде всего, коэффициент детерминации  позволяет проводить сравнение различных линейных по параметрам регрессионных уравнений для одной и той же зависимой переменной.

Второе ограничение связано с количеством объясняющих переменных в модели. Сопоставимые уравнения регрессии зависимой переменной должны включать одинаковое число факторов и могут отличаться лишь составом независимых переменных. Ограничение по количеству объясняющих переменных обусловлено тем, что R2 является неубывающей функцией от числа включенных в регрессию факторов. Поэтому наряду с традиционным часто используют скорректированный коэффициент детерминации, позволяющий проводить сравнение линейных регрессионных уравнений с разным подмножеством факторов:

              ,                    (15)

где R2— базовый коэффициент детерминации; n— объем выборки; q— число факторов в факторном наборе.

Еще одно требование связано с наличием свободного члена. Константа должна входить или отсутствовать одновременно во всех сравниваемых уравнениях.

Квадратный корень из R2для линейной модели

                                                                                      (16)

представляет собой коэффициент множественной корреляции и характеризует тесноту связи совокупности факторов, включенных в уравнение регрессии, с исследуемым показателем.

Кроме того, дополнять оценку качества регрессионного уравнения следует проверкой значимости как параметров регрессии, так и самого регрессионного уравнения.

1). Проверка значимости параметров позволяет установить существенность влияния отдельных факторов на зависимую переменную.

Проверка значимости параметра предполагает проведение процедуры проверки гипотезы о том, что фактор xjне оказывает существенного влияния на зависимую переменную. Нулевую гипотезу относительно параметра модели формулируют следующим образом:

                                .

Альтернативная ей гипотеза утверждает, что βjзначимо отличается от нуля:

                                .

Статистика для проверки сформулированной гипотезы принимает вид:

                                 .                                          (17)

Если верна нулевая гипотеза, то статистика (17) имеет распределение Стьюдента. Расчетное значение t-статистики сравнивают с квантилью t-распределения tα, ν, которая имеет параметры: ν — число степеней свободы,

ν = n-p-1, p— число объясняющих переменных в уравнении регрессии; α — уровень значимости.

Величина α определяет надежность статистических выводов. Чем выше требования к надежности результатов, тем меньше должна быть величина α.

Если расчетное значение t-статистики попадает в критическую для проверяемой гипотезы область | t| > tα, ν, то параметр βjзначим, следовательно, фактор xjоказывает существенный вклад в вариацию зависимого признака. В противном случае, если | t|

2).  Целью поверки гипотезы о значимости уравнения регрессии является определение существенности влияния на зависимую переменную всех или хотя бы некоторых независимых переменных, включенных в регрессионную модель.

Нулевая гипотеза состоит в том, что все переменные x1, x2, …, xpне оказывают существенного влияния на зависимую переменную:

                                  .    

Альтернативная гипотеза утверждает, что, как минимум, одна из объясняющих переменных оказывает существенное влияние на объясняемую переменную и должна быть включена в регрессионную модель. Гипотеза может быть записана следующим образом:

                                      .

Для проверки нулевой гипотезы используют F-критерий:

                                 .                                       (18)

Если верна нулевая гипотеза, то (18) имеет распределение с числом степеней свободы числителя ν 1 = pи числом степеней свободы знаменателя ν 2 = n— p— 1. Решение о значимости F-критерия принимают, задав некоторый уровень значимости α и определив соответствующую параметрам α, ν 1 и ν 2 квантиль распределения Fα, ν 1, ν 2. Если F Fα, ν 1, ν 2, то делают заключение, что выборочные данные не подтверждают основную гипотезу, все или некоторые объясняющие переменные существенно влияют на зависимую переменную.

Все рассмотренные показатели качества регрессионного уравнения определяют дальнейшее поведение исследователя: будет он пересматривать построенную модель, внося коррективы в состав факторного набора, или же остановится на достигнутых результатах[13].


§ 2. Теоретическая и практическая реализация АРТ-

моделирования
Как уже было отмечено, построение модели арбитражного ценообразования, используемой для определения стоимости ценных бумаг, сопряжено с субъективным отношением инвестора к влияющим факторам: какие факторы выбрать, каким должен быть критерий включения фактора в модель, – все эти проблемы инвестор решает самостоятельно.

