Реферат по предмету "Медицина"


Сравнительный анализ структуры наследственной компоненты подверженности к бронхиальной астме и т

--PAGE_BREAK--ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ
1.1. Ферментативная система биотрансформации ксенобиотиков
1.1.1. 
Семейства ферментов
I
и
II
фазы метаболизма

В процессах метаболизма различных по химическому составу ксенобиотиков, в том числе лекарственных препаратов и ряда эндогенных субстратов, выделяют две фазы [Urs, 1997]. Цитохромы Р450, флавинсодержащие монооксигеназы, эстеразы, амидазы, альдегиддегидрогеназы и др. относят к ферментам I-й фазы биотрансформации, которые участвуют в реакциях окисления и восстановления, а также гидролиза молекул ксенобиотика [Gonzalez, 1993]. Ведущая роль в окислении многих ксенобиотиков, а также важнейших для жизнедеятельности эндогенных соединений, таких как стероидные гормоны, витамины, жирные и желчные кислоты, простагландины, лейкотриены, биогенные амины, ретиноиды и др. принадлежит цитохрому Р450 [Ляхович, Цырлов, 1981; Waxman, Azaroff, 1992]. В ходе ферментативных реакций I-й фазы биотрансформации (фаза активации) образуются водорастворимые соединения. В дальнейшем эти соединения могут подвергаться конъюгации с эндогенными соединениями, восстановлению или гидролизу с помощью ферментов II-й фазы (фаза детоксикации), а затем выведению из организма. Ко второй фазе метаболизма принадлежат ферменты конъюгации – глутатион S-трансферазы (GST), конъюгирующие главным образом электрофильные соединения с глутатионом, УДФ-глюкуронозилтрансферазы (UDPGT), катализирующие реакции конъюгации молекул ксенобиотика или его метаболита с глюкуроновой кислотой [Morgenstern, DePierre, 1985], N-ацетил- (NAT), сульфо- (ST) -трансферазы, эпоксидгидролазы (EH), гидролизующие эпоксиды и др. [Sipes, Gandolfi, 1986].

В реакции II-й фазы метаболизма ксенобиотики могут вступать не только после метаболизма в реакциях I-й фазы, но и напрямую, а впоследствии подвергаться или не подвергаться окислению ферментами цитохрома Р450 [Saitoetal., 1986], а результатом метаболизма может быть как уменьшение, так и усиление токсичных свойств субстрата. На рис. 1 представлены возможные комбинации взаимодействия двух фаз биотрансформации.





Рис.1. Изменение токсичных свойств ксенобиотиков в ходе реакциий I-й и II-й фаз биотрансформации.
Наиболее благоприятным исходом из них будет вариант, когда изначально токсичные свойства ксенобиотика снижаются под воздействием ферментов Iи IIфазы, а высокая активность различных цитохромов Р450 в сочетании с низкой активностью ферментов II-й фазы биотрансформации является наиболее неблагоприятной и приводит к увеличению риска развития некоторых заболеваний [Guengerich, 1988].
1.1.2. Свойства ферментов метаболизма ксенобиотиков

Цитохром Р450 является уникальным по своим свойствам гемопротеидом, обеспечивающим внедрение активированного кислорода непосредственно в молекулу субстрата. В общей сложности известно о 107 генах цитохромов Р450 в геноме человека, из них 59 индивидуальных цитохромов Р450 и 48 псевдогенов [Ingelman-Sundberg, 2004]. На сегодняшний день для большинства цитохромов установлена функциональная значимость. Цитохромы Р450 семейств 1-3 ответственны в большинстве случаев (70-80% из всех ферментов I-й фазы биотрансформации) за метаболизм используемых в клинической практике лекарственных препаратов [Ingelman-Sundberg, 2004; Evans, Relling, 1999; Bertz, Granneman, 1997]. Члены семейства CYP1, 2, 3, 4 – ответственны за метаболизм чужеродных соединений, а CYP11, CYP17, CYP19, CYP21 вовлечены в метаболизм стероидов и желчных кислот [Ioannides, Lewis, 2004; Lewisetal., 2004; Rifkindetal., 1995]. Часть цитохромов Р450 окисляют жирорастворимые витамины, некоторые вовлечены в метаболизм жирных кислот и эйкозаноидов.

Для многих цитохромов Р450 описаны высокоспецифичные субстраты. Однако одной из особенностей как цитохрома Р450, так и его индивидуальных форм является способность к метаболизму большого спектра субстратов. Поэтому изоформы цитохрома Р450 перекрываются в своей субстратной специфичности, и даже высокоспецифичные субстраты могут подвергаться метаболизму многими из них [Райс, Гуляева, 2003]. Интересно, что наряду с селективными субстратами существуют и такие, в метаболизме которых участвуют многие формы цитохрома Р450. Классическим примером такого субстрата является лекарственное средство антипирин, который метаболизируют CYP1A1, 2C8, 2C9, 2C18, 2B6, 3A4, 2D6, 2A6, 2C19 и 2Е1 [Engeletal., 1996].

Глутатион S-трансферазы – мультигенное семейство соответствующих ферментов, которое участвует в метаболизме большого числа электрофильных соединений путем их конъюгации с глутатионом, а также в биотрансформации некоторых эндогенных соединений (гормонов, липидов, простагландинов, лейкотриенов) [Morgenstern, DePierre, 1985; Кулинский, 1999; Hayes, Strange, 1999]. К настоящему времени известно, что у млекопитающих различают 6 подклассов глутатион S-трансфераз: 5 семейств цитоплазматической (альфа (α), мю (μ), тэта (θ), пи (π) и зета (Z)) и одно семейство микросомальной GST[Eaton, Bammler, 1999]. Синтез глутатионовых S-трансфераз контролируется различными генами, в которых выявлены полиморфизмы, оказывающие существенное влияние на их функции. Известно, что функциональная GSTявляется димером [Beckett, Hayes, 1993].

Цитохром Р450 первоначально был обнаружен в печени, а затем и в других органах. Изучение внепеченочной экспрессии позволило сказать о тканеспецифичности цитохромов Р450. Тканеспецифичная экспрессия различных изоформ цитохрома Р450 определяет особенности протекающих монооксигеназных реакций и отражает адаптацию этой универсальной ферментной системы к структурно-функциональной организации той или иной системы организма. Так, высокая экспрессия цитохрома Р450 в гепатоцитах обеспечивает наиболее активное участие этого органа в биотрансформации ксенобиотиков. В печени ферменты метаболизма ксенобиотиков представлены максимально, а затем по убыванию следуют почки, легкие, кишечник, головной мозг и другие органы. В надпочечниках и половых железах в основном экспрессированы изоформы, участвующие в биосинтезе стероидных гормонов, в почках - изоформы, участвующие в биотрансформации ксенобиотиков и витамина Д и т.д. [Ingelman-Sundbergetal., 1995; Haehneretal., 1996].

На протяжении дыхательного тракта экспрессируются как цитохромы P450, так и ферменты второй фазы биотрансформации. Так в различных сегментах легких обнаружены ферменты семейств CYP1, 2, 3 и 4 [Wheeler, Guenthner, 1991; Raunioetal., 1995]. Из ферментов второй фазы наиболее представлены по всей протяженности респираторного тракта NAT1, NAT2, а также GSTμ1, GSTμ3 и GSTπ1. Необходимо отметить, что глутатионовые S-трансферазы pкласса составляют более чем 90% от общей GST-активности в эпителиальных клетках легких человека [Frayeretal., 1986].

Таким образом, знания об экспрессии генов ферментов метаболизма в различных органах и тканях, а также выявление их субстратной специфичности создают возможность объяснения тканеспецифичного метаболизма ксенобиотиков [Ravindranath, 1998]. Однако для этого необходимо изучение специфичного взаимодействия ферментов I-й и II-й фазы в метаболизме различных по химическому составу эндогенных и экзогенных ксенобиотиков, в том числе и лекарственных препаратов, определение их активности и генотипирования полиморфных генов [Pelkonen, Raunio, 1997; Nebertetal., 2003].

Одним из важных свойств системы цитохрома Р450 является индукция – активация транскрипции гена в присутствии субстрата [Ляхович, Цырлов; 1981]. Ранее предполагалось, что ксенобиотики сами являются факторами регуляции собственного метаболизма, однако впоследствии были показаны генетические механизмы процесса индукции [Polandetal., 1973]. Cпособность к индукции характерна для многих генов ферментов метаболизма ксенобиотиков семейств цитохрома Р450 [Honkakoski, Negishi, 2000] и имеет для организма приспособительное значение к меняющимся условиям химического окружения [Denison, Whitlock, 1995], в некоторых случаях достаточно довольно низких концентраций ксенобиотиков-индукторов, чтобы вызвать сильный ответ [Whitlock, Gelboin, 1974; Surryetal., 2000].

Некоторые ксенобиотики оказывают противоположный индукции эффект – ингибируют активность цитохромов Р450, что происходит вследствие образования реактивного метаболита, который ковалентно фиксируется в активном центре фермента. Показано ингибирование активности ферментов некоторыми лекарствами, например, изониазидом [Wenetal., 2002]. В случае, когда несколько ксенобиотиков метаболизируются одним и тем же ферментом семейства цитохрома Р450, они являются конкурентными ингибиторами друг для друга.
1.1.3. Генетический полиморфизм ферментативной системы метаболизма ксенобиотиков

Молекулярные механизмы полиморфизма генов ферментов метаболизма ксенобиотиков обусловлены следующим:

a) Нуклеотидные различия в кодирующем регионе гена приводят к замене аминокислоты и изменению в деятельности фермента или связывания субстрата (например, CYP2D6).

б)Делеции в кодирующем регионе приводят к отсутствию фермента или недостаточному синтезу белка (например, CYP2A6,CYP2D6 иGSTM1).

в)Полиморфизмы в некодирующей области затрагивают элементы транскрипционного контроля, вовлеченные в экспрессию и индукцию фермента(например, CYP1A1).

г)Изменения в сигнале полиаденилирования изменяет количество фермента (например, NAT1).

д)Генная амплификация повышает количество фермента (например, CYP2D6).

е)Сложные взаимодействия полиморфных генов и/или их ферментативных продуктов (например, более высокая активность CYP1A1 и1A2 у лиц сGSTM1-дефицитом, вероятноиз-за большего бионакопления компонентов индукции) [Bartschetal., 2000].

С феноменом генетического полиморфизма ферментов, участвующих в биотрансформации ксенобиотиков впервые столкнулись фармакологи, и это явление обусловливает значительные межиндивидуальные различия в метаболизме – до 104 [Guengerich, 2003]. По причине существования многочисленных данных с использованием различных обозначений аллелей генов цитохромов Р450 в настоящее время выработана единая классификация, рекомендованная к применению для исследователей [Nelsonetal., 1996].

