Реферат по предмету "Математика"


Анализ производства и реализация товаров предприятия

--PAGE_BREAK--1.4 Индексы

Индексы – особые относительные показатели, которые дают количественно-качественную оценку результата изменения соответствующих явлений во времени, в пространстве и по сравнению с планом.

Индексы могут быть рассчитаны на базисной или цепной основе. Индивидуальные индексы себестоимости на базисной и цепной основе имеют вид:
;     ,                                (1.4.1а, б)                        
где:    iz, – индивидуальный индекс себестоимости продукции;

zi, – себестоимость в текущем периоде;

z0, zi-1– себестоимость в базисном и предшествующем периоде.

Индивидуальные индексы объема производства на базисной и цепной основе имеют вид:
;      ,                              (1.4.2а, б)
где:    iq– индивидуальный индекс объема продукции;

qi– объем произведенной продукции в текущем периоде;

q0, qi-1 – объем продукции в базисном и предшествующем периоде.

Индивидуальный индекс затрат на производство на базисной и цепной основе:


;      .                    (1.4.3а, б)
Агрегатный индекс затрат на производство продукции:
.                                         (1.4.4)
Агрегатный индекс себестоимости продукции:
.                                           (1.4.5)
Агрегатный индекс физического объема продукции:
.                                          (1.4.6)
Индекс переменного состава характеризует изменение среднего уровня признаков за счет влияния факторов:
.                             (1.4.7)
Индекс постоянного состава показывает средний размер изучаемого признака у отдельных единиц совокупности:
.                            (1.4.8)


Индекс структурных сдвигов характеризует влияние изменения структуры изучаемой совокупности на динамику среднего уровня признака:
.                                    (1.4.9)
1.5 Корреляционно-регрессионный анализ

Корреляция – это статистическая зависимость между случайными величинами, не имеющими строго функционального характера, при которой изменение одной из случайных величин приводит к изменению математического ожидания другой.

Корреляционно-регрессионный анализ заключается в построении и анализе экономико-математической модели в виде уравнения регрессии (корреляционной связи), выражающего зависимость явления от определяющих его факторов.

Для проведения анализа необходимо определить факторный признак (Х) – который воздействует на другие признаки, и результативный (У) – который испытывает на себе влияние. Связь между явлениями можно охарактеризовать функциональной зависимостью, которая выражается различными функциями: прямолинейной, логарифмической, параболической, гиперболической и т.д.

Гиперболическая функция имеет вид:
,                                          (1.5.1)
где:    а0и а1 – параметры.

Такая функция характеризует, к примеру, зависимость себестоимости единицы продукции от объемов выпуска этой продукции.

Параметры находятся по формулам:
;      .      (1.5.2а, б)
Важное место при оценке модели занимает измерение тесноты связи. Для этого используются формулы:

Общей дисперсии:
;                                        (1.5.3)
факторного признака:
;                                     (1.5.4а)
остаточной дисперсии:
,                                    (1.5.4б)
где:    у – эмпирические значения результативного признака;

 – теоретические значения результативного признака.

Индекс детерминации, который показывает, как часть общей вариации У объясняется вариацией признака Х:


.                                             (1.5.6)
Корень квадратный из этого числа называется индексом корреляции, его значение находится в пределах от 0 до 1:
.                                             (1.5.7)


2 Характеристика предприятия ООО «Полилайн»

ООО «Полилайн» образовано в январе 1999 года и является коммерческой организацией. Предприятие начинало свою деятельность как компания оптовой торговли по продаже строительных материалов. Численность персонала составляла 15 человек.

Сегодня ООО «Полилайн» – динамично развивающееся предприятие на рынке нетканых материалов России. Иглопробивные нетканые материалы – это текстильные материалы, изготавливаемые из натуральных и химических волокон механическим способом без применения методов ткачества. Синтетические волокна (нити) формируют из полимеров, не существующих в природе, а полученных путем синтеза из природных низкомолекулярных соединений. Важнейшим видом сырья для нетканых материалов служит полипропилен и полиэфирное волокно.

Продукция ООО «Полилайн» – полотно нетканое иглопробивное ГеоПол® с различными характеристиками и возможностями применения (в зависимости от назначения полотно может называться геотекстиль, дорнит/дарнит, подоснова, мебелин, стелин), а также многослойное ландшафтное полотно БиоПол® (биотекстиль).

Нетканые материалы находят широкое применение в различных областях:

­        строительство автомобильных и железных дорог, мостов, тоннелей, армирование насыпей,

­        балластировки трубопроводов,

­        строительство гидротехнических сооружений (водоемы, каналы, бассейны),

­        жилищное и техническое строительство, обустройство кровли,

­        ландшафтные работы (укладка тротуарной плитки, устройство газонов),

­        производство линолеума (теплозвукоизоляционная основа),

­        автомобильная промышленность (тепло-, шумоизоляция, основа для тафтинговых покрытий)

­        производство мебели (подкладка, покрытие пружин),

­        швейная, обувная промышленность (утеплитель, стелька), кожгалантерея

­        изготовление фильтров

­        обтирочные материалы

­        медицинская промышленность (одежда)

­        сельское хозяйство (укрывные материалы)

Помимо нетканого полотна собственного производства компания «Полилайн» предлагает к реализации спанбонд, синтепон, ватин, различные виды геосинтетиков (георешётка, геосетка, геомембрана и пр.), волокно синтетическое (полиэфир).