А потому для построения модели арбитражного ценообразования воспользуемся универсальным алгоритмом, предложенным А. А. Шабалиным[14], который, на мой взгляд, позволяет наиболее полно сохранить все преимущества модели и учитывает ее недостатки.        
1. Универсальный алгоритм построения модели АРТ

Модель АРТ в общем виде выглядит следующим образом:      

                                         (4)                                              

Универсальный алгоритм ее построения содержит 7 основных этапов:

1. Определение всей совокупности факторов, возможно влияющих на цену исследуемого актива, и разделение их на группы методом агрегирования; определение количества показателей в каждой из групп. Основными группами показателей являются: финансовые показатели фирмы, макроэкономические индикаторы страны, отраслевые индикаторы, мировые фондовые индексы, сырьевые цены, политические и корпоративные события, а также финансовые показатели фирмы и т.д.

Одной из наиболее важных групп является группа финансовых показателей фирмы, т. к. они напрямую отражают стоимость активов: чем лучше финансовое состояние фирмы, тем больше ее акции могут принести дивидендов, а следовательно, тем дороже будут и сами акции.

Далее по значимости можно выделить макроэкономические индикаторы страны, которые позволяют судить о тенденциях развития компании в России: повышение инвестиционной привлекательности страны и снижение странового риска в большей части происходит на основе макроэкономических индикаторов, что, в свою очередь повышает капитализацию большинства организаций. 

В качестве следующей группы факторов часто выделяют мировые фондовые индексы. Россия развивается взаимосвязано с другими странами, существует определенная корреляционная связь в тенденциях развития. Охарактеризовать влияние мировых фондовых индексов на российский рынок ценных бумаг можно «настроением» иностранных инвесторов, которые принимают активное участие в торгах на российском рынке, как через ADR (расписки на владение ценными бумагами), так и на рынке РТС.

Последнюю группу факторов обычно составляют котировки ЦБ иностранной валюты, т. к. выбранные финансовые активы торгуются на Российской торговой системе в долларах.

По результатам выделения групп влияющих факторов строится модель:

         продолжение
--PAGE_BREAK--(5)

где FP – вектор финансовых показателей фирмы, М – вектор макроэкономических индикаторов, MFI – вектор мировых фондовых индексов, V – вектор мировых валют котируемых ЦБ, α, β, γ, µ– векторы числовых коэффициен-тов, ε– вектор ошибки.

2. Анализ влияния каждой из групп на цену исследуемого актива. Для этого осуществляется построение многофакторных моделей, в качестве факторных подмножеств которых используются показатели выделенных групп.

3. Выбор переменных, которые войдут в конечную модель, на основе критерия значимости. Критерий значимости для переменных определим, как: вероятность принятия переменной значения ноль должна быть меньше 10%.

4. Построение многофакторной модели с использованием сформированных групп. Для удобства практического применения модели возможно произвести упрощение построенной модели, уменьшив количество входящих переменных, используя только значимые переменные[15].
2. Практическая реализация модели АРТ

Проведем численную реализацию модели АРТ при использовании построенного алгоритма.

Группы влияющих факторов

В исследовании определены следующие группы влияющих факторов: макроэкономические индикаторы страны и валюта (котировки ЦБ иностранной валюты).

Следует подчеркнуть, что явного, логически-обоснованного влияния выбранных факторов на стоимость ценных бумаг нет.

Попробуем определить возможную статистическую зависимость.

Исходные данные

Для исследования были выбрана ценная бумага, занятая в энергетической отрасли.

Этот выбор обоснован предстоящими кардинальными изменениями в этой отрасли, а значит, изменениями инвестиционных стратегий, что повлечет за собой изменения стоимости финансовых активов. В 2004 г. правительство приняло решение реформирования энергетического сектора России. До 2007 г. намечено переформировать структуру сектора: создать Транспортные генерирующие компании (ТГК) и оптовые генерирующие компании (ОГК), которые будут разделены по территориальному критерию, что позволит инвесторам участвовать в капитале не всего энергетического сектора (компании РАО ЕЭС), а именно в том, который будет им наиболее выгоден. Это несет за собой пересмотр инвестиционных стратегий отраслевых энергетических компаний.

Итак, для анализа выбрана следующая компания: ОАО «Иркутскэнерго»; код СКРИН — IGRZ; отрасль — Региональные энергетические компании.

Временной интервал

Временной период: 01. 02. 1998 г.– 31. 12. 2004 г., чтобы проанализировать долгосрочное влияние выбранных факторов, а также отразить влияние дефолта 1998 г. на цену акций.