У человека подкласс GSTμкодируется генами, локализованными на хромосоме 1 в области 1р13.3 и включает пять тандемно расположенных генов: GSTM1, GSTM2, GSTM3, GSTM4 и GSTM5 [Афанасьева, Спицин, 1990]. Для гена GSTM1 установлены две мутации: точковая замена, не имеющая функциональных проявлений [DeLongetal., 1988], и протяженная делеция гена (10 т.п.н.), которая возникла в результате неравного кроссинговера между двумя гомологичными последовательностями, фланкирующими ген GSTM1, проявляющаяся отсутствием белка [Seidegard, 1988]. GSTM1*Aи GSTM1*Bкодируют GSTM1Aи GSTM1Bферменты, которые функционально идентичны и различаются только по одной аминокислоте. GSTM1Aсодержит лизин в позиции 172, а GSTM1B– аспарагинин в этом же положении [Hatagima, Strange, 2000].

Ген GSTT1 картирован на хромосоме 22 (локус 22q11.2). Его полиморфизм обусловлен наличием двух аллелей: функционально активного GSTT1*1 и неактивного, так называемого «нулевого» (GSTT1*0). Аллель GSTT1*0 соответствует частичной или полной делеции, приводящей к снижению активности белка [Pembleetal., 1994].

Ген GSTP1 локализован на хромосоме 11 (11q13) и преимущественно экспрессируется в альвеолярных клетках, альвеолярных макрофагах, бронхиолах и плаценте. Для гена GSTP1 описаны две точковые мутации: замена аденина на гуанин в 313 положении первичной последовательности GSTP1, проявляющейся заменой изолейцина 105 на валин (Ile105Val) в 5 экзоне, и замена С341Т, проявляющейся заменой аланина 114 на валин (Ala114Val) в 6 экзоне [Boardetal., 1989]. При мутации 105Valв 7 раз увеличивается каталитическая активность фермента по отношению к полициклическим ароматическим соединениям, но в 3 раза снижена активность по отношению к 1-хлор-2,4-динитробензену [Watsonetal., 1998].

К настоящему моменту описаны девять аллелей гена CYP2C19, два активных аллеля CYP2C19*1A(wt1) и CYP2C19*1B(wt2) и семь дефектных аллелей CYP2C19*2A (m1A), 2C19*2B (m1B), 2C19*3 (m2), 2C19*4 (m3), 2C19*5A (m4 или TRP433), 2C19*5B, и 2C19*6 (m5) [Romkesetal., 1991; Richardsonetal., 1995; Ibenauetal., 1998]. Основной генетический дефект, найденный у «медленных» метаболизеров (S)-мефенитоина – точечная замена Gна Aв пятом экзоне в положении 681 гена CYP2C19 (CYP2C19*2), приводящая к аберрантному сайту сплайсинга. Образующаяся мРНК не содержит первые 40 оснований пятого экзона, что нарушает рамку считывания, и приводит к образованию стоп-кодона. В печени индивидуумов, гомозиготных по этому дефекту, обнаруживается лишь аберрантно сплайсированная РНК. Таким образом, сплайсинг проходит исключительно с использованием сайта, возникшего в результате мутации [Крынецкий, 1996]. Этот полиморфизм является важным в отношении метаболизма лекарственных препаратов, связанный с нарушением способности цитохрома Р450 метаболизировать антиэпилептический препарат (S)-мефенитоин, а также омепразол, прогуанил, некоторые барбитураты и др. Кроме того показана еще одна точечная замена G→Aв положении 636 в четвертом экзоне гена CYP2C19 (CYP2C19*3), приводящая к продукции укороченного белка [Ibenauetal., 1999; Xieetal., 1999; Yangetal., 2004; Schwabetal., 2004].

Ген CYP2E1 локализован на хромосоме 10q24.3-qterи состоит из 11413 п.н. и содержит 9 экзонов, кодирующих продукт из 493 аминокислот [Kolble, 1993]. Для гена CYP2E1 (табл. 1) наиболее часто рассматриваются тесно сцепленные полиморфизмы по рестрикционным эндонуклеазам PstI/RsaI(мутантный аллель CYP2E1*5B), локализованные в 5’-фланкируещем регионе гена [Hayashietal., 1991; Watanabeetal., 1994;], при которых мутантный аллель способствует повышенной транскрипционной и ферментативной активности, а также DraIполиморфизм (мутантный аллель CYP2E1*6), расположенный в 6 интроне [Uematsuetal., 1991], для редкого аллеля которого показаны мутации, влияющие на экспрессию гена и каталитическую активность соответствующего белка [Huetal., 1997].

Таблица 1

Номенклатура аллелей CYP2E1гена (составлена по данным сайта http://www/imm.ki.se/CYPalleles)



Аллель

Белок

Однонуклеотидныезамены

Эндонуклеаза

рестрикции

CYP2E1*1A

CYP2E1*1B

CYP2E1*1C

CYP2E1*1D

CYP2E1*2

CYP2E1*3

CYP2E1*4

CYP2E1*5A
CYP2E1*5B
CYP2E1*6

CYP2E1*7A

CYP2E1*7B

CYP2E1*7C

CYP2E1.1

CYP2E1.1

CYP2E1.1

CYP2E1.1

CYP2E1.2

CYP2E1.3

CYP2E1.4

CYP2E1.1
CYP2E1.1
CYP2E1.1

CYP2E1.1

CYP2E1.1

-

9893C>G

6 тандемов

8 тандемов

1132G>A

10023G >A

4768G>A

-1293G>C

-1053C>T

7632T>A

-1293G>C

-1053C>T

7632T>A

-333T>A

-71G>T;-333T>A

-333T>A;-352A>G



TaqI
DraI, XbaI
PstI

RsaI

DraI

PstI

RsaI

DraI
    продолжение
--PAGE_BREAK--


Таким образом, качественный состав и количественные соотношения изоформ ферментов метаболизма ксенобиотиков могут меняться под воздействием непосредственно самих же ксенобиотиков на организм. В зависимости от структуры исходного субстрата может происходить либо его биоактивация и увеличение токсичности, либо обезвреживание ксенобиотика. В результате ингибирования, индукции и генетического полиморфизма ферментов метаболизма ксенобиотиков может возникать дефицит или очень высокая активность отдельных изоформ и, как следствие, иметь место нежелательные для организма последствия: дисбаланс процессов биотрансформации ксенобиотиков, приводящий к развитию патологического состояния организма, а также снижение терапевтической активности лекарственных препаратов и всевозможные проявления побочных эффектов от их терапевтического действия.
1.2. Молекулярно-генетические аспекты мультифакториальных заболеваний (бронхиальная астма и туберкулез)
Развитие подавляющего большинства мультифакториальных заболеваний (МФЗ) происходит при сочетанном влиянии разнообразных факторов. МФЗ представляют группу болезней, развитие которых определяется неблагоприятным сочетанием полиморфных вариантов генов, контролирующих возникновение и патогенез заболевания в совокупности с определенными воздействиями факторов среды. Для МФЗ характерен ряд особенностей, которые с одной стороны, позволяют рассматривать эту группу патологий как модель изучения комплекса специфичных генов и экзогенных факторов, которые, взаимодействуя между собой, формируют норму реакции устойчивости человека к среде обитания [Гинтер, 2001; Бочков и др., 1984], а с другой — значительно осложняют обобщение данных для установления истинных генов подверженности сложнонаследуемых заболеваний. Например, существенное увеличение распространенности многих полигенных заболеваний (астма и связанные с атопией патологические состояния, туберкулез и др.) нельзя объяснить изменениями в генетической структуре за прошедшие десятилетия. Вероятно, что существующие генетические факторы, взаимодействующие с изменившимися условиями окружающей среды (снижение числа инфекционных болезней, повсеместная иммунизация, особенности питания и др.) вызывают повышенную восприимчивость популяции к вышеперечисленным заболеваниям [Organov, Maslennikova, 1999; Sengleretal., 2002]. Это пример того, как воздействие факторов внешней среды может значительно изменить положение порога подверженности к МФЗ[Фогель, Мотульски, 1990]. Кроме того, необходимо учитывать наличие сочетаний индивидуальных для каждой отдельно взятой популяции аллельных вариантов генов предрасположенности к заболеванию, что отражают различающиеся результаты анализа ассоциаций с МФЗ. Тем не менее, установление генов предрасположенности и изучение их совместной работы, выявление особенностей взаимодействия с факторами негенетической природы в развитии МФЗ, для которых пожизненный риск оценивается в западных популяциях порядка 60%, вызывает естественное стремление исследователей к пониманию механизмов нормальной и патологической реализации генетической информации [Пузырев, 2003].

Бронхиальная астма (БА) – широко распространенное хроническое заболевание дыхательных путей, поражающее в России от 3 до 12 %, а в некоторых промышленно-развитых регионах эти цифры достигают 30 % [Научно-практическая программа «Бронхиальная астма у детей: диагностика, лечение и профилактика», 2004], а также порядка 5 миллионов детей и 10 миллионов взрослых в Западных странах [Schwartzetal., 2004]. Кроме того, отмечено повышение уровня числа больных, требующих госпитализации, а также рост показателей смертности от астмы. Несмотря на явные успехи в области выявления и лечения данной патологии, распространенность и тяжесть заболевания значительно увеличиваются за последние десятилетия.

Драматическое увеличение распространенности и тяжести астмы на протяжении последних 20 лет, особенно в ряде промышленных регионов предполагает, что ухудшающиеся условия окружающей среды играют далеко не последнюю роль в развитии и прогрессировании данной патологии. Отмеченное влияние ряда факторов, например, возраст, раса, социально-экономический статус, хотя и предполагает их участие в риске развития БА, но все-таки особую роль в этиологии и патогенезе заболевания отводят влиянию аллергенов, курению, профессиональным химическим агентам, загрязнителям воздуха, вирусам и иммунизации против конкретного инфекционного заболевания.

В 90% случаев выявления больных бронхиальной астмой присутствует атопия как генетически детерминированная способность организма к выработке повышенного IgEв ответ на воздействие аллергенов окружающей среды. Через IgE-опосредованный механизм целый ряд клеточных элементов: гистиоциты (тучные клетки), макрофаги, лимфоциты, эпителиальные и эндотелиальные клетки независимо друг от друга или совместно принимают участие в воспалении дыхательных путей, тем самым, осуществляя иммунный ответ организма на внедрение антигена. Воспалительная природа заболевания проявляется в морфологи­ческих изменениях стенки бронхов — дисфункции ресничек мерцатель­ного эпителия, деструкции эпителиальных клеток, инфильтрации клеточными элементами, дезорганизации основного вещества, гиперпла­зии и гипертрофии слизистых и бокаловидных клеток. Длительное течение воспалительного процесса приводит к необратимым морфофункциональным изменениям в виде резкого утолщения базальной мембраны, нарушения микроциркуляции и склероза стенки бронха. Ключевой особенностью астмы является состояние бронхиальной гиперреактивности, свидетельствующее о повышенном бронхоконстрикторном ответе на различные физико-химические факторы, включая не только аллергены, к которым сенсибилизирован индивид, но и специфические стимулы, например, холодный воздух и физическая нагрузка [Гриппи, 1997]. Формирование гиперреактивности связывают с перестройкой дыхательных путей, обусловленной хроническим аллергическим воспалением, сопровождающейся сужением стенок, повышением васкуляризации, гипертрофией и гиперплазией гладкой мускулатуры бронхов. В результате чего происходят изменения нейрональной регуляции и повышение сократимости гладких мышц дыхательных путей. Как и атопия, неспецифическая гиперреактивность являются одними из универсальных признаков астмы: чем выше эти показатели, тем тяжелее протекает процесс. Однако распространенность бронхиальной гиперреактивности значительно выше, чем БА.