Геосинтетические материалы (геосинтетики) – это любые полимерные материалы, предназначенные для изменения естественных свойств грунтов.

Это изменение обычно касается либо фильтрационных свойств почвы (как правило, производится понижение коэффициента фильтрации слишком рыхлого грунта), либо ее прочностных характеристик (например, с помощью армирования георешётками повышается прочность слабых грунтов).

Один и тот же набор материалов может использоваться в самых различных случаях, и каждый в отдельности может выполнять разные функции.

Также компания предоставляет услуги по организации доставки грузов до пункта назначения автомобильным или железнодорожным транспортом.

На сегодняшний день производственные мощности предприятия представляют собой четыре технологические линии, позволяющие производить ежегодно более 10 миллионов квадратных метров нетканого иглопробивного полотна. ООО «Полилайн» осуществляет постоянную модернизацию оборудования, совершенствует технологические процессы, что позволяет непрерывно улучшать качество выпускаемой продукции и соответствовать требованиям рынка. С целью производства конкурентоспособной продукции на предприятии разработан план технического перевооружения.

На всех стадиях производственного цикла проводится контроль качества продукции. Методы контроля разработаны в соответствии с действующими ГОСТами и техническими условиями. На предприятии ведётся работа по внедрению системы менеджмента качества в соответствии с требованиями международных стандартов ISO 9000.

ООО «Полилайн» является активным членом Ассоциации изготовителей нетканых материалов «АСИНЕМ» и Союза производителей нетканых материалов «РИТМ» с момента основания этих организаций.

Высокое качество нетканого полотна и гибкие условия работы позволяют компании «Полилайн» успешно сотрудничать более чем с 300 предприятиями различных отраслей народного хозяйства в России и некоторых странах ближнего зарубежья. Основные потребители нетканого полотна – предприятия нефтегазодобычи, агропромышленные и строительные компании, организации, занимающиеся производством мебели, одежды, обуви, медицинских изделий.


3 Практическая часть

3.1 Статистическая группировка данных

Проведем группировку данных представленных в таблице 1 приложения А. Сгруппируем представленные данные по объему произведенной продукции за 1 квартал 2010 года на основе 121 рабочего дня. Для определения числа групп воспользуемся формулой (1.1.2):

Теперь определим величину интервала по формуле (1.1.1):
м2
Полученные данные представлены в таблице 3.1.1.

Таблица 3.1.1 – Группировка произведенной продукции за 1 квартал 2010г.

Группировка дней 1 полугодия по производству

продукции

Количество дней

Количество дней в % к итогу

Объем продукции, м2

Объем продукции в % к итогу

Всего

В среднем за 1 день

до

   1612,5

10

8,3

2 705,0

270,5

0,4

1612,5

-3225,0

11

9,1

27 400,0

2490,9

3,8

3225,0

-4837,5

24

19,8

98 101,1

4087,5

13,6

4837,5

-6450,0

20

16,5

107 834,9

5391,7

15,0

6450,0

-8062,5

37

30,6

272 791,6

7372,7

37,8

8062,5

-9675,0

8

6,6

73 381,0

9172,6

10,2

9675,0

-11287,5



0,0

0,0

0,0

0,0

свыше

   11287,5

11

9,1

138 892,5

12626,6

19,3

Итого

121

100,0

721 106,1

5959,6

100,0


Представим некоторые из полученных данных графически.


Рисунок 3.1.1 – Гистограмма распределения дней по объему произведенной продукции


Рисунок 3.1.2 – Полигон распределения дней по объему произведенной продукции в среднем за 1 день
Проведенная статистическая группировка по объему произведенной продукции за 1 полугодие 2010 года показала, что за 121 рабочий день было произведено 721106,1м2 продукции, выпуская в среднем по 5959,6м2. Наибольшее количество дней, а именно 37, что в удельном весе составляет 30,6% от общего количества отработанных дней, ежедневный выпуск продукции находился в пределах 6450,0-8062,5м2. За эти дни, выпуская в среднем каждый день 7372,7м2, было изготовлено наибольшее количество полотна – 272791,6м2, что составляет 37,8% от объема выпуска за полгода. Одинаковое количество дней, а именно 11 (в удельном весе 9,1%) производилось полотно в интервале 1612,5-3225,0м2 и 11287,5-12900,0м2 за день. Очевидно, что выпуская ежедневно 11287,5-12900,0м2, что в среднем составляет 12626,6м2, было произведено 138892,5м2 или 19,3%, что несравнимо больше, чем 27400,0м2 (в удельном весе 3,8%), которые изготавливались такое же количество дней, но в среднем по 2490,9м2 за день или в пределах 1612,5-3225,0м2. Изготовление продукции в пределах 9675,0-11287,5м2 за день не производилась вообще. Наименьшее количество дней, а именно 8 (или 6,6%), выпуская в среднем 9172,6м2, было произведено 73381,0м2, что является достаточно высоким показателем, т.к. составляет в удельном весе 10,2%. При этом производя 10 дней продукцию в объеме до 1612,5м2 или 270,5м2 в среднем в день, было изготовлено наименьшее количество продукции – 2705,0м2 или 0,4% от выпуска продукции за полгода. Выпуская 20 дней продукцию в интервале 4837,5-6450,0м2 или в среднем 5391,7м2 за день, было изготовлено 107834,9м2 полотна, что больше чем 98101,1м2, которые были произведены в течение 24 дней, но с ежедневным выпуском в 4087,5м2.
3.2 Показатели динамических процессов
 