Составляющие показатели

Вектор макроэкономические индикаторысостоит из следующих 7 показателей: Динамика ВВП[16], Инвестиции в основной капитал[17], Объем промышленной продукции[18], Внешнеторговый оборот (Экспорт товаров и Импорт товаров)[19], Индекс потребительских цен[20], Реальные располагаемые денежные доходы[21], Общая численность безработных[22].

Вектор валютасостоит из следующих 3 показателей: Английский фунт стерлингов, Доллар США, ЕВРО.

Численная реализация

Для проведения анализа необходимы данные, охватывающие временной интервал с 01. 02. 1998 г. по 31. 12. 2004 г. и образующие выборки объемом n
= 83.

Для получения данных о курсе ЕВРО на 1998 г. построим трендовую модель развития данного показателя во времени (табл. 1) и проведем процедуру интерполяции (табл. 2).

 Исходные данные для моделирования представлены в табл. 36.

На основании имеющихся данных построим первичные модели, описывающие зависимость цен на акции ОАО «Иркутскэнерго» от факторных наборов «Макроэкономические показатели» и «Валюта». Итоги построения моделей представлены в табл. 3 и 4.

 В полученных регрессионных моделях значимыми (с высоким уровнем надежности, p

Для подтверждения наличия, направления и тесноты связи между факторными признаками и функцией отклика в полученных моделях построим корреляционные матрицы Q1 и Q2, позволяющие сделать выводы о характере и структуре взаимосвязей между переменными (табл. 5 и 6).

Таким образом, значения парных коэффициентов корреляциив корреляционной матрице Q1 позволяют установить, что на стоимость акций ОАО «Иркутскэнерго» наиболее сильное влияние оказывают показатели внешнеэкономической деятельности (экспорт и импорт товаров, работ и услуг), валовые инвестиции в основной капитал и объем промышленной продукции, произведенной в российской экономике за рассматриваемый период времени (однако в регрессионной модели 1 уровень значимости коэффициента регрессии при данной переменной очень высок, p= 83,28%).

Корреляционная матрица Q2выявляет взаимообусловленность стоимости акций иркутской компании и котировок ЦБ американского доллара и английского фунта стерлингов; влияние динамики курса ЕВРО по отношению к рублю на ценообразование акций ОАО «Иркутскэнерго» не является сильным, однако можно считать, что между данными признаками связь есть.

На основании уровней значимости оценок параметров βiв построенных уравнениях регрессии осуществим выбор значимых факторов, которые войдут в конечную модель оценки стоимости акций. Такими факторами оказались: экспорт и импорт продукции; индекс потребительских цен; инвестиции в основной капитал; реальные располагаемые денежные доходы; котировки ЦБ доллара США, ЕВРО и английского фунта стерлингов.

Модель оценки стоимости акций ОАО «Иркутскэнерго» на российском фондовом рынке, полученная в результате применения множественной линейной регрессии, представлена в табл. 7.

В полученной модели не все переменные значимы, что позволяет провести некоторые упрощения. Для этого применим метод пошагового исключения переменных "ForwardStepwise", который гарантирует максимизацию статистики Фишера в модели, характеризующей уровень значимости, а следовательно, и качество регрессионной модели, однако не обеспечивает того, что в преобразованной модели все переменные будут значимы.

Итак, в модель в качестве факторов войдут объем инвестиций в основной капитал, показатели экспорта и импорта, а также курсы английского фунта стерлингов и ЕВРО по отношению к рублю.

Проверим выборки, используемые для построения модели, на нормальность распределения. Вид полученных диаграмм рассеивания (табл. 8 – 13) позволяет сделать вывод о том, что выборки не близки к нормальной, однако гистограммы (табл. 14 – 19) и графики функций распределения (табл. 20 – 25) свидетельствуют об обратном.

Приведем конечную модель ценообразования обыкновенных акций ОАО «Иркутскэнерго», полученную в результате применения множественной линейной регрессии (табл. 26).

 Построенная модель характеризуется довольно высоким качеством: значения коэффициентов детерминации (традиционного и скорректированного) близки к 1, низки уровни значимости коэффициентов регрессии и самого регрессионного уравнения, однако довольно высока стандартная ошибка оценивания.

Наличие статистических зависимостей рассматриваемых показателей подтверждается анализом корреляционной матрицы Q3(табл. 27).

Проверка построенной модели на выполнение условий регрессионного анализа Гаусса-Маркова (табл. 28 – 35) позволяет установить, что выполняются предпосылки № 1, 4, 5, однако нарушаются условия № 2, 3.  