На протяжении более чем столетней истории вопроса наследования БА обсуждались различные модели – моногенные (аутосомно-рецессивная и доминантная), полигенные, сцепленные с половыми хромосомами [Huang, Marsh, 1993; Чучалин, 1999]. В ходе исследований стало понятно, что сложные механизмы наследования астмы (как и атопии) не могут быть объяснены простой (моногенной) моделью, а проявление клинических симптомов болезни является результатом действия средовых факторов на предрасположенных индивидуумов [Anderson, Cookson, 1999].

Для оценки генетического вклада в этиологию и патогенез БА были предприняты массовые близнецовые исследования в Швеции, Финляндии, Норвегии, Дании, США и Австралии, показавшие оценку наследуемости от 15 до 75 %, что подтвердило предположение о генетической основе заболевания [Edfors-Lubs, 1971; Duffyetal., 1990; Nieminenetal., 1991; Lichtenstein, Svatengren, 1997; Laitinenetal., 1998; Skadhaugeetal., 1999].

Большинство современных исследователей рассматривают генетическую компоненту заболевания БА как полигенную систему с аддитивным эффектом отдельных генов, каждый из которых в отдельности не способен, либо крайне редко способен вызвать болезнь [Holgateetal., 1995; LeSouef, 1997]. Таким образом, БА, как и многие распространенные заболевания в популяции, рассматривается как полигенная болезнь с наследственной предрасположенностью или как мультифакториальная болезнь. Для астмы, как и для остальных заболеваний этой группы характерны следующие признаки, сформулированные в 1969 году C.O. Carter: а) относительно высокая частота болезни в популяции и в то же время значительная семейная подверженность; б) наличие патогенетических и ассоциированных маркеров предрасположения; в) хроническое течение и наличие форм, образующих непрерывный ряд проявлений от ярко выраженных до субклинических; г) более раннее начало заболевания и утяжеление клинических симптомов в нисходящих поколениях семьи; д) относительно невысокая (в сравнении с моногенными болезнями) конкордантность по заболеванию у монозиготных близнецов; е) повышенный риск повторного рождения предрасположенных к болезни детей с появлением каждого последующего пораженного болезнью ребенка; ж) однотипность проявлений болезни у больного ребенка и ближайших родственников, что отражает коэффициент наследуемости, превышающий 50–60%; з) несоответствие закономерностей наследования болезни простым менделевским моделям (доминантное, рецессивное и др.) [Carter, 1996].

Таким образом, достижения в области исследования важнейших механизмов развития астмы позволили выработать концепцию патогенеза БА, согласно которой в основе клинических проявлений болезни лежит атопия, которая, как известно, характеризуется значительным вкладом наследственных факторов. А тщательная оценка эпидемиологии астмы позволяет определить экологические факторы риска БА.

Существует мнение, что контакт с бактериальными и вирусными инфекциями в раннем детстве является защитным фактором к дальнейшему развитию атопического заболевания в более поздней жизни. Еще в 1989 г. Strachan заметил, что распространение сенной лихорадки среди взрослых находится в обратной связи с размером семьи и даже более того – с наличием братьев и сестер [Strachan, 1989]. В связи с чем была выдвинута гипотеза, предполагающая, что инфекции в раннем детстве оказывают защитный эффект против развития в дальнейшем аллергии, получившая в последующем название «гигиенической гипотезы». С момента этого наблюдения выполнено много исследований, посвященных изучению связи между инфекциями, перенесенными в раннем периоде жизни и последующим развитием атопических заболеваний [Noguchietal., 1998; Heinzmannetal., 2000]. Воссоединение Германии в 1990 г. способствовало уникальной возможности изучать распространение астмы в генетически схожих популяциях, но в условиях воздействия различных факторов окружающей среды, в том числе инфекции. Несмотря на то, что дети из бывшей Восточной Германии чаще болели инфекциями верхних дыхательных путей по сравнению с Западной Германией, развитие астмы в этих двух популяциях имело обратную зависимость [vonMutiusetal., 1994]. В контексте «гигиенической гипотезы» интересны исследования, в которых показано, что дети, выросшие на ферме в тесном контакте с сельскохозяйственными и домашними животными, реже имели сенсибилизацию к пыльцевым и другим атопическим аллергенам в сравнении с детьми, выросшими в другой среде. Эти результаты указывают на то, что окружающая среда, характеризующаяся высоким содержанием бактерий, может действительно защищать от развития аллергии, по крайней мере, если субъект в раннем возрасте находился в такой среде. Основным механизмом данного защитного действия является способность эндотоксинов, содержащихся в бактериально загрязненной домашней пыли, стимулировать Th1-иммунитет [Ильина, 2001].

На сегодняшний день показано сцепление БА и ее клинических проявлений со многими хромосомными регионами. Изучение кандидатных генов показало сцепление с атопией и бронхиальной гиперреактивностью по многим локусам, но наибольшая важность показана для регионов 5q, 6p, 11q, 12q, 13q, 14q, 16p, и именно для этих локусов получены воспроизводимые результаты (табл. 2).


Таблица 2

Гены-кандидаты бронхиальной астмы и связанных с ней клинических фенотипов


    продолжение
--PAGE_BREAK--


В отношении астмы проведено 13 полногеномных исследований (в том числе исследование в различных расовых группах), в результате чего было подтверждено сцепление БА с регионами 5q23-31, 6p21-23, 12q14-24, 13q21-qterи 14q11-13, а также определена важность новых регионов астмы 2q33, 5p15, 11p15, 17p11, 19q13, 21q21 [Danielsetal., 1996; TheCollaborativeStadyontheGeneticsofAsthma, 1997, 2004; Oberetal., 1998; Hizawaetal., 1998; Wjstetal., 1999; Yokouchietal., 2000; Cooksonetal., 2001; Koppelmanetal., 2002]. Полученные данные еще раз свидетельствуют в пользу того, что в этиологии и патогенезе БА задействовано исключительное множество генов, каждый из которых в отдельности может вносить лишь относительно небольшой вклад в общую генетическую подверженность к заболеванию.

Изучение этиологии и патогенеза БА показало важную роль в формировании этого заболевания интерлейкинов (ИЛ), ответственных за индукцию и поддержание воспаления при данной патологии [Chung, Barnes, 1999]. Интересным фактом оказалось то, что гены цитокинов, играющих существенную роль в патогенезе БА расположены тандемно в одном кластере на хромосоме 5q31-33 [Araietal., 1990]. На сегодняшний день показана связь БА и ее клинических проявлений со многими генами ИЛ и их рецепторов [Nanavatyetal., 2001] Так, сотрудниками лаборатории популяционной генетики НИИ медицинской генетики (г.Томск) совместно с кафедрой факультетской педиатрии с курсом детских болезней (заведующий – д.м.н., профессор Огородова Л.М.) лечебного факультета Сибирского государственного университета в рамках работы по изучению генетической компоненты подверженности к БА была показана ассоциация аллеля С-703 гена IL5 с этим заболеванием, характеризующимся бронхиальной гиперреактивностью [Фрейдин и др., 2000]. Кроме того, установлено, что генотип G/G3’-UTRгена IL4 является фактором риска тяжелого течения заболевания, а гетерозиготный генотип G/С 3’-UTRэтого же гена – протективным фактором, ассоциированным с легкой астмой [Огородова и др., 2002; Freidinetal., 2003]. Анализ вклада генотипической изменчивости по генам ИЛ и их рецепторов в фенотипическое варьирование количественных, патогенетически значимых для БА признаков показал, что гены ИЛ и их рецепторов по отдельности определяют 2-5% общей фенотипической дисперсии количественных показателей (1,63-5,54% у мужчин и 1,03-2,15% у женщин) [Фрейдин и др., 2003].

К настоящему моменту накапливаются результаты работ, посвященных анализу связи полиморфизма генов системы ферментов метаболизма ксенобиотиков с атопическими заболеваниями (табл. 3). Многолетние исследования, проводимые в НИИ молекулярной биологии и биофизики СО РАМН (г. Новосибирск) и в НИИ акушерства и гинекологии им. Д.О. Отта (г. Санкт-Петербург) показали связь полиморфизма генов системы ферментов метаболизма с формированием предрасположенности к БА и особенностей ее клинического фенотипа.

Малочисленность имеющихся данных о значимости генов системы метаболизма ксенобиотиков для БА, а также их противоречивый характер, свидетельствуют о чрезвычайной актуальности таких исследований, так как относительно генов метаболизма в ряде случаев, возможно точно установить факторы, обусловливающие их патологический эффект [Ляхович и др., 2000; Schwartzetal., 2004].

Таблица 3

Связь полиморфных вариантов генов ферментов метаболизма ксенобиотиков с бронхиальной астмой и ее клиническими проявлениями



Ген (полиморфизм)

Ассоциация

Литературный источник

GSTT1 (+/del)

БА/ пищевая аллергия

Ляхович и др., 2000; Иващенко и др., 2001; Вавилин и др., 2002; Gilliandetal., 2002; Brasch-Andersenetal., 2004

GSTM1(+/del)

CYP1A1(Ile462Val)

БА/ пищевая аллергия/

 эозинофилия

Ляхович и др., 2000; Вавилин и др., 2002

NAT2(S1, S2)

БА/ пищевая аллергия/ эозинофилия

Luszawaka-Kutrzela, 1999;

Gawronska-Szklarzetal., 2001; Вавилин и др., 2002

GSTP1(313A>G)

БА/ положительные прик-тесты/ уровень IgE/ атопический дерматит/ гиперреактивность бронхов

Fryer et al., 2000; Сафроноваидр., 2003; Tamer et al, 2004; Сarroll, 2005

CYP2E1

(-2964G/A)

Эффективность

лечения БА

Obase et al., 2003
    продолжение
--PAGE_BREAK--


Обобщая вышеизложенное необходимо отметить, что полученные данные позволили значительно продвинуться в определении генов, полиморфизм которых, возможно играет существенную роль в развитии заболевания. Однако вследствие сложного клинического фенотипа БА, полигенной модели наследования и значительной роли воздействий внешней среды в развитии и прогрессировании этого заболевания, большее число генов подверженности к астме до сих пор остается до конца не идентифицированным и требует дальнейшего исследования.