3.2.1 Основные показатели динамики


Из таблицы 1 приложения А возьмем данные по выпуску продукции по месяцам и на их основе рассчитаем показатели динамических процессов. Для расчета показателей воспользуемся формулами (1.2.1.1-1.2.1.4). Полученные данные занесем в таблицу 3.2.1.1.
Таблица 3.2.1.1 – Расчетные данные для показателей динамики.

Месяц

Выпуск продукции, м2

∆У, м2

Тр,%

∆Уц

∆Уб

Трц

Трб

1

2

3

4

5

6

Январь

76044,5

-

-

-

-

Фераль

87216,0

11171,5

11171,5

114,7

114,7

Март

93859,1

6643,1

17814,6

107,6

123,4

Апрель

155311,6

61452,5

79267,1

165,5

204,2

Май

178634,9

23323,3

102590,4

115,0

234,9

Июнь

130040,0

— 48594,9

53995,5

72,8

171,0

Итого

721106,1

53995,5

-

171,0

-



Продолжение таблицы 3.2.1.1

Месяц

Тп, %

А1%

Тпц

Тпб

1

7

8

9

Январь

-

-

-

Февраль

14,7

14,7

760,4

Март

7,6

23,4

872,2

Апрель

65,5

104,2

938,6

Май

15,0

134,9

1553,1

Июнь

-27,2

71,0

1786,3

Итого

71,0

-

760,4



Проведя расчеты основных показателей динамики можно сделать вывод, что производство продукции в конце полугодия по сравнению с выпуском в начале года выросло на 53995,5м2, или на 71,0%. В апреле резко возрос выпуск продукции. По сравнению с мартом он увеличился на 65,5%, а по сравнению с январем более чем в 2 раза, или на 79267,1м2, и составил 155311,6м2. В мае наблюдается самый большой объем выпуска за полгода, который составил 178634,9м2, что в 2,3 раза (или на 102590,4м2) больше чем 76044,5м2, которые были изготовлены за январь и являются наименьшим объемом выпуска. Однако в июне уже было произведено продукции меньше по сравнению с маем на 48594,9м2 (или на 27,2%), что составило 130040,0м2, хотя при этом объем выпуска по сравнению с январем увеличился на 71,0%.

В среднем на каждый процент прироста приходится 760,4м2. Наибольшее содержание одного процента прироста приходится на июнь и составляет 1786,3м2.

Ярко выраженную сезонность можно объяснить тем, что полотно выпускаемое ООО «Полилайн» используют при укладке дорог, строительных работах и т.д., т.е. увеличение заказов в апреле и мае связано с начинающимся сезоном строительных работ у заказчиков.
    продолжение
--PAGE_BREAK--3.2.2 Средние показатели динамики


Среднемесячный выпуск продукции вычислим по формуле (1.2.2.1а):
м2.
Вычислим средний абсолютный прирост на основе цепных приростов по формуле (1.2.2.2):
м2.
Вычислим средний темп роста по формуле (1.2.2.3):
.
Рассчитаем средний темп прироста по формуле (1.2.2.4):
.
Среднемесячный выпуск продукции в 1 полугодии 2010 года составил 120184,4м2. Исходя из рисунка 3.2.2.1 можно сделать вывод, что в 1 квартал продукция производилась  в объемах меньших, чем средний выпуск, а во 2й квартал в больших. Ежемесячное увеличение выпуска составило 10799,1м2, т.е. объем производства увеличивался на 11,3%  каждый месяц, а средний темп роста составил 1,113.

Рисунок 3.2.2.1 – Графическое отображение выпуска продукции по месяцам и среднего выпуска продукции
3.2.3 Сглаживание колеблемости в рядах динамики
 


Проведем сглаживание колеблемости на основе данных из таблицы 1 приложения А. Возьмем данные о суммарном выпуске продукции за 31 день в течение первого полугодия и занесем их в таблицу 1 приложения Б.
Метод укрупнения интервалов.

Проведем сглаживание колеблемости методом укрупнения интервалов, преобразуя данные, суммируя их по 10-дневкам. В результате получим таблицу 3.2.3.2.
Таблица 3.2.3.2 – Выпуск продукции за полгода по 10-дневкам.