Итак, построена регрессионная модель определения доходности простых акций ОАО «Иркутскэнерго» с использованием метода арбитражного ценообразования.

Делая экономическую интерпретацию полученных данных, можно предположить, что цены на финансовые активы фирм энергетического сектора имеют зависимость: во-первых, от объемов инвестирования в основные фонды, формирующего потенциал для общего экономического роста в долгосрочной перспективе; во-вторых, от показателей внешнеэкономической деятельности страны; наконец, от котировок иностранной валюты ЦБ.


Заключение
В условиях повышения колебаний котировок ценных бумаг на российском фондовом рынке, которое происходит в последнее время, методы оценки рыночной стоимости финансовых активов фирм приобретают актуальность и практическую значимость.

В настоящее время имеются достаточно «тонкие» математико-статистические инструменты такой оценки. Одним из наиболее распространенных способов определения инвестиционной привлекательности акций считается модель арбитражного ценообразования, разработанная в 1976 г. профессором Йельского университета Стефаном Россом.

Главным предположением теории является то, что каждый инвестор стремится использовать возможность увеличения доходности своего портфеля без увеличения риска. Механизмом, способствующим реализации данной возможности, является арбитражный портфель[23].

Однако данная теория интересна в первую очередь тем, что онапозволяет построить зависимость стоимости акций компании от ряда факторов.

Статистические исследования воздействия различных факторов на динамику российского фондового рынка дают новые аспекты для его анализа и прогнозирования.

Процесс инвестирования капитала в условиях рыночной экономики сопряжен с многовариантностью, альтернативностью и риском. Инвесторы, готовые вкладывать свои средства, постоянно озабочены оценками риска и перспектив инвестиций, гарантиями возврата основной суммы и получения дохода. Однако им достаточно трудно разобраться в многообразии финансовых инструментов, оценить риск вложений и сравнить по нему предлагаемые на рынке инструменты. Одним из решений этой проблемы является выявление факторов, влияющих на динамику, с помощью которых станет возможным прогнозировать динамику российского фондового рынка.

Модель APTпозволяет инвесторам сделать предметом анализа группу факторов, которые, по их мнению, определяют доходность боль­шинства активов, и благодаря этому прийти к более точному пониманию риска по инвестиционным проектам. В то же время, применение методов АРТ-моделирования от­крывает перед практиками свободу самим решать, что в данной ситуации имеет значение, а что неважно.

В силу этого моделирование фондового рынка с применением арбитражной теории ценообразования обуславливает определенный субъективизм получаемой оценки. 

В проведенном мной исследовании я предпринимала попытки свести субъективный фактор к минимуму.

В результате была получена модель, довольно адекватно описывающая поведение цен активов.

Однако то, что полученная модель отражает реальную ситуацию на российском фондовом рынке и позволяет прогнозировать его динамику, вызывает определенные сомнения.

На мой взгляд, выявленная зависимость является всего лишь демонстрацией того, как теория арбитражного ценообразования может быть реализована на практике.

Неразвитость российского фондового рынка позволяет проводить подобные расчеты только для крупных компаний, но даже они не всегда могут показать реальную картину динамики.




Список используемой литературы
1. Активный и пассивный портфельный менеджмент.

www.trader-lib.ru/books/503/4.html.

2. Арбитраж. www.accounting4u.org.ru/?mod=articles&article=605.

3. Арбитражные операции. bonds.forekc.ru/index_16.htm.

4. Арженовский С. В., Федосова О.Н. Эконометрика: Учебное пособие/ Рост. гос. экон. унив. – Ростов н/Д, — 2002 — с. 67-94.

5. АРТ-арбитражная модель ценообразования.                                                               www.e-mastertrade.ru/ru/main/index/id39.asp.

6. Айвазян С. А., Мхитарян В. С. Прикладная статистика и основы эконометрики – Учебник для вузов М.: ЮНИТИ. 1998, с. 765-794.

7. Базовый Индекс Капитала. Аналитические статьи. www.bic.ru/article-main14.htm.

8. Инвестиционный портфель. Арбитражная модель ценообразования.

www.e-mastertrade.ru/ru/main/index/id39.asp.

9. Кузнецов М. В., Овчинников А. С. Технический анализ рынка ценных бумаг. – М.: Лань, 1996. — с. 247-312.

10. К вопросу использования модели ценообразования финансовых активов.

www.appraiser.ru/info/articles/art3.htm.