Туберкулез (ТБ) – одно из самых распространенных инфекционных заболеваний, характеризующееся преимущественно хроническим течением различных клинических форм, своеобразием специфических иммунологических и морфологических проявлений. Проникновение в организм возбудителя ТБ является необходимым, но недостаточным условием для развития болезни, и в патогенезе ТБ взаимосвязаны взаимодействие инфекционного агента, факторы среды и особенности организма хозяина (пол, возраст, сопутствующие заболевания, общая реактивность организма и т.д.). ТБ отличается клиническим полиморфизмом, который определяет различные формы заболевания – от малых с бессимптомным течением до обширных деструктивных процессов в легких с выраженной клинической картиной, а также наличием туберкулезного процесса различной локализации в других органах [Хоменко, 1990]. По-видимому, причины таких различий обусловлены не только неблагоприятным сочетанием внешних факторов, но и особенностями организма, обусловленными его генотипом. Так, отмечено, что некоторые индивиды проявляют врожденную относительную резистентность к ТБ [Авербах, 1976]. Благодаря этому заболевает лишь малая часть населения, в то время как, по данным ВОЗ, инфицируется практически каждый третий житель планеты [Шайхаев, 1999].

По результатам популяционных исследований были показаны этнические различия в развитии ТБ [Рудко и др., 2004; Cervinoetal., 2000; Bellamyetal., 1998]. Возможно, что этнические различия в предрасположенности к заболеванию обусловлены определенными традициями популяций, экономическими причинами и др. Кроме того, накоплены данные о высокой подверженности к ТБ популяций, происходящих с территорий свободных от этого заболевания: случаи заболевания были особенно высоки в популяциях, ранее не встречавшихся с этим заболеванием [Bellamyetal., 1998; Stead, 1992]. Эти данные подтверждают гипотезу, выдвинутую еще в 1949 г. Haldaneо том, что инфекционные заболевания были главной силой естественного отбора, а резистентность к туберкулезной инфекции формировалась в процессе симбиотных отношений макро- и микроорганизмов [Земскова, 1984].

На сегодняшний день показана роль в подверженности к ТБ для многих генов, в том числе HLA-cистемы, NRAMP1, IFN-γ и его рецептора и др. Одним из главных генов-кандидатов туберкулеза является NRAMP1 (от англ. Natural-Resistance-Associated Macrophage Protein 1 gene– ген макрофагального белка, ассоциированного с естественной резистентностью 1) [Bellamyetal., 1998].Белковый продукт этого гена Nramp1 участвует в процессах активации макрофагов, являясь ключевым звеном в механизме транспорта нитритов из внутриклеточных компартментов в более кислую среду фаголизосомы, где он способен вступать в химическую реакцию с образованием NO. Белок входит в семейство функционально связанных мембранных белков (к этому семейству относят также Nramp2), ответственных за транспорт двухвалентных катионов, таких как Fe2+, Mn2+, Zn2+, Cu2+ [Canonne-Hergauxetal., 1998]. Поэтому, нарушение работы системы, обеспечивающей транспорт важных веществ через мембрану, приводит к дисбалансу между выведением и поступлением веществ в клетки, что может способствовать изменению внутриклеточной концентрации ионов, вызывающей гибель клеток. Предполагаемый механизм антибактериальной функции Nramp1 лежит в создании неблагоприятной для бактерии окружающей среды внутри фагосомы [Пузырев и др., 2002]. Следовательно, дефекты продукции или функции Nramp1 могут приводить к нарушению его транспортной роли и, как следствие, к повышению чувствительности к внутриклеточным патогенам, таким как микобактерии.

Многочисленные работы на экспериментальных животных показали, что NRAMP1 играет важную роль в чувствительности к микобактериям и некоторым другим возбудителям инфекций у мышей, и вероятно, что его человеческий гомолог связан с подобными инфекциями у людей [North, Medina, 1998]. Для определения функции гена NRAMP1 в развитии ТБ были проведены исследования в различных популяциях: у западных африканцев в Гамбии, местного населения в Корее и Японии [Bellamyetal., 1998; Ryuetal., 2000; Gaoetal., 2000]. В результате было обнаружено, что изменчивость данного гена связана с различиями в восприимчивости к ТБ. Связь полиморфных маркеров гена NRAMP1 в дальнейшем была подтверждена на семейном материале у больных ТБ родственных между собой индивидов, проживающих на территории Гвинеи-Конакри [Cervinoetal., 2000]. Результаты клинико-генетических исследований и изучение ассоциаций ряда маркеров с заболеванием ТБ сформировали единое мнение, что восприимчивость к данной болезни находится под полигенным контролем, а отдельный вклад гена NRAMP1 – лишь небольшая доля в общей подверженности к инфекционному заболеванию [North, Medina, 1998].

Другой генетической системой, задействованной в возникновении и патогенезе ТБ, считается комплекс HLA(от анг. HumanLeukocyteAntigens). Комплекс HLA, как и его аналоги у животных, называют главным комплексом гистосовместимости, поскольку первой из обнаруженных функций этого комплекса был контроль над трансплантационным иммунитетом. Следует отметить, что комплекс генов HLAявляется чрезвычайно полиморфной системой. Первой работой в области исследования HLAсистемы при ТБ, где были получены положительные результаты, была работа R. Selbyи соавт. (1978). Затем исследования были продолжены на популяционном и семейном материале, в ходе которых были получены противоречивые результаты. Ассоциации, показанные в одних популяциях, не находили своего подтверждения у других. В 1979 г. Al-Arifс соавт. показали значимое повышение встречаемости у больных ТБ легких антигена В15 в популяции американских негров [Al-Arifetal., 1979]. Позднее Jiangс соавт. обнаружили высокую частоту встречаемости антигена HLA-В27 среди заболевших ТБ китайцев [Jiangetal., 1983].

Отечественными исследователями также была проведена большая работа по изучению значимости HLAсистемы при заболеваемости ТБ в разных этнических группах, проживающих на территории России. В ходе работы была установлена повышенная частота встречаемости антигенов локуса HLA-B12,-С в узбекской и туркменской популяциях. У русских с ТБ легких в локусе HLA-В антигены В5, В14 встречались значимо чаще, но особенно интересным показался тот факт, что во всех трех популяциях показана ассоциация HLA-Cлокуса с заболеванием [Литвинов и др., 1983, 1986; Хоменко и др., 1985]. Следовательно, во всех изучаемых популяциях установлена взаимосвязь между некоторыми генетическими маркерами системы HLAи восприимчивостью к туберкулезу, причем в разных популяциях – с разными антигенами. В большинстве исследуемых популяций определены ассоциации заболевания ТБ с одним и тем же антигеном локуса DR(DR2), и учитывая, что гены комплекса HLA-DRотвечают за иммунный ответ, предполагается, что данный локус оказывает влияние на восприимчивость к ТБ, регулируя силу иммунного ответа на микобактериальные антигены [Поспелов и др., 1987; Хоменко, 1990]. В целом, гены, составляющие комплекс HLA, являются важными факторами патогенеза данного инфекционного заболевания. Об этом свидетельствует целый ряд многократно подтвержденных фактов: ассоциация определенных генов HLA(преимущественно DRи B-локусов) с заболеванием в большинстве обследованных популяций, сцепление гаплотипов HLAв семьях с пораженными родителями и детьми, ассоциации со специфичными антигенами у больных с хроническим, плохо поддающимся лечению процессом.

К настоящему моменту роль в подверженности к ТБ для генов рецептора к витамину D, γ-интерферона и его рецептора, фактора некроза опухолей, интерлейкинов и др. не вызывает сомнения [Bornmanetal., 2004]. Интерес к системе генов метаболизма ксенобиотиков в отношении ТБ обусловлен несколькими причинами. Во-первых, данные, что при воспалении и инфекции происходит изменение уровня активности цитохромов Р450, предполагают задействование системы метаболизма в защите организма от последствий развертывания воспалительных реакций при заболевании [Prandota, 2002; Сибиряк, 2003; Бикмаева и др., 2004]. Во-вторых, знания об участии ферментов системы метаболизма в биотрансформации лекарственных препаратов, позволяют найти и избежать причины, определяющие нежелательные проявления терапевтического действия лекарств. В этом контексте определение генетической компоненты подверженности к проявлению многообразных побочных реакций при применении антимикобактериальных препаратов при ТБ имеет очень важное значение для достижения успехов в терапии заболевания [Dickinsonetal., 1981; Royetal., 2001; Huangetal., 2002, 2003].

Сложность патогенеза, а так же различия в клиническом проявлении ТБ предполагают, что число генов-кандидатов заболевания достаточно велико, при этом вклад каждого из них в суммарную подверженность различен[Hill, 1998]. И поэтому изучение полиморфизма известных генов-кандидатов, а также поиск новых генов, белковые продукты которых в той или иной степени вовлечены в патогенетические механизмы заболевания, представляется одной из приоритетных задач.
1.3. Полиморфизм генов ферментов биотрансформации ксенобиотиков и патология
Известно, что многие бронхолегочные патологии в различной степени связаны с развитием окислительного стресса. Эпителий легкого, насыщенного кислородом внешней среды, чрезвычайно восприимчив для токсического действия радикалов экзогенного и эндогенного происхождения. Высокая частота заболеваний бронхолегочной системы (астма, эмфизема, пневмония и др.) находится в прямо пропорциональной зависимости от уровня загрязнения окружающей среды сильными окислителями (NO, NO2, CO, O3, альдегиды), пылевыми частицами в совокупности с воздействием экстремальных климатических условий [Гусев, Даниловская, 1987; Mutmansky, 1990; Тиунов и др., 1991]. Состояние окислительного стресса и разрушающее воздействие свободнорадикального окисления имеет значение не только в возникновении заболевания, а также может являться важнейшей причиной дальнейшей хронизации патологического процесса в легочной ткани [Меньщикова, Зенков, 1991].

Известно, что источниками активированных кислородных метаболитов могут быть как внешние факторы (альдегиды, озон, окислы азота, сигаретный дым, анаэробные бактерии), так и эндогенные, задействованные во внутриклеточных метаболических процессах (альвеолярные макрофаги, гранулоциты, внутриклеточные органеллы). Воздействие атмосферных прооксидантных поллютантов, таких как озон, окислы азота, составляющих табачного и автомобильного дыма на дыхательные пути приводит к индуцированию окислительных процессов, как на поверхности бронхоальвеолярного секрета, так и непосредственно в эпителии легкого [Wrightetal., 1994]. Присутствие разнонаправленных повреждающих воздействий оксидативного стресса говорит о важности для организма поддержания баланса системы активированных кислородных метаболитов в легких.