10 дневки

Выпуск продукции, м2

1

259697,1

2

259953,1

3

201455,9


Полученные данные представим графически на рисунке 3.2.3.1.



Рисунок 3.2.3.1 – Выпуск продукции по 10-дневкам в 1 полугодии 2010 года
Метод скользящей средней.

Проведем сглаживание на основе таблицы 1 приложения Б методом скользящей средней на основе 10-дневок, т.е. на основе 10 уровней ряда. Воспользуемся формулой (1.2.3.1) и полученные данные занесем в таблицу 2 приложения Б. Полученные данные отобразим графически на рисунке 3.2.3.2.
Рисунок 3.2.3.2 – Графическое отображение сглаживания уровней
Аналитическое выравнивание ряда.

Проведем аналитическое выравнивание ряда на основе таблицы 1 приложения Б различными функциями.

Рассмотрим выравнивание по прямой. Т.к. количество уровней нечетное, то значения tвозьмем от –15 до 15, включая 0. Заполним таблицу 1 приложения В. На основании формул (1.2.3.3а, б) рассчитаем параметры а0и а1:
;      .
В результате, используя формулу (1.2.3.2) получим уравнение:
.
На его основе заполнена графа  в таблице 1 приложения В.

Полученные данные отобразим графически на рисунке 3.2.3.3.
 Рисунок 3.2.3.3 – Графическое отображение выравнивания по прямой
Рассмотрим сглаживание по параболе второй степени. Для этого заполним таблицу 2 приложения В. На основании формул (1.2.3.5а, б) вычислим значения параметров:


;    
Решив систему уравнений получим а0=25448,2; а2=–27,3. В результате, используя формулу (1.2.3.4) получаем уравнение параболы, на основании которого заполняется таблица:

Отобразим полученные данные графически на рисунке 3.2.3.4.
Рисунок 3.2.3.4 – Графическое отображение выравнивания по параболе
Рассмотрим выравнивание с помощью логарифмической функции. Для этого заполним таблицу 3 приложения В. На основании формул (1.2.3.7а, б) вычислим значения параметров:
;       .


Используя формулу (1.2.3.6) получаем уравнение логарифмической функции, на основании которой заполняется таблица:

Для нахождения  необходимо пропотенцировать полученные значения функции. Полученные данные отобразим графически на рисунке 3.2.3.5.


Рисунок 3.2.3.5 – Графическое отображение выравнивания с помощью логарифмической функции
Для выбора оптимальной функции из рассчитанных, воспользуемся формулой ошибки аппроксимации (1.2.3.8):
м2;

м2;

м2.


Полученные значения означают отклонение фактических уровней ряда, от выравненных (расчетных). Очевидно, что самым оптимальным является выравнивание по параболе, т.к. оно имеет минимальное отклонение по сравнению с остальными функциями.

На основании проведенного аналитического выравнивания различными методами и функциями можно сделать вывод об общей динамике в производстве продукции по дням. Выравнивание 3 методами показало, что наибольший выпуск наблюдается в середине месяца и последующим спадом к концу месяца. Т.к. оптимальной является параболическая функция из-за наименьшей ошибки аппроксимации, то средний выпуск ежедневно составляет 5959,6±4523,7м2.
3.2.4 Показатели сезонности


На основании данных таблицы 1 приложения Б построим сезонную волну. Т.к. ряд не содержит ярко выраженной тенденции в развитии, то индексы сезонности вычислим по формуле (1.2.4.2):
,
где  вычислим по формуле (1.2.2.1а), где n=6. Полученные данные занесем в таблицу 3.2.4.1. и на ее основе отобразим графически сезонную волну на рисунке 3.2.4.1.
Таблица 3.2.4.1 – Расчетные данные для построения сезонной волны