11. Малюгин В. И. Рынок ценных бумаг: Количественные методы анализа. – М., издательство «Дело», 2003. — с. 131-162, 180-201, 265-285.

12. Материалы по финансовому менеджменту.

www.finanalis.ru/litra/finmen/?leaf=finmen.htm.

13. Модели математической оптимизации. Построение оптимального портфеля ценных бумаг. www.bupr.ru/?litra/finmen/finmen_09.htm.

14. Модельяни Ф., Миллер М. Сколько стоит фирма?- М.: ЭКСМО, 1999. – с. 123-148.

15. Основные социально-экономические показатели по Российской Федерации за 1998 — 2004 гг. (по материалам Росстата). – Вопросы статистики, 2002 г., № 3, с. 58-69; 2005 г., № 1, с. 84-95; 2005 г., № 6, с. 72-83.

16. Оценка ценных бумаг.

www.finanalis.ru/litra/finmen/?leaf=finmen_07.htm.

17. Построение оптимального портфеля.

18. Тарасевич Е. К вопросу использования модели ценообразования финансовых активов. www.appraiser.ru/info/articles/art3.htm.

19. Шабалин А. А. Алгоритм построения модели арбитражного ценообразования. http://www.bupr.ru/?litra/finmen/finmen_10.htm.

20. Четыркин Е. М. Финансовая математика. –М.: Феникс, 2000. –с. 285.

21. Швангер Дж. Технический анализ. – М.: Инфра, 2001. – 250с.

22. RIGHTONПресс-Центр. http://www.righton.ru/mediacenter/all/show/?25.

23. www.gks.ru/free_doc/2005/b05_13/21-02.htm

24. stock.rbc.ru/

25. www.46info.ru/currency/gbp/


Приложения



Таблица 1

Трендовая модель развития показателя
EUR
во времени

         Regression Summary for Dependent Variable: EUR

         R= 0,88372034 R2= 0,78096163 Adjusted R2= 0,77783251

         F(1,70)=249,58 p





         Analysis of Variance; DV: EUR



Таблица 2

Интерполяция значений
EUR
на 1998 г.


    продолжение
--PAGE_BREAK--

Таблица 3

Регрессия стоимости акций от макроэкономических показателей

Regression Summary for Dependent Variable: акцииИркутскэнерго

R= 0,91892781 R2= 0,84442833 Adjusted R2= 0,82760977

F(8,74)=50,208 p





                   Analysis of Variance; DV: акцииИркутскэнерго



Таблица 4

Регрессия стоимости акций от котировок иностранной валюты

         Regression Summary for Dependent Variable: акцииИркутскэнерго

         R= 0,86801429 R2= 0,75344881 Adjusted R2= 0,74408611

         F(3,79)=80,473 p





         Analysis of Variance; DV: акцииИркутскэнерго


Таблица
5

Корреляционная

матрица
Q1

Correlations

Marked correlations are significant at p






Таблица
6

Корреляционная

матрица
Q2

Correlations          Marked correlations are significant at p

(Casewise deletion of missing data)
    продолжение
--PAGE_BREAK--
Таблица 7

Регрессия стоимости акций от объединенного факторного набора

Regression Summary for Dependent Variable: акцииИркутскэнерго

R= 0,94257226 R2= 0,88844246 Adjusted R2= 0,87638218

F(8,74)=73,667 p





         Analysis of Variance; DV: акцииИркутскэнерго




Таблица 8

Диаграмма рассеивания результативного признака

Таблицы 9 – 13

Диаграммы рассеивания факторных признаков




 



Таблица 14

Гистограмма для результативного показателя
 


Таблицы 15 – 19

Гистограммы для факторных признаков













Таблица 20

График функции распределения для результативного показателя





Таблицы 21 – 25

Графики функций распределения для факторных признаков






Таблица 26

Множественная регрессия стоимости акций

         RegressionSummaryforDependentVariable: акции Иркутскэнерго

         R= 0,93933207 R2= 0,88234473 Adjusted R2= 0,87470478

         F(5,77)=115,49 p






Analysis of Variance; DV: акцииИркутскэнерго



Таблица 27

Корреляционная матрица
Q
3

Correlations

Marked correlations are significant at p

N=83 (Casewise deletion of missing data)