Эффективной защитой от различных токсикантов внешней среды, поступающих с вдыхаемым воздухом, служит система биотрансформации ксенобиотиков при согласованном функционировании защитных механизмов. Глутатион S-трансферазы – семейство ферментов, участвующих в метаболизме большого числа электрофильных ксенобиотиков через конъюгацию с глутатионом, а также в метаболизме ряда эндогенных субстратов (гормонов, липидов, простагландинов, лейкотриенов). Таким образом, метаболизм ксенобиотиков через глутатионопосредованную детоксикацию играет важную роль в обеспечении устойчивости клеток к перекисному окислению жиров, свободным радикалам, алкилированию белков, в формировании резистентности к лекарственным препаратам и предотвращении поломок ДНК.

В результате однонуклеотидной замены аденина (А) на гуанин (G) в гене GSTP1, приводящей к замене аминокислот изолейцина (Ile105) на валин (Val105), происходит изменение ферментативной активности, обусловливающее повышение уровня гидрофобных аддуктов в тканях легких и полициклических ароматических углеводородов-ДНК аддуктов в лимфоцитах крови. Было выявлено, что замена изолейцина на валин в 105 положении расположенная в субстрат-связывающем Н участке фермента, приводит к различным изменениям кинетических параметров фермента [Katohetal., 1999]. Показано, что при мутации Val105 в 7 раз увеличивается каталитическая активность фермента по отношению к полициклическим ароматическим соединениям, но в 3 раза снижается активность по отношению к 1-хлор-2,4-динитробензену [Ishiietal., 1999]. Отмечено, что индивидуумы с аллелем Val105 имеют повышенный риск развития РЛ [Баранов и др., 2000].

К настоящему времени накоплено достаточно сведений об ассоциации «нулевого» генотипа гена GSTM1 с риском развития эмфиземы легких и хроническим бронхитом у курильщиков [Афанасьева, Спицин, 1990], кроме того, показана повышенная частота «нулевого» генотипа, помимо GSTM1, и для гена GSTT1 у больных БА [Баранов и др., 2000]. Микросомальная эпоксигидролаза (EPHX1) осуществляет метаболизм продуктов табачного дыма, и поэтому играет важное значение в защите легких от высокоактивных производных эпоксида, образующихся при курении и приводящих к повреждению легочной ткани курильщиков. Показано, что с аллелем Sгена EPHX1, обеспечивающим пониженную активность соответствующего фермента, ассоциированы заболевания органов дыхания, такие как эмфизема легких, хронический обструктивный бронхит, муковисцидоз, хронические респираторные заболевания [Баранов и др., 2000; Lomas, Silverman, 2001; Matsushitaetal., 2002; Sandford, Silverman, 2002].

Многочисленные исследования полиморфных вариантов генов системы метаболизма ксенобиотиков показали связь с различными заболеваниями, включая сердечно-сосудистую патологию, атопические заболевания, хронические неспецифические заболевания легких и др. Но, прежде всего, пристальное внимание исследователей к индивидуальным особенностям функционирования системы биотрансформации отмечено при онкологических заболеваниях. Это понятно, так как уже доказано влияние большинства химических агентов, с которыми человеку приходится сталкиваться как в быту, так и на производстве, на процессы канцерогенеза.

Исследование полиморфизма 313 A>GгенаGSTP1у японцев с различными онкологическими патологиями (рак ротовой полости, легких, желудка, колоректальным и урогенитальным видами рака) показало ассоциацию только у некурящих индивидуумов с раком ротовой полости (РРП), для остальных видов рака различий не было выявлено [Katohetal., 1999]. В другой работе была изучена роль полиморфного варианта C341Tгена GSTP1как важного фактора, обусловливающего развитие РРП, где был показан повышенный риск развития данной патологии, как для европеоидов, так и для афроамериканцев. Интересен тот факт, что более высокий риск развития заболевания наблюдался у пациентов с малым потреблением табака (20 пачка/год) [Parketal., 2000].

 Генетическая предрасположенность – одна из важных гипотез, объясняющих, почему лишь у малого числа курильщиков развивается рак легкого (РЛ). Полиморфизмы, участвующие в метаболизме канцерогенов изучаются как факторы риска для рака легкого. Полиморфизм в гене GSTM1, также как и в гене GSTT1, обусловлен протяженной делецией, в результате которой происходит полное отсутствие ферментативной активности. В ряде работ показано, что функциональную значимость в развитии онкопатологии может иметь не один конкретный рисковый генотип, а их специфическая комбинация. Было отмечено, что повышенный риск РЛ у курильщиков европеоидной расы имеют индивиды с комбинацией генотипов GSTM1-нуль, GSTP1 AG+GGи GSTM3 AA(n=322) [Jourenkowa-Mironowaetal., 1998]. Другое исследование также выявило связь развития РЛ у индивидов с «нулевым» генотипом гена GSTM1 в присутствии р53 Proаллеля [Milleretal., 2002]. Предположительно, что потенциальное взаимодействие между GSTP1 и GSTM1 генами в японской популяции у мужчин-курильщиков (n=542) в возрасте 50-69 лет приводит к повышенному риску РЛ при комбинации одного из вариантов аллелей GSTP1 и нулевого генотипа гена GSTM1 [Kihara, Noda, 1999]. Выявлен повышенный риск РЛ среди курильщиков в популяционных выборках Средиземноморья, 93% которых составили мужчины с комбинацией «нулевого» генотипа гена GSTM1 и р53 Pro/Pro+Arg/Proгенотипов [To-Figuerasetal., 1996].

Предположительное влияние изотиоцианатов – компонентов, обладающих антиканцерогенными свойствами и содержащихся в крестоцветных овощах, в снижении регуляции уровня ферментов биотрансформации семейства цитохромов Р450 и индукции ферментов второй фазы детоксикации, легло в основу исследования GSTM1 иGSTT1генотипов у больных с впервые выявленным РЛ. В ходе исследования было показано модифицирующее влияние употребления в пищу изотиоцианатов у курильщиков гомозиготных по «нулевым» генотипам GSTна развитие рака легкого [Spitxetal., 2000].

Миелодиспластический синдром (МДС) – клональное пролиферативное нарушение костного мозга, часто прогрессирующее в острую миелоидную лейкемию (ОМЛ), а заболеваемость и смертность от МДС одинакова и составляет период менее года. Воздействие различных по качественному и количественному составу химических веществ, с которыми приходится сталкиваться индивидуумам по роду профессиональной деятельности, на процессы канцерогенеза может увеличивать вероятность заболеваемости МДС. Повышенный риск МДС отмечен у лиц, проходивших курс химиотерапии при лечении других опухолей. Вследствие индивидуальных различий в метаболизме ксенобиотиков (в том числе и канцерогенов) возможно увеличение риска раковых заболеваний при сниженной функции метаболизирующих ферментов. Конъюгация электрофильных компонентов с глутатионом, опосредованная глутатион S-трансферазами, является важным этапом метаболизма канцерогенов. Известно, что частота «нулевого» генотипа гена GSTM1 среди европеоидов составляет порядка 50% и данный генотип ассоциирован с развитием РЛ, индуцированного курением, а также раком мочевого пузыря. О взаимосвязи «нулевого» генотипа гена GSTT1 с различными раковыми заболеваниями известно намного меньше, но ясно, что у индивидуумов с «нулевым» генотипом снижена способность к метаболизму некоторых канцерогенов, включая 1,3-бутадиен, метилбромид, оксид этилена. Был установлен четырехкратный относительный риск МДС для носителей «нулевого» генотипа GSTT1 [Chenetal., 1996].

Предполагается, что нулевой генотип гена GSTT1, ассоциированный с канцероген-индуцированными хромосомными изменениями в лимфоцитах, может увеличивать риск подверженности к миелодисплазии. При анализе данных, полученных в ходе исследования пациентов с острой миелоидной лейкемией (ОМЛ), была показана повышенная частота делеции в гене GSTT1 среди больных (60%), что практически в три раза выше, чем в контрольной группе (17%), кроме того, индивиды с делецией по генам GSTT1и GSTM1имели несколько больший риск ОМЛ. Интересно, что у лиц со вторичной ОМЛ делеция GSTT1 встречается на 20% чаще по сравнению со случаями denovo, что характерно и для индивидов с «нулевым» генотипом гена GSTM1 [Crampetal., 2000].

Возможно, что эффекты определенных генотипов генов ферментов биотрансформации различны в развитии рака и других заболеваний. В связи с этим предложено, что продукты, образующиеся в ходе метаболизма ряда ксенобиотиков с участием глутатионовых S-трансфераз, способствуют атерогенезу и нестабильности тромбоцитов. В дальнейшем было показано, что «нулевой» генотип гена GSTM1 играет протективную роль в развитии инфаркта миокарда, причем эффект более выражен у курильщиков [Wilsonetal., 2000]. Вероятно, что наличие «нулевого» генотипа по генам GSTспособствует повышенной регуляции других ферментов, более эффективно участвующих в метаболизме атерогенных субстратов с учетом одного из важных качеств системы биотрансформации, а именно широкой субстратной специфичности. По этому поводу имеются данные о скоординированной экспрессии GSTM1 и GSTM3 в легочной ткани человека [Anttilaetal., 1995], а также о более высокой активности CYP1A2 у индивидуумов с нулевым генотипом GSTM1[MacLeodetal., 1997].

Глутатионопосредованная детоксификация принимает непосредственное участие в защите организма от оксидативного стресса, что оправдывает изучение полиморфизма генов глутатион S-трансфераз в патогенезе различных патологических состояний, в том числе и при эндометриозе. Так, у больных эндометриозом женщин Башкортостана отмечаются различия по частотам как отдельных генотипов полиморфных локусов GSTM1и GSTP1, так и по распределению частот их сочетаний. Кроме того отмечено, что более выраженный эффект от гормонального лечения наблюдался у лиц, имеющих «нулевой» генотип гена GSTM1в сочетании с мутацией по гену GSTP1[Шарафисламова и др., 2003].

N-ацетилтрансфераза-2 (NAT2)и микросомальная эпоксигидролаза (EPHX1) полиморфные гены ферментов, метаболизирующих различные канцерогены табачного дыма. Табачный дым содержит >4000 компонентов, включая около 50 канцерогенов, являющихся субстратами семейства ферментов биотрансформации. Для понимания роли этих двух полиморфизмов во взаимодействии «ген-окружающая среда» в развитии РЛ было проведено исследование, в ходе которого было обнаружено, что риск развития заболевания значительно повышается с увеличением значения «пачка-лет» у курильщиков. Результаты данного исследования еще раз показали очевидность того, что изучение взаимоотношения генетического полиморфизма с факторами окружающей среды в формировании повышенного риска онкологической патологии, имеет состоятельность только тогда, когда внешнесредовой фактор является неотъемлемой составляющей частью патогенетического механизма (например, курение), и он обязательно включается в анализ [Zhouetal., 2002].