День

Выпуск продукции, y



Is,%

1

22274,5

3 712,4

93,2

2

31412,6

5 235,4

131,4

3

24230,0

4 038,3

101,4

4

24510,0

4 085,0

102,5

5

36323,0

6 053,8

152,0

6

28910,0

4 818,3

120,9

7

27240,5

4 540,1

114,0

8

14842,5

2 473,8

62,1

9

29850,5

4 975,1

124,9

10

20103,5

3 350,6

84,1

11

27593,6

4 598,9

115,4

12

31389,0

5 231,5

131,3

13

26680,0

4 446,7

111,6

14

24575,0

4 095,8

102,8

15

23477,0

3 912,8

98,2

16

23259,0

3 876,5

97,3

17

22425,5

3 737,6

93,8

18

22604,0

3 767,3

94,6

19

32810,0

5 468,3

137,3

20

25140,0

4 190,0

105,2

21

24690,0

4 115,0

103,3

22

21175,0

3 529,2

88,6

23

20985,0

3 497,5

87,8

24

18375,0

3 062,5

76,9

25

15795,0

2 632,5

66,1

26

21262,4

3 543,7

88,9

27

19242,5

3 207,1

80,5

28

20405,0

3 400,8

85,4

29

19698,0

3 283,0

82,4

30

16173,0

3 234,6

81,2

31

3655,0

1 827,5

45,9

 Итого

721106,1

3 984,0

100,0











В результате проведенного исследования сезонных колебаний можно сделать вывод, минимальное значение на 45,9% сезонная волна принимает 31 числа, это очевидно, т.к. за полгода 31 число встречается лишь в марте и мае. Если не брать в расчет это значение, то за минимальное значение можно принять 62,1% 8го числа и 66,1% 25го. В течение всего периода прослеживаются резкие скачки, особенно в начале месяца. Наибольшее значение сезонная волна принимает на уровне 152,0% 5го числа. Во второй половине сезонная волна имеет тенденцию к постоянному снижению, и после 137,3% 19 числа значения сезонной волны не поднимаются выше 100,0%.
3.3 Показатели вариации

Произведем расчет показателей вариации на основании двух таблиц. Сначала рассчитаем показатели вариации на основе таблицы 2 приложения А для выпуска продукции по каждому наименованию полотна[4]. Заполним таблицу 1 приложения Г заранее проведя ранжировку ряда. Среднее значение рассчитаем по формуле (1.2.2.1а):
м2.
Рассчитаем размах вариации по формуле (1.3.1):
м2.
Среднее линейное отклонение рассчитаем по формуле (1.3.2а):
м2.

Дисперсию рассчитаем по формуле (1.3.3а):

Среднее квадратическое отклонение рассчитаем по формуле (1.3.4):


м2.
Рассчитаем коэффициенты вариации по формулам (1.3.5а, б):
;      .
Коэффициент осцилляции рассчитаем по формуле (1.3.11):
.
Для расчета асимметрии вычислим момент третьего порядка по формуле (1.3.13а):
.
Тогда асимметрия по формуле (1.3.12) , а средняя квадратичная ошибка рассчитанная по формуле (1.3.14) равна:
.

Для расчета эксцесса вычислим момент четвертого порядка по формуле (1.3.16а):
.


Тогда эксцесс по формуле (1.3.15) , средняя квадратичная ошибка рассчитанная по формуле (1.3.14) равна:
.
Т.к. мода – значение признака, наиболее часто встречающееся в изучаемых явлениях, то модой будет являться ИП–215–350, т.к. оно наиболее часто выпускалось, т.е. в больших количествах. Медианой же будет являться значение, находящееся между 10 и 11 полотном в ранжированном ряду, т.е.:
м2.
На основании расчетов показателей вариации можно сделать вывод, что средний выпуск каждого из видов полотна равен 36055,3м2. Половина полотен выпускается в объеме большем 15800,0м2, а вторая половина в меньшем объеме. Наибольшее количество, а именно 133043,0м2 производят полотна ИП-215-350. Наименьший объем за полгода выпустили полотна ИП-170-600 в количестве 204,0м2 и ИП-170-450 в объеме 340, м2. Возможно, это связано с индивидуальными заказами. Разница между максимальным и минимальным значением объема производства конкретного вида продукции составляет 132839,0м2, что является значительным показателем. Средняя величина колеблемости объема производства продукции одного наименования полотна составляет по линейному отклонению 33621,3м2, а по среднему квадратному отклонению 38558,8м2, т.е. выпуск в среднем каждого полотна составляет 36055,3 ± 38558,8м2. Разница между крайними значениями объема производства больше среднего значения в 3,6 раза. Относительное линейное отклонение 93,2%  характеризуют неоднородность, что подтверждает коэффициент вариации, который равен 106,9%, что больше 33%. Асимметрия и эксцесс являются несущественными, т.к. (|As|/σas=1,8)0.

Наибольший интерес представляют расчеты показателей вариации для интервального ряда. Возьмем данные ранее проведенной группировки из таблицы 3.1З.1. Заполним таблицу 2 приложения Г.

Среднее значение рассчитаем по формуле (1.2.2.1б):
м2.
Рассчитаем размах вариации по формуле (1.3.1):
м2.
Среднее линейное отклонение рассчитаем по формуле (1.3.2б):
м2.
Дисперсию рассчитаем по формуле (1.3.3б):

Среднее квадратическое отклонение рассчитаем по формуле (1.3.4):
м2.
Рассчитаем коэффициенты вариации по формулам (1.3.5а, б):


;      .
Коэффициент осцилляции рассчитаем по формуле (1.3.11):
.
Для расчета асимметрии вычислим момент третьего порядка по формуле (1.3.13а):
.
Тогда асимметрия по формуле (1.3.12) , а средняя квадратичная ошибка рассчитанная по формуле (1.3.14) равна:
.
Для расчета эксцесса вычислим момент четвертого порядка по формуле (1.3.16а):
.
Тогда эксцесс по формуле (1.3.15) , средняя квадратичная ошибка рассчитанная по формуле (1.3.14) равна:


.
Вычислим моду по формуле (1.3.6):
м2,
где модальным будет интервал 6450,0–8062,5, т.к. он имеет наибольшую частоту (37).

Для более полной характеристики структуры рассчитаем квартили по формулам (1.3.8):
м2;

м2;

м2.