Таблицы 28 – 32

Проверка модели на выполнение условий 1, 4 Гаусса-Маркова










Таблица 33

Проверка модели на выполнение условия 2 Гаусса-Маркова


 Таблица 34

Проверка модели на выполнение условия 3 Гаусса-Маркова
         Durbin-Watson d and serial correlation of residuals

         n = 83;

         m = 5
--PAGE_BREAK--



Таблица 35

Проверка на выполнение условия 5 Гаусса-Маркова


Таблица 36

Исходные данные
--PAGE_BREAK--
Ар
r
-02

2,466956520

1877

540,7

104

9,5

Мау-02

2,32978947

1903

536

125,1

8,6

Jun-02

2,05726316

1912

557

147,3

8,2

Jul-02

2,01013636

1967

584,9

152,2

9,3

Аи
g
-02

2,03

2189

607,6

167

10

Sep-02

2,04147619

2362

602,7

175,3

9,7

Oct-02

2,07756522

2214

632,9

169,1

9,9

Nov-02

2,241

2169

624,3

174,3

9,3

Dec-02

2,3122619

2081

648

278

11

Jan-03

2,69712821

2056

105,4

93,8

9,6

Feb-03

2,72521053

1983

108,3

110,6

9,9

Mar-03

2,679

1886

109,5

125,6

11,6

Apr-03

2,56809091

1985

110,2

129,9

10,2

May-03

2,66005263

2013

110,4

158,8

10,5

Jun-03

2,7743

2094

109,1

181,9

11,1

Jul-03

2,90613043

2144

108

185,8

11,4

Aug-03

2,88085714

2315

105,7

204,8

12

Sep-03

3,13177273

2482

109,1

216,9

11,6

Oct-03

3,49463636

2338

107,9

209,6

12,6

Nov-03

3,34978947

2216

109

216,2

11,5

Dec-03

3,45495

2174

113,6

352,5

14

Jan-04

3,77657895

2119

106,4

116,3

11,3

Feb-04

3,88789474

2056

108,5

139,4

12,1

Mar-04

5,85345455

1974

107,4

156,9

14

Apr-04

6,4225

2190

105,4

160,5

14,7

May-04

5,76361111

2238

106,9

196,8

13,6

Jun-04

5,66557143

2416

109,3

229,9

14,9

Jul-04

4,90368182

2501

106,9

229,5

15,4

Aug-04

4,54613636

2578

109,7

256

16,8

Sep-04

5,68818182

2489

106,1

267,8

16,3

Oct-04

6,34095238

2423

104,6

257,8

17,2

Nov-04

6,26142857

2469

112,5

275,2

17,9

Dec-04

5,63785

2380

104,6

443,7

19,4

Т

Им-

порт

 ИПЦ

ден.

доходы

Числ
.