ГенCYP17кодирует фермент цитохром Р450С17a, который выполняет две различные функции в биосинтезе стероидов, что обусловливает его изучение как гена кандидата восприимчивости к эндокринзависимым опухолям. Тем не менее, были получены довольно противоречивые результаты при исследовании пациентов с раком яичников и полиморфизма Т-С в промоторном регионе CYP17 генав различных популяциях [Spurdleetal., 2000]. Что еще раз подтверждает популяционную вариабельность полиморфизма генов биотрансформации, и, следовательно, различный вклад генов системы метаболизма у разных индивидуумов в процессы онкогенеза.

Ген CYP1A1 человека был клонирован и секвенирован в 1986 году и локализован на хромосоме 15. Полиморфизм в 3’-некодирующем регионе гена, обусловленный заменой цитозина на тимидин, узнаваемыйMspIэндонуклеазой рестрикции был впервые идентифицирован у японцев. Различные исследования показали ассоциацию данного полиморфизма и риском развития РЛ в европеоидной популяции [Shieldsetal. 1993; Alexandrieetal., 1994; Sugimuraetal., 1994]. Эти результаты сходны с данными, полученными в аналогичной работе по изучению злокачественного новообразования в легких для японской популяции [Xuetal., 1996].

Употребление алкоголя в больших дозах рассматривается как один из факторов, способствующих развитию различных заболеваний печени. Так, отмечен высокий риск развития гепатоцеллюлярной карциномы (ГЦК) у японцев, злоупотребляющих алкоголем. Причем, наблюдалась повышенная частота С2 аллеля гена CYP2E1, связанного с высокой транскрипционной и ферментативной активностью, что также позволяет говорить о повышенном риске к ГЦК у индивидуумов, злоупотребляющих алкоголем [Munakaetal., 2003].

Развитие алкогольного поражения печени (АПП) на фоне алкогольной интоксикации всего организма является следствием несостоятельности ферментативной системы биотрансформации ксенобиотиков, участвующей в метаболизме этанола. Метаболизм этанола происходит в печени, где метаболизируется порядка 98% попавшего в организм алкоголя по НАДФ-зависимому пути с помощью алкогольдегидрогеназы и ацетилдегидрогеназы, локализованных преимущественно в цитоплазме клеток печени. Существует и другой путь окисления этанола с помощью микросомальной этанолокисляющей системы при участии ферментов семейства цитохрома Р450. Шангареева З.А. и др. показали, что для пациентов, страдающих АПП характерно повышение частот мутантных аллелей генов CYP2E1, CYP1A1, mEPHX, GSTT1и GSTM1, приводящее к увеличению рисковой значимости гетерозиготных генотипов генов CYP2E1(OR=7,37), CYP1A1(OR=2,87), mEPHX(OR=2,45) [Шангареева и др., 2003].

Начало или обострение псориаза, обусловленного Т-клеточным механизмом заболевания кожи с аутоиммуным характером заболевания, зачастую вызывается применением b-блокаторов и противомалярийных лекарственных препаратов. Предполагается, что метаболическая эффективность, обусловленная различными вариантами аллелей генов системы ферментов биотрансформации, может привести к накоплению ксенобиотиков или их реактивных метаболитов в органах-мишенях, а в дальнейшем неоантигены или неизвестные пептиды могут вызвать агрессивную реакцию со стороны Т-клеток. В этом контексте, было проведено исследование полиморфизма гена CYP2C19 у пациентов с псориазом. В ходе исследования было показано, что для гетерозиготных носителей по гену CYP2C19 (*1А и *2А) характерно более позднее развитие псориаза, в то время как эти же генотипы показали протективную роль для развития артрита, связанного с псориазом [Richter-Hintzetal., 2003].

Цитохромы P450 ответственны приблизительно за 75% метаболизма лекарственных препаратов и различных химических агентов. Человек имеет 59 активных генов, и 6 из них кодируют важные для лекарственного метаболизма ферменты. Приблизительно 40% цитохром P450-зависимого лекарственного метаболизма катализируются полиморфными ферментами, и такие «лекарство→P450» взаимодействия часто рассматриваются в отношении побочных действий лекарственных препаратов [Ingelman-Sundberg, 2004].

Экспрессия цитохрома P450 и связанная с ней биотрансформация изменяется при различных инфекционных заболеваниях. Следовательно, при развитии воспаления и инфекции в организме нарушена способность метаболизма печени и других органов, контролирующих действие лекарств. Содержание цитохрома Р450 и монооксигеназные активности в тканях этих органов снижаются при развитии бактериальных и вирусных инфекций, иммунизации различными антигенами, в условиях фармакологической иммуностимуляции, что опосредовано цитокинами. Депримирующее воздействие на цитохром Р450-зависимые монооксигеназы обнаружено у IFNa, IFNb, IFNg, IL-1 и TNF, IL-6, IL-11, IL-2. Цитокины угнетают транскрипцию генов и накопление мРНК различных изоформ цитохрома Р450 в клетках, возможно и посттранскрипционное угнетение синтеза белка некоторых изоформ [Renton, 2004]. Благодаря цитокиновой модуляции процессов монооксигенирования на цитохроме Р450, реализуется адаптация механизмов биотрансформации низкомолекулярных ксенобиотиков в условиях активации иммунной системы. Это обеспечивает, с одной стороны, защиту от последствий возможной неконтролируемой активации потенциально опасной для организма ферментной системы и снижение риска нарушения оксидантного равновесия, с другой — сохранение оптимального уровня и неогенез необходимых для адекватного «ответа» организма низкомолекулярных липофильных сигнальных молекул. Угнетение фармакометаболизирующей функции печени и изменение фармакодинамики и токсичности лекарственных препаратов необходимо учитывать при проведении терапии препаратами рекомбинантных цитокинов. В этом случае необходимоотметить, что ингибирование метаболизма различными препаратами также как влияние на концентрацию и/или число различных цитокинов в воспаленных тканях, может вызывать положительные эффекты у пациентов с различными заболеваниями, что позволит говорить о новых терапевтических возможностях лекарственных средств [Сибиряк, 2003].

Разнообразие элементов многокомпонентной и многоэтапной системы метаболизма имеет важное значение для фармакогенетики в плане разработки индивидуального подхода к лечению пациента. Cпомощью предупреждения индивидуального ответа на лекарственный препарат становится возможным повышение эффективности лечения и устранения нежелательных эффектов от медикаментозной терапии [Баранов и др., 2000].

Заключая обзор в целом, необходимо отметить, что изучение естественной изменчивости генов ферментов биотрансформации ксенобиотиков у больных и членов их семей, а также установление их вклада в патогенез распространенных заболеваний, таких как БА и ТБ, стало задачей настоящего исследования. А понимание основных механизмов, участвующих в патогенезе заболеваний, поможет понять не только причины возникновения болезней, но и научиться бороться с ними.


ГЛАВА 2. МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ
2.1. Характеристика обследованных групп населения
В рамках проведенного исследования был проанализирован полиморфизм генов биотрансформации ксенобиотиков и уточнена их функциональная значимость в отношении БА и ТБ легких у русских жителей г. Томска.

Выборки были сформированы для данного исследования на основе ДНК-банка лаборатории популяционной генетики НИИ медицинской генетики ТНЦ СО РАМН, созданного сотрудниками этой лаборатории.

Контрольная группа.

В качестве контрольной группы использовалась выборка, принадлежащая в настоящее время банку ДНК лаборатории популяционной генетики НИИ медицинской генетики ТНЦ СО РАМН. Выборку в количестве 140 человек (средний возраст ±S.D. 64,3±18,0) частично составили индивиды не родственные между собой и не имеющие по результатам клинического обследования бронхолегочной патологии. Среди индивидов контрольной группы было 80 женщин (средний возраст ±S.D. 65,8±17,8) и 60 мужчин (средний возраст ±S.D. 63,5±18,1).
2.1.1. Характеристика группы больных туберкулезом

Материал для исследования больных ТБ был собран на базе Областной Томской Клинической туберкулезной больницы, Детского легочно-туберкулезного отделения Железнодорожной больницы, Областной детской туберкулезной больницы, а также Областном противотуберкулезном диспансере, туберкулезного отделения Областной психиатрической больницы. Сбор материала и клиническое обследование больных осуществлялось при участии сотрудников кафедры фтизиатрии Сибирского государственного медицинского университета (заведующий – член–корр. РАМН, профессор Стрелис А.К.). Основным критерием отбора в группу пациентов были два условия – отсутствие родственных связей между индивидами и этническая принадлежность.

Общая выборка больных туберкулезом легких.

Выборку составили 304 индивида, средний возраст ±S.D. которых был 30,6±15,4, из них 99 женщин, средний возраст ±S.D. которых составил 26,3±14,6 года и 205 мужчин средний возраст ±S.D. – 32,8±15,4 лет. Диагноз туберкулеза легких устанавливался на основании данных микроскопии мокроты с обязательным рентгенологическим исследованием легких для определения формы заболевания и распространенности специфического процесса (общепринятые методы). Противотуберкулезную терапию больные получали по 1-ой категории, согласно рекомендациям ВОЗ (табл. 4).

Таблица 4

Режимы лечения больных с распространенным деструктивным туберкулезом легких по протоколам ВОЗ


    продолжение
--PAGE_BREAK--



Семейная выборка больных туберкулезом легких.

Семейная выборка была зарегистрирована по пробандам – больным туберкулезом, находившихся на лечении в противотуберкулезных учреждениях г. Томска в период с 2000 по 2004 г… Всего было обследовано 42 семьи (109 человек), в том числе 25, зарегистрированных по пробандам – детям в возрасте от 1 года до 15 лет (средний возраст ±S.D. составил 7,7±3,9). Семнадцать семей было выбрано по взрослым пробандам в возрасте от 17 до 48 лет (29,4±12,3 лет). В составе «пробанд/пробанды-мать-отец» исследовано 19 семей, в неполном составе, когда отсутствовал материал одного из родителей – 16 семей.

Группу пробандов – детей составили 10 мальчиков (7,2±2,9 лет) и 15 девочек (7,9±4,5 лет). Средний возраст пробандов – детей разного пола достоверно не различался (р>0,05). Среди взрослых пробандов было 7 женщин (19,8±7,9 лет) и 10 мужчин (23,9±9,1 лет). Всем пробандам был поставлен диагноз туберкулеза.
2.1.2. Характеристика группы больных атопической бронхиальной астмой

Исследованная семейная выборка была зарегистрирована по пробандам – больным БА, находившихся под наблюдением в клинико-профилактических учреждениях г. Томска в 1997-2000 г… Клиническое обследование и диагностику провели сотрудники кафедры факультетской педиатрии с курсом детских болезней (заведующий – д.м.н., профессор Огородова Л.М.) Сибирского государственного медицинского университета, областного детского центра клинической иммунологии и аллергологии (Областная детская больница, г. Томск, главный врач – Сальников В.А.).
Семейная выборка больных БА.