Рассчитаем квартильное отклонение по формуле (1.3.9):

м2.
Относительный показатель квартильной вариации рассчитаем по формуле (1.3.10):
.


На основании расчетов показателей вариации можно сделать вывод, что средний ежедневный выпуск продукции составляет 5923,6м2. В наибольшее количество дней, а именно 37, ежедневный выпуск продукции составил 6450,0-8062,5м2, а чаще всего встречающийся ежедневный выпуск продукции составляет 6505,6м2. В половину из проработанных дней выпуск составил более 60872,0м2, а в другую половину менее этой величины. При этом в 1\4 из дней выпуск был менее 3846,5м2, а в другую 1/4 более 7572,2м2. Размах вариации свидетельствует о том, что разница между максимальным и минимальным значением составляет 12900,0м2. Квартильное отклонение равное 1862,9м2 свидетельствует об умеренной асимметрии распределения, т.к. Q≈ 2/3σ = 1953,0м2. Средняя величина колеблемости ежедневного выпуска продукции составляет по линейному отклонению 2326,3м2, а по среднему квадратному отклонению 2929,5м2, т.е. ежедневное производство полотна составляет 5923,6 ± 2929,5м2. Разница между крайними значениями выпуска продукции превышает среднее значение в 2,2 раза. Относительное линейное отклонение 39,3% характеризуют неоднородность, что подтверждает коэффициент вариации, который равен 49,5%, что больше 33%. Асимметрия и эксцесс являются несущественными, т.к. (|As|/σas=1,3)
    продолжение
--PAGE_BREAK--3.4 Индексы

Рассчитаем индексы на основе данных таблицы 3 приложения А. Для расчета индексов цепными и базисными методами создадим таблицу 3.4.1.
Таблица 3.4.1 – Производство продукции и себестоимость полотна
ИП-170-350 за 1 квартал 2010 года

Полотно

Январь

Февраль

Март

Всего выпуск, м2, q0

С/ст 1м2, руб, p0

Всего выпуск, м2, q1

С/ст 1м2, руб, p1

Всего выпуск, м2, q2

С/ст 1м2, руб, p2

ИП-170-350

13 002,0

14,57444

850,0

14,67439

18 958,6

14,91322



На основе данной таблицы по формуле (1.4.1а, б) рассчитаем индексы себестоимости цепным методом:
;

.

Базисным методом:

;

.
На основе данной таблицы по формуле (1.4.2а, б) рассчитаем индексы объема производства цепным методом:
;

.
Базисным методом:
;

.


Рассчитаем индивидуальный индекс затрат на производство на базисной и цепной основе по формулам (1.4.3а, б):
;

;

.
В результате полученных данных можно сделать вывод, что затраты на производство ИП-170-350 в феврале по сравнению с январем снизились на 93,4%. Это произошло из-за резкого сокращения производства данного полотна на 93,5% на фоне повышения себестоимости 0,7%. Затраты на производство в марте по сравнению с февралем увеличились в 22,7 раза. Это произошло из-за резкого увеличения объемов производства данного полотна в 22,3 раза, на фоне незначительного повышения себестоимости на 1,6%. Такой резкий скачок может быть связан с заказом на данный вид полотна. Затраты же на производство в марте по сравнению с январем увеличились на 49,2% из-за увеличения объемов производства на 45,8% и себестоимости на 2,3%.

Для расчета агрегатных индексов создадим таблицу 3.4.2.
Таблица 3.4.2 – Расчетные данные для выпуска продукции за 2 месяца

Полотно

Февраль

Март

Всего выпуск, м2, q0

С/ст 1м2, руб, z

Всего выпуск, м2, q1

С/ст 1м2, руб, p1

А

1

2

3

4

ИП-170-200

170,0

9,14332

2 040,0

11,22106

ИП-170-250

3 740,0

10,98701

23 120,0

13,11845

ИП-215-350

11 180,0

14,67439

33 283,0

14,91322

Итого

15 090,0

 

58 443,0

 

Продолжение таблицы 3.4.2

Полотно

Z1Q1

ZQ1

ZQ0

А

5

6

7

ИП-170-200

22891,0

18652,4

1554,4

ИП-170-250

303298,6

254019,7

41091,4

ИП-215-350

496356,7

488407,7

164059,7

Итого

822546,2

761079,8

206705,5



На основе формулы (1.4.4) рассчитаем агрегатный индекс затрат на производство:
.
На основе формулы (1.4.5) рассчитаем агрегатный индекс себестоимости продукции:
.
На основе формулы (1.4.6) рассчитаем агрегатный индекс физического объема продукции:
.
Индекс переменного состава рассчитаем по формуле (1.4.7):
.