Безр


USD

EUR

GDB

Jan-98

5,6

101,5

88,9

8,3

5,99665

21,118

9,763907

Feb-98

5,9

100,9

92,1

8,4

6,05085

21,29921

7,671275

Mar-98

6,3

100,6

91,1

8,5

6,089925

21,48042

10,09193

Apr-98

6

100,4

90,7

8,5

6,124524

21,66163

10,2185

May-98

5,6

100,5

89,2

8,3

6,149447

21,84284

10,05354

Jun-98

5,7

100,1

82,9

8,1

6,1801

22,02405

10,11005

Jul-98

5,5

100,2

88,4

8,1

6,217159

22,20526

10,24703

Aug-98

4,9

103,7

87,8

8,3

6,751786

22,38647

11,4607

Sep-98

3

138,4

73,4

8,6

14,40847

22,56769

24,19157

Oct-98

2,9

104,5

81,4

8,9

15,90897

22,7489

26,94477

Nov-98

2,9

105,7

77,9

9,3

16,47421

22,93011

27,39174

Dec-98

3,5

111,6

73

9,6

19,99318

23,11132

33,37639

Jan-99

2,7

108,4

72,7

10

21,275

26,03611

36,75316

Feb-99

2,9

104,1

75

10,4

22,9020833

25,69381

37,3215

Mar-99

3,4

102,8

76,5

10

23,4408333

25,6281

38,1081

Apr-99

3,3

103

76,4

9,6

24,7384

26,56952

39,79364

May-99

2,9

102,2

80

9,1

24,4552174

26,04571

39,52

Jun-99

3,9

101,9

81,5

8,8

24,2908696

25,19905

38,78333

Jul-99

3,3

102,8

77,9

8,7

24,3081818

25,12762

38,25478

Aug-99

3,1

101,2

83,8

8,7

24,6868182

26,22048

39,70714

Sep-99

3,2

101,5

101,3

8,8

25,4554545

26,73952

41,23091

Oct-99

3,3

101,4

91,6

8,9

25,7114286

27,55762

42,62182

Nov-99

3,5

101,2

98,1

9,1

26,2957143

27,26095

42,726

Dec-99

4

101,3

109,7

8,9

26,7947619

27,11667

43,20048

Jan-00

2,9

102,3

99,3

8,7

28,1873684

28,63053

46,36778

Feb-00

3,4

101

110,6

8,6

28,7242857

28,2881

46,08238

Mar-00

3,7

100,6

115,7

8,2

28,4577273

27,48429

44,97773

Apr-00

3,4

100,9

109

7,8

28,605

27,16286

45,27952

May-00

3,4

101,8

110,5

7,4

28,311

25,65619

42,62789

Jun-00

3,6

102,6

113,7

7,3

28,2409524

26,77238

42,59333

Jul-00

3,6

101,8

111,7

7,2

27,8457143

26,23238

42,03714

Aug-00

3,8

101

109,7

7,1

27,7378261

25,10762

41,39043

Sep-00

3,7

101,3

112,5

7,1

27,8009524

24,23286

39,87818

Oct-00

4,2

102,1

107

7

27,8645455

23,85476

40,48857

Nov-00

4,3

101,5

112,2

7

27,8071429

23,7581

39,69333

Dec-00

4,9

101,6

103,2

7

27,9705

25,0585

40,89048

Jan-01

3,2

102,8

111,7

7,1

26,22853

26,22853

41,92316

Feb-01

3,7

102,3

105,7

7,1

26,4715

26,35001

41,6075

Mar-01

4,3

101,9

106,4

6,8

26,13429

26,30289

41,42318

Apr-01

4,4

101,8

108,2

6,4

25,75048

25,94238

41,4375

May-01

4,6

101,8

104,2

6,1

24,21476

24,98262

41,40632

Jun-01

4,7

101,6

109,7

6,1

24,8855

24,55013

40,90095

Jul-01

4,4

100,5

110,1

6,1

25,08636

25,08636

41,2981

Aug-01

4,6

100

112,8

6,1

26,36957

26,36957

42,10478

Sep-01

4,2

100,6

110,7

6,2

26,819

26,59428

43,04048

Oct-01

4,8

101,1

112,6

6,3

26,78696

26,78696

42,90409

Nov-01

5,1

101,4

107,7

6,3

26,47762

26,63229

42,83762

Dec-01

5,7

101,6

106,8

6,2

26,82396

26,82396

43,30316

Jan-02

3,7

103,1

112,1

6,1

26,952255

26,952255

43,71139

Feb-02

4

101,2

110,6

6

26,7805737

26,8664143

43,81564

Mar-02

4,7

101,1

107,6

5,9

27,203335

27,203335

44,19854

Ар
r
-02

5,1

101,2

116,6

5,8

27,5769696

27,5769696

44,95034

Мау-02

4,7

101,7

107,6

5,6

28,673785

28,673785

45,60952

Jun-02

5

100,5

104,5

5,5

29,9065947

29,2901899

46,5414

Jul-02

5,5

100,7

112,9

5,4

31,3119435

31,3119435

49,00817

Аи
g
-02

5,1

100,1

108,7

5,3

30,86495

30,86495

48,58321

Sep-02

5,1

100,4

105,8

5,7

31,0097286

31,0097286

49,1728

Oct-02

5,9

101,1

116,5

6

31,1030826

31,1030826

49,37561

Nov-02

5,7

101,6

115,6

6,3

31,83938

31,83938

50,00435

Dec-02

6,5

101,5

114,6

6,5

32,4063857

32,4063857

50,52145

Jan-03

4,7

102,4

117,2

6,6

33,8068

33,8068

51,40641

Feb-03

5,2

101,6

119,2

6,8

34,1878421

33,9973211

51,2553

Mar-03

6

101,1

118

6,5

33,95197

33,95197

49,78959

Apr-03

6,2

101

109,8

6,3

33,86705

33,86705

49,1407

May-03

5,9

100,8

121,5

6,1