Всего обследовано 76 семей (213 человек), 61 семья из которых была набрана в составе трех человек «пробанд-мать-отец» и 15 семей – в составе двух человек, т.е. «пробанд-мать/или отец». В исследуемой выборке были 72 индивида, зарегистрированные по пробандам-детям в возрасте от 1,7 до 15 лет (средний возраст ±S.D.составил 8,5±3,5). Восемь семей было выбрано по взрослым пробандам в возрасте от 24 до 42,5 лет (34,4±7,2 лет).

Основную часть пробандов-детей составили мальчики (n=47), девочек примерно в два раза меньше (n=25). Средний возраст пробандов-детей разного пола достоверно не различался (8,4±3,5 лет у мальчиков и 8,6±3,5 лет у девочек; р>0,05). Среди взрослых пробандов было семь женщин (34,4±7,2 лет). Всем пробандам был поставлен диагноз «атопическая бронхиальная астма».



Выборка больных БА.

Выборку больных БА составили 134 индивида (21,9±18,8 лет), из них 59 — женщины в возрасте от 2 до 79 лет (24,7±18,5 лет) и 75 – мужчины в возрасте от 1,7 до 68 лет (19,7±18,9 лет). Среди больных БА 78 индивидов – дети в возрасте от 1,7 до 15 лет (8,8±3,7 лет), из которых 28 девочек в возрасте от 2 до 15 лет (8,8±3,9 лет) и 50 мальчиков в возрасте от 1,7 до 14,8 лет (8,6±3,5 лет). Кроме того, среди индивидов общей выборки больных БА было 56 взрослых (40,3±15,6 лет), из которых 31 женщина в возрасте от 19 до 79 лет (39,0±13,9 лет) и 25 мужчин от 19 до 68 лет (41,9±17,5 лет). Между группами мальчиков и девочек, а также мужчин и женщин не показано различий по возрастному критерию (р>0,05). Всем пациентам был выставлен диагноз «атопическая бронхиальная астма».
2.2. Характеристика методов исследования
2.2.1. Клинико-лабораторные методы

Пробанды, а также их родственники первой степени родства, согласившиеся на проведение исследования, были обследованы для верификации диагноза БА и симптомов атопии. Обследование включало сбор семейного анамнеза и многочисленные клинические тесты: в данной работе были использованы результаты только спирометрических, аллергологических и иммунологических анализов.

Диагноз «бронхиальная астма» верифицировали на основании критериев ВОЗ: наличие характерного для заболевания анамнеза, типичных клинических симптомов астмы, атопии (атопический анамнез, положительные скарификационные аллергопробы (САП), уровень общего сывороточного IgEболее 100 МЕ/мл) [Бронхиальная астма. Глобальная стратегия, 1996]. В случае невозможности доказать наличие атопии, выставляли диагноз неатопической БА. Степень тяжести заболевания устанавливали согласно критериям проекта GINA(2002 г.) и Национальной программы лечения и профилактики БА у детей (1997 г.).

Аллергологическое обследование включало сбор аллергоанамнеза и проведение САП на пищевые, ингаляционные, эпидермальные, растительные и грибковые аллергены с использованием стандартных наборов согласно рекомендациям производителей («Биомед», Москва; «ImmunoTek», Испания).

Измерение уровня общих сывороточных антител класса Eпроводили с помощью твердофазного иммуноферментного анализа с использованием стандартных наборов согласно рекомендациям производителей («Протеиновый контур», Санкт-Петербург; «VedaLab», Франция). Уровень общего сывороточного IgEпересчитывали на международные единицы на миллилитр (МЕ/мл; 1 МЕ =2,42 нг/мл).

Исследование функции внешнего дыхания (ФВД) осуществляли по стандартной методике (анализ кривой «поток-объем» и показателей спирометрии) на установке «MasterLabPro» («Эрих Йегер», Германия) [Quanjeretal. 1993].

Для определения степени реактивности бронхов проводили провокационный тест с метахолином. Диапазон концентраций растворов метахолина составили 0,25-32 или 64 мг/мл. Результаты выражали как концентрация метахолина, вызывающая не менее чем 20% падение объема форсированного выдоха (РС20), вычисленная методом линейной интерполяции по общепринятой формуле [Sterketal., 1993]. Диагностически значимой в отношении БА считали РС20 не менее 20 мг/мл – это состояние рассматривали как наличие бронхиальной гиперреактивности (BHR).

В отношении больных ТБ был проведен полный клинико – эпидемиологический анализ с учетом возраста начала заболевания, социального статуса, вредных привычек (курение, злоупотребление алкоголем, употребление наркотиков), сопутствующей патологией, наличия контакта с туберкулезным больным, а также данные о ТБ в роду. Анализу подвергались выраженность клинических проявлений (жалобы, объективный статус больного), результаты лабораторных и инструментальных методов исследования (микроскопия и посев мокроты на МБТ, чувствительность к противотуберкулезным препаратам, рентгенологическое исследование легких) на момент начала заболевания, а также через 2 месяца лечения.

Определение количества эритроцитов, концентрации гемоглобина, общего числа лейкоцитов и их отдельных морфологических форм, величину СОЭ, уровень печеночных проб (билирубина, аланинаминотрансферазы и аспартатаминтрансферазы) исследовали общепринятыми методами [Меньшиков, 1987].
2.2.2. Молекулярно-генетические методы

В ходе выполнения работы было исследовано 6 полиморфных вариантов генов цитохромов Р450 (CYP2C19, CYP2E1) и глутатионовых S-трансфераз (GSTT1, GSTM1и GSTP1) (табл. 4).

Для генотипирования индивидов по указанным полиморфизмам использовали образцы тотальной ДНК из банка НИИ медицинской генетики (семейная выборка больных БА и контрольная выборка) и ДНК, выделенную из цельной венозной крови (семейная выборка больных ТБ) по стандартной неэнзиматической методике [Маниатис и др., 1984; Lahirietal., 1992]. Выделенную ДНК замораживали и хранили при температуре -20°С до проведения эксперимента.

Генотипирование осуществляли с помощью полимеразной цепной реакции (ПЦР), используя структуру праймеров и параметры температурных циклов, описанных в литературе (табл. 5). Смесь для ПЦР содержала 0,5-2,0 мкл специфической пары праймеров с концентрацией 1 о.е./мл, 1,2-1,8 мкл 10´ буфера для амплификации с концентрацией MgCl2 0,5-2,0 mM, 0,5-1,0 е.а. Taq ДНК-полимеразы («Сибэнзим», «Медиген», Новосибирск) и 100-200 нг геномной ДНК. Смесь помещали в 0,5 мл пробирки типа «Эппендорф», наслаивали сверху минеральное масло для предотвращения испарения и амплифицировали в автоматических минициклерах «MJRеsearch» (США) и «ЦиклоТемп 105» (Россия-Австрия).

Программа амплификации включала предварительную денатурацию при 94°С в течение 5 минут, с последующими 30-35 циклами отжига при температуре 60°С (1мин.), элонгации цепи при 72°С (40 сек.) и денатурации при 94°С (40 сек.). Программу завершала финальная элонгация при 72°С в течение 3 минут. Амплификат подвергали гидролизу соответствующей рестриктазой (табл.4) при оптимальной для фермента температуре на протяжении 12-24 ч. Рестрикционная смесь включала 5-7 мкл амплификата, 1,0-1,2 мкл 10´ буфера для рестрикции, поставляемого фирмой – производителем («Сибэнзим», Новосибирск), и 1-5 единиц активности фермента (в зависимости от эффективности его работы). Продукты рестрикции фракционировали 20-30 минут в 3% агарозном геле при напряжении 120 В. Фрагменты ДНК окрашивали бромистым этидием и визуализировали в ультрафиолетовом свете с применением компьютерной видеосъемки на приборе «UV-VISImager-II» (США).
     

--PAGE_BREAK--Таблица 5
Характеристики исследованных полиморфных вариантов генов системы биотрансформации ксенобиотиков


Ген
Локализация

Полиморфизм

Структура праймеров

Фермент

реакции
Литературный источник
СYP2C19
10q24.1-24.3 Экзон 5 681G>A
5’-aat-tac-aac-cag-agc-ttg-gc

5’-tat-cac-ttt-cca-taa-aag-caa-g

SmaI

De Morais et al., 1994

CYP2E1

10q24.3-qter

5’-фланкирующий регион

1293G>C

5’-cca-gtc-gag-tct-aca-ttg-tca

5’-ttc-att-ctg-tct-tct-aac-tgg

PstI

Salama et al., 1999

10q24.3-qter Интрон 6

7632T>A

5’-ctg-ctg-cta-atg-gtc-act-tg

5’-gga-gtt-caa-gac-cag-cct-ac

DraI

Lin et al., 1998

GSTM1

1p13.3

Делеция

5’-tgc-ttc-acg-tgt-tat-gga-ggt-tc

5’-gtt-ggg-ctc-aaa-tat-acg-gtg-g

-

Spurdle et al., 2001

GSTT1

22q11.23

Делеция

5’-ggt-cat-tct-gaa-ggc-caa-gg

5’-ttt-gtg-gac-tgc-tga-gga-cg

-

GSTP1

11q13

Экзон5

313A>G

5’- gta-gtt-tgc-cca-agg-tca-ag

5’- agc-cac-ctg-agg-ggt-aag



BsoMAI

Ishii et al., 1999





--PAGE_BREAK--3.3. Анализ ассоциаций генов ферментов метаболизма ксенобиотиков с бронхиальной астмой и туберкулезом на семейном материале


Известно, что при анализе ассоциаций генетических факторов с болезнями и признаками по принципу «случай-контроль», вероятность ложноположительного результата высока, в связи с тем, что кроме возможной истиной значимости исследуемого гена в отношении изучаемой патологии необходимо учесть возможное неравновесие по сцеплению с другими генами, имеющими непосредственное отношение к болезни. Кроме того, крайне необходимо принять во внимание процессы, происходящие непосредственно при формировании популяции, например, подразделенность, метисация, инбридинг.

Поэтому, для исключения ложноположительной ассоциации с подверженностью к полигенным заболеваниям, наиболее перспективны являются исследования на семейном материале, которые позволяют исключить влияние факторов подразделенности популяции.

В связи с этим для анализа ассоциаций исследуемых полиморфных вариантов генов ферментов метаболизма ксенобиотиков в настоящем исследовании использовали тест на неравновесие при наследовании TDT(Transmission/DisequilibriumTest). Применение данного теста для диаллельного локуса позволяет сравнить частоту аллелей у больных потомков гетерозиготных родителей и, в случае, если один из аллелей будет встречаться чаще у пробандов, можно говорить об ассоциации с заболеванием [Spielman, 1993].

Таблица 12

Численность аллелей, унаследованных больными бронхиальной астмой и туберкулезом от гетерозиготных родителей



Группы сравнения

Ген (полиморфизм)

GSTP1 (313A>G)

CYP2E1(7632T>A)

CYP2C19(681G>A)

БА

Nгетерозиготных родителей

38

-

39

Nунаследованных аллелей

A=13; G=25

-

CYP2C19*1=24; CYP2C19*2=15

TDT (p)

3,79 (0,052)

-

2,08 (0,150)

ТБ

Nгетерозиготных родителей

17

11

-

Nунаследованных аллелей

A=10; G=7

Т=8; А=3

-

TDT (р)

0,53 (0,467)

2,30 (0,129)

-



Примечание. TDT – значениетестаTransmission/Disequilibrium Test; р– достигнутыйуровеньзначимости.
При анализе семейного материала больных БА наблюдалось предпочтительное наследование аллеля 313Gгена GSTP1 больными от гетерозиготных родителей (TDT=3,79, р=0,052), близким к статистической значимости (табл. 12). Ген GSTP1 локализован на хромосоме 11q13, а для этого региона показано сцепление с бронхиальной гиперреактивностью и атопией [Danielsetal., 1996; Thomasetal., 1997]. Полученные данные позволяют предполагать возможное участие глутатионовых S-трансфераз p1 в детоксикации и элиминации токсических продуктов в эпителиальных тканях респираторного тракта. Данные о неоднозначных изменениях каталитической активности при мутации 105Val[Watsonetal., 1998], позволяют предположить, что недостаток соответствующего фермента, задействованного в метаболизме ксенобиотиков, приводит к нарушению детоксикации электрофильных реактивных метаболитов, образующихся в I-й фазе биотрансформации и оказывающих повреждающее действие на бронхи, тем самым, провоцируя развитие БА у предрасположенных индивидов.

Для гена CYP2E1(7632T>A)не удалось проследить наследование аллелей для больных БА в силу низкой гетерозиготности родителей пробандов. Использование TDTдлягенаCYP2C19(681G>A) не показало значимой ассоциации с заболеванием (TDT=2,08, p=0,150). Значение TDTдля полиморфизма 313A>Gгена GSTP1не показало преимущественного наследования ни одного из аллелей пробандами больными ТБ (TDT=0,53, p=0,467), в отличие от такового значения для больных БА. В случае полиморфизма по «нулевым» аллелям для генов GSTT1и GSTM1применение TDTзатруднено по причине невозможности определения гетерозиготного носительства.

В целом, семейный анализ наследования аллелей генов ферментов метаболизма ксенобиотиков показал отсутствие предпочтительного наследования аллелей больными потомками от гетерозиготных родителей, однако для аллеля 313Gгена GSTP1получено значение TDTблизкое к статистической значимости.
3.4. Оценка связи комбинаций генотипов генов ферментов биотрансформации ксенобиотиков с туберкулезом и бронхиальной астмой
Спектр изоформ определяет соотношение метаболических путей биотрансформации ксенобиотиков и спектр образуемых метаболитов. В результате генетически обусловленного полиморфизма этих ферментов может возникать дефицит либо значительная активность отдельных изоформ, что определяет риск развития заболевания. Знания о физиологической функции ферментов метаболизма ксенобиотиков, свидетельствующие о четкой и скоординированной работе Iи IIфаз биотрансформации, позволяют предположить, что наиболее важная информация об их роли в патогенезе заболеваний будет получена при анализе носителей определенных сочетаний генотипов.

Поэтому, кроме анализа ассоциаций БА и ТБ с отдельными полиморфными вариантами генов GSTT1, GSTM1, GSTP1, CYP2E1 и CYP2C19 в данном исследовании были также изучены ассоциации различных комбинаций генотипов с заболеваниями (табл. 13, 14).

Комбинации генотипов GSTM1+ и GSTT1+, GSTT1+ и CYP2C19 *1/*1, GSTM1+ и CYP2E1 Т/Т, CYP2C19*1/*1 и CYP2E1 C1/C1 можно охарактеризовать, как генетические факторы устойчивости к возникновению БА. Объяснением резистентности к патологии для носителей сочетания функциональных генотипов GSTM1+/GSTT1+, может быть их функциональная значимость в отношении всей системы метаболизма, способствующая своевременной утилизации ксенобиотиков, оказывающих вредное воздействие на организм, следствием которого может быть увеличение риска развития БА. Протективное сочетание генотипов генов ферментов Iфазы CYP2C19 и CYP2E1, позволяет предположить участие в метаболизме возможных триггеров БА, исходя из знаний об их функции в организме. Во всех остальных случаях протективная роль комбинаций генотипов в отношении БА показана при сочетании аллелей генов, которые обеспечивают нормальное функционирование соответствующих ферментов системы метаболизма обеих фаз. В отношении ТБ протективную роль показали следующие комбинации генотипов: GSTM1 0/0 и CYP2E1 Т/А, GSTP1 G/Gи CYP2E1 Т/Т, GSTP1 G/Gи CYP2E1 C1/C1 (табл. 13).


Таблица 13

Протективные комбинации генотипов в отношении развития бронхиальной астмы и туберкулеза



Комбинация генотипов

БА

ТБ

OR (95% CI)

р

OR (95% СI)

р

GSTM1+ иGSTP1 G/G

0,10

(0,0-0,76)

0,018

0,37

(0,14-0,98)

0,045

GSTM1+ иGSTT1+

0,47

(0,26-0,84)

0,009

-

-

GSTT1+ иCYP2C19 *1/*1

0,51

(0,29-0,88)

0,014

-

-

GSTM1+ и CYP2E1 Т/Т

0,28

(0,14-0,56)

0,000

-

-

CYP2C19*1/*1 и CYP2E1 C1/C1

0,53

(0,29-0,95)

0,032

-

-

GSTM0/0 и CYP2E1 Т/А

-

-

0,15

(0,06-0,42)

0,000

GSTP1 G/Gи CYP2E1 Т/Т

-

-

0,35

(0,16-0,79)

0,009

GSTP1 G/G иCYP2E1 C1/C1

-

-

0,39

(0,18-0,85)

0,015



Примечание. OR– значение отношения шансов; 95% CI– 95% доверительный интервал; р –достигнутый уровень значимости по точному тесту Фишера.
Отмечена «общая» комбинация генотипов GSTM1+ и GSTP1 G/G, оказывающая протективную роль как в отношении развития БА (OR=0,10; 95% CI: 0,0-0,76; p=0,018), так и ТБ (OR=0,37; 95% CI: 0,14-0,98; p=0,045) (табл. 13). Несмотря на то, что согласно TDT, отмечено предпочтительное наследование аллеля 313Gгена GSTP1 у больных БА, гомозиготы по этому аллелю в сочетании с функциональным генотипом гена GSTM1 показывают устойчивость к развитию заболевания. Возможно, что наличие особенностей ферментов метаболизма, таких как множественность форм и перекрывающаяся субстратная специфичность, позволяют существенно восполнить дефекты индивидуального фермента в метаболизме ксенобиотиков активностью других.

При анализе комбинаций генотипов полиморфных вариантов генов ферментов метаболизма ксенобиотиков установлены сочетания генотипов, предрасполагающие к развитию БА (табл. 14).

Таблица 14

Комбинации генотипов, предрасполагающие к развитию бронхиальной астмы



Комбинация генотипов

OR(95% CI)

р

GSTТ1+ и GSTМ1 0/0

1,89 (1,13-3,19)

0,015

GSTM1 0/0 и CYP2E1 Т/А

3,18 (1,31-7,87)

0,008
    продолжение
--PAGE_BREAK--


Примечание. OR– значение отношения шансов; 95% CI– 95% доверительный интервал; р – достигнутый уровень значимости по точному тесту Фишера.
Выявлена комбинация генотипов GSTM1 0/0 и CYP2E1 Т/А, являющаяся фактором риска развития БА (OR=3,18; 95% CI: 1,31-7,87; р=0,008). В данном случае можно предположить наличие взаимосвязанной регуляции между двумя соответствующими ферментами глутатионовой S-трансфераза и цитохрома Р450. По этому поводу имеются данные о скоординированной экспрессии GSTM1 и GSTM3 в легочной ткани человека [Anttilaetal., 1995], а также о более высокой активности CYP1A2 у индивидуумов с нулевым генотипом GSTM1[MacLeodetal., 1997]. Стоит отметить, что эта же комбинация генотипов показала в отношении развития ТБ протективное значение (OR=0,15; 95% CI: 0,06-0,42; р=0,000). Видимо такая комбинация определяет неэффективный/эффективный метаболизм различных триггеров БА и ТБ эндогенного и экзогенного происхождения.

Возможно, высокий риск для носителей комбинации генотипов GSTТ1+ и GSTМ1 0/0(OR=1,89; 95% CI: 1,13-3,19, р=0,015) получен вследствие высокой важности для данного заболевания GSTM1, и даже наличие функционального генотипа GSTT1 не снижает риск развития заболевания. Можно предположить, что соответствующие ферменты могут также метаболизировать различные по химической структуре молекулы, тогда именно субстраты для GSTМ1 могут быть триггерами БА и присутствие функционального генотипа GSTT1 никаким образом не оказывает влияния на сохранение состояния здоровья.

Среди всех проанализированных комбинаций полиморфных вариантов генов не показано ни одного сочетания, имеющего патогенетическую значимость в развитии ТБ.

В заключение следует сказать, что при сравнении сочетаний генотипов генов ферментов Iи IIфаз метаболизма для различных по этиопатогенезу заболеваний отмечена общая протективная комбинация генотипов GSTM1+и GSTP1 G/Gв развитии ТБ и БА. Для ТБ не показано ни одного патогенетически значимого сочетания генотипов генов ферментов метаболизма ксенобиотиков. Кроме того, комбинация генотипов GSTM1 0/0 и CYP2E1 Т/А являющаяся фактором риска развития БА, для ТБ оказывает протективную роль.
3.5. Связь полиморфизма генов ферментов метаболизма ксенобиотиков с изменчивостью количественных признаков у больных бронхиальной астмой и туберкулезом
Следующим этапом настоящего исследования было изучение связи исследуемых полиморфных вариантов генов с изменчивостью значимых для заболеваний количественных признаков, характеризующей адаптационные способности организма. Возможно, что изучаемые полиморфизмы цитохрома Р450 и глутатионовых S-трансфераз имеют значение в развитии БА и ТБ в целом, а также в выраженности отдельных клинических проявлений. Поэтому представлялось важным оценить наличие связи исследуемых генов с количественными лабораторными показателями, характеризующими особенности течения анализируемых заболеваний.

Известно, что ключевой особенностью БА является состояние бронхиальной гиперреактивности, свидетельствующее о повышенном бронхоконстрикторном ответе на различные физико-химические факторы, когда бронхоспазм развивается в ответ на воздействие, не вызывающее такой реакции у большинства здоровых лиц. На этом основан клинический тест с метахолином, показывающий изменения чувствительности и реактивности бронхов.

Предположив, что индивидуальная способность к детоксикации веществ, способствующих развитию БА и бронхиальной гиперреактивности, детерминирована