Индекс постоянного состава рассчитаем по формуле (1.4.8):
.
Индекс структурных сдвигов рассчитаем по формуле (1.4.9):
.
Затраты на производство продукции в марте по сравнению с февралем увеличились в 3,9 раза и составили 822546,2 руб., т.е. в денежном выражении увеличился на 615840,7 руб. Увеличение затрат произошло в основном из-за увеличения объема выпускаемой продукции в 3,7 раза, что отразилось на увеличении затрат на 554374,3 руб. Кроме того произошло увеличение себестоимости на 8,1%, что привело к увеличению затрат на 61466,4 руб. Средняя себестоимость по данным полотнам увеличилась на 2,7% с 14,074 руб. в феврале до 13,698 руб. в марте. Произошло ее увеличение на 8,1% из-за увеличения затрат в целом, при этом произошло незначительное ее снижение на 4,9% из-за структурных сдвигов в объемах производства.
3.5 Корреляционно-регрессионный анализ
 

Проведем корреляционно-регрессионный анализ выпуска продукции и себестоимости на основе данных таблицы 4 приложения А. Зависимость себестоимости единицы продукции от объемов выпуска этой продукции можно охарактеризовать гиперболической функцией. Создадим таблицу 1 приложения Д. Вычислим значения параметров по формулам (1.5.2а, б):


;

.
В результате гиперболическая функция по формуле (1.5.1) имеет вид:
.
По формуле (1.2.2.1б):
руб.
По формулам (1.5.3-1.5.4) рассчитаем дисперсии:
;

;

.
На основании полученных результатов по формуле (1.5.6) определим тесноту связи признаков:
.
По формуле (1.5.7) определим индекс корреляции:

.
Средняя ошибка аппроксимации не должна превышать 10-15% и рассчитывается по формуле:
.

Проведенный корреляционно-регрессионный анализ показывает правильность гипотезы о том, что между объемами выпуска продукции и себестоимостью существует зависимость, выражаемая гиперболической функцией. Верность расчетов подтверждает ошибка аппроксимации, которая составляет 3,8%. Т.о. 68,6% вариации себестоимости объясняется вариацией объемов выпуска продукции. А теснота связи весьма существенна, т.к. индекс корреляции равен 0,828.


Заключение

В результате проведенного статистического анализа можно общие сделать выводы о деятельности предприятия в первом полугодии 2010 года. За 121 рабочий день было произведено 721106,1м2 продукции на сумму 10719895,8 руб., со средним выпуском в день 5923,6 ± 2929,5м2. Производство продукции в конце полугодия по сравнению с выпуском в начале года выросло на 53995,5м2, или на 71,0%. В половину из проработанных дней выпуск составил более 60872,0м2, а в другую половину менее этой величины. При этом в 1\4 из дней выпуск был менее 3846,5м2, а в другую 1/4 более 7572,2м2. Средний годовой выпуск каждого из видов полотна равен 36055,3±38558,8м2.

Для увеличения объемов производства необходимо оборудование, позволяющее выпускать полотно большей ширины, чем 215см. С появлением такого оборудования возможно резкое увеличение объемов выпускаемой продукции. Тем более, что производственная площадь предприятия это позволяет. Кроме того, доказанная корреляционно-регрессионная зависимость между объемом производства и себестоимостью говорит о том, что с увеличением объемов производства снизятся издержки из-за эффекта масштаба. С середины месяца наблюдается спад в объемах производства, поэтому следует равномерно распределить объемы выпускаемой продукции.

Ярко выраженную сезонность можно объяснить тем, что полотно, выпускаемое ООО «Полилайн» используют при укладке дорог, строительных работах и т.д., т.е. увеличение заказов в апреле и мае связано с начинающимся сезоном строительных работ у заказчиков. Т.к. очевидна сезонность, то необходимо налаживание связей с поставщиками и созданием постоянной базы клиентов.


Список литературы

1.          Общая теория статистики: Учебник/А. Я. Боярский, Л. Л. Викторова, А. М. Гольдберг и др.; Под ред А. М. Гольдберга, В.С. Козлова. – М.: Финансы и статистика, 1985.–367с. ил.

2.          Общая теория статистики: Учеб.-метод. пособие по выполнению практ. И лаборат. работ / Сост.: Н.И. Гришакина, О.Д. Притула, Д.П. Сергеева, Г.В. Фетисова; НовГУ им. Ярослава Мудрого. – Великий Новгород, 2010.–60с.

3.          Правила оформления дипломной и курсовой работы / Сост. Н.Н. Васильева, Л.В. Соколова; НовГУ им. Ярослава Мудрого. – Великий Новгород, 2005.–44с.

4.          Статистика. Учеб. пособие по вып. практ. работ. Часть I/ Сост.: Н.И. Гришакина, Г.В. Фетисова; НовГУ им. Ярослава Мудрого. – Великий Новгород, 2005.–108с.

5.          Суслов И. П. Общая теория статистики. Учеб. пособие. Изд. 2-е, перераб. и доп. – М.: «Статистика», 1978.–392с. ил.



--PAGE_BREAK--


Таблица 2 – Расчетные данные для выравнивания

День

Выпуск продукции, м2

Скользящие средние

1

22274,5

¾

2

31412,6

25969,7

3

24230,0

26501,6

4

24510,0

26499,3

5

36323,0

26744,3

6

28910,0

26750,8

7

27240,5

25466,2

8

14842,5

24901,1

9

29850,5

24419,6

10

20103,5

25195,7

11

27593,6

25491,7

12

31389,0

25995,3

13

26680,0

25705,0

14

24575,0

24683,6

15

23477,0

24114,1

16

23259,0

23494,1

17

22425,5

22725,9

18

22604,0

22526,2

19

32810,0

22207,9

20

25140,0

21988,0

21

24690,0

20676,8

22

21175,0

19780,1

23

20985,0

17676,6

24

18375,0

¾

25

15795,0

¾

26

21262,4

¾

27

19242,5

¾

28

20405,0

¾

29

19698,0

¾

30

16173,0

¾

31

3655,0

¾


--PAGE_BREAK--


Таблица 2 – Расчетные данные для выравнивания по параболе

День

Выпуск продукции, y

t

t2

t4

y·t

y·t2







1

22274,5

-15

225

50625

-334117,5

5011762,5

25477,5

-3203,0

10259260,4

2

31412,6

-14

196

38416

-439776,4

6156869,6

25858,2

5554,4

30850914,4

3

24230,0

-13

169

28561

-314990

4094870

26184,3

-1954,3

3819300,6

4

24510,0

-12

144

20736

-294120

3529440

26455,7

-1945,7

3785737,5

5

36323,0

-11

121

14641

-399553

4395083

26672,4

9650,6

93133650,4

6

28910,0

-10

100

10000

-289100

2891000

26834,5

2075,5

4307789,9

7

27240,5

-9

81

6561

-245164,5

2206480,5

26941,9

298,6

89182,5

8

14842,5

-8

64

4096

-118740

949920

26994,6

-12152,1

147673139,0

9

29850,5

-7

49

2401

-208953,5

1462674,5

26992,6

2857,9

8167404,2

10

20103,5

-6

36

1296

-120621

723726

26936,0

-6832,5

46683236,1

11

27593,6

-5

25

625

-137968

689840

26824,7

768,9

591169,7

12

31389,0

-4

16

256

-125556

502224

26658,8

4730,2

22375107,1

13

26680,0

-3

9

81

-80040

240120

26438,1

241,9

58496,3

14

24575,0

-2

4

16

-49150

98300

26162,8

-1587,8

2521249,6

15

23477,0

-1

1

1

-23477

23477

25832,9

-2355,9

5550169,1

16

23259,0











25448,2

-2189,2

4792798,4

17

22425,5

1

1

1

22425,5

22425,5

25008,9

-2583,4

6674180,2

18

22604,0

2

4

16

45208

90416

24515,0

-1911,0

3651813,7

19

32810,0

3

9

81

98430

295290

23966,3

8843,7

78210474,8

20

25140,0

4

16

256

100560

402240

23363,0

1777,0

3157651,3

21

24690,0

5

25

625

123450

617250

22705,0

1985,0

3940052,8

22

21175,0

6

36

1296

127050

762300

21992,4

-817,4

668136,1

23

20985,0

7

49

2401

146895

1028265

21225,1

-240,1

57638,1

24

18375,0

8

64

4096

147000

1176000

20403,1

-2028,1

4113165,5

25

15795,0

9

81

6561

142155

1279395

19526,4

-3731,4

13923642,0

26

21262,4

10

100

10000

212624

2126240

18595,1

2667,3

7114402,3

27

19242,5

11

121

14641

211667,5

2328342,5

17609,1

1633,4

2667917,3

28

20405,0

12

144

20736

244860

2938320

16568,5

3836,5

14719018,8

29

19698,0

13

169

28561

256074

3328962

15473,1

4224,9

17849506,5

30

16173,0

14

196

38416

226422

3169908

14323,1

1849,9

3422007,5

31

3655,0

15

225

50625

54825

822375

13118,5

-9463,5

89557167,6

Итого

721106,1



2480

356624

-1021680,9

53363516,1

721106,1

0,0

634385379,6
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Электромагнитный векторный потенциал как следствие дуальности параметров частиц микромира
Реферат Альфрид Крупп фон Болен-унд-Хальбах (1907–1967),
Реферат Поземельные отношения в средневековой Англии и их правовое регулиро
Реферат Коммуникации в магазине запасных частей
Реферат 191028, Санкт-Петербург, ул. Кирочная, д. 3, оф. 41 т. 327-08-16, ф. 273-57-40
Реферат 1  внесение дополнения в Декрет Президента Республики Беларусь от 22 сентября 2005 г
Реферат Традиционные методы прогнозирования
Реферат Глагол "to have" со значением "иметь"
Реферат Анализ дискретного фильтра II порядка
Реферат Многопартийность в России начала 20 века
Реферат Схемотехническое и функциональное проектирование вакуумной коммутационной аппаратуры
Реферат Міжнародне перестрахування
Реферат «Туризм и активный отдых на Юге России» это отличный выбор для тех, кто хочет донести информацию о своих услугах или товарах для конкретной целевой аудитории
Реферат Педагогическая психология Талызина Н Ф
Реферат Реформування тарифної системи оплати праці працівників в торгівлі