35,6998211

34,7834355

50,16185

Jun-03

6,1

100,8

115,7

6

35,637845

35,637845

50,60982

Jul-03

6,7

100,7

112

6

34,5599696

34,5599696

49,41147

Aug-03

6,4

99,6

110,9

6

33,9083619

33,9083619

48,42641

Sep-03

6,5

100,3

116

6

34,2496909

34,2496909

49,19563

Oct-03

7,1

101

111,7

6

35,2985

35,2985

50,52917

Nov-03

6,8

101

111,9

6

34,8936684

35,0960842

50,41941

Dec-03

8,5

101,1

119,3

6,3

36,0946217

36,0946217

51,49616

Jan-04

5,5

101,8

119,7

6,6

28,8569579

36,4303421

52,51553

Feb-04

6,5

101

109,1

6,9

28,5112455

36,0848947

53,26703

Mar-04

7,7

100,8

108,5

6,5

28,5363375

35,0400909

52,16856

Apr-04

7,6

101

107,9

6

28,6856318

34,4463273

51,93515

May-04

7,3

100,7

101,7

5,6

28,9739182

34,8167889

57,26

Jun-04

7,8

100,8

109,2

5,5

29,0276909

35,298219

57,70036

Jul-04

8,3

100,9

109,8

5,5

29,0810182

35,7011591

58,14072

Aug-04

8,2

100,4

107,7

5,4

29,21395

35,6022182

58,58109

Sep-04

8,2

100,4

106,7

5,7

29,2220818

35,6659682

59,02145

Oct-04

8,8

101,1

105,4

5,9

29,0908273

36,270019

59,46181

Nov-04

9,3

101,1

108

6,1

28,6076136

37,0586952

59,90218

Dec-04

11,1

101,1

108,7

6,1

27,9040273

37,3895682

60,34254

  


    продолжение
--PAGE_BREAK--Приложения



Таблица 1

Трендовая модель развития показателя
EUR
во времени

         Regression Summary for Dependent Variable: EUR

         R= 0,88372034 R2= 0,78096163 Adjusted R2= 0,77783251

         F(1,70)=249,58 p





         Analysis of Variance; DV: EUR



Таблица 2

Интерполяция значений
EUR
на 1998 г.




Таблица 3

Регрессия стоимости акций от макроэкономических показателей

Regression Summary for Dependent Variable: акцииИркутскэнерго

R= 0,91892781 R2= 0,84442833 Adjusted R2= 0,82760977

F(8,74)=50,208 p





Analysis of Variance; DV: акцииИркутскэнерго



Таблица 4

Регрессия стоимости акций от котировок иностранной валюты

Regression Summary for Dependent Variable: акцииИркутскэнерго

R= 0,86801429 R2= 0,75344881 Adjusted R2= 0,74408611

F(3,79)=80,473 p



         Analysis of Variance; DV: акцииИркутскэнерго
    продолжение
--PAGE_BREAK--


Таблица
5

Корреляционная

матрица
Q1

Correlations

Marked correlations are significant at p






Таблица
6

Корреляционная

матрица
Q2

Correlations          Marked correlations are significant at p

(Casewise deletion of missing data)



Таблица 7

Регрессия стоимости акций от объединенного факторного набора

         Regression Summary for Dependent Variable: акцииИркутскэнерго

         R= 0,94257226 R2= 0,88844246 Adjusted R2= 0,87638218

         F(8,74)=73,667 p





         Analysis of Variance; DV: акцииИркутскэнерго




Таблица 8

Диаграмма рассеивания результативного признака


Таблицы 9 – 13

Диаграммы рассеивания факторных признаков




 



Таблица 14

Гистограмма для результативного показателя
 


Таблицы 15 – 19

Гистограммы для факторных признаков






Таблица 20

График функции распределения для результативного показателя





Таблицы 21 – 25

Графики функций распределения для факторных признаков


Таблица 26

Множественная регрессия стоимости акций

         RegressionSummaryforDependentVariable: акции Иркутскэнерго

         R= 0,93933207 R2= 0,88234473 Adjusted R2= 0,87470478

         F(5,77)=115,49 p


--PAGE_BREAK--


         Analysis of Variance; DV: акцииИркутскэнерго




Таблица 27

Корреляционная матрица
Q
3

Correlations

Marked correlations are significant at p

N=83 (Casewise deletion of missing data)



Таблицы 28 – 32

Проверка модели на выполнение условий 1, 4 Гаусса-Маркова



Таблица 33

Проверка модели на выполнение условия 2 Гаусса-Маркова



 Таблица 34

Проверка модели на выполнение условия 3 Гаусса-Маркова
         Durbin-Watson d and serial correlation of residuals

         n = 83;

         m = 5
--PAGE_BREAK--



Таблица 35

Проверка на выполнение условия 5 Гаусса-Маркова





Таблица 36

Исходные данные
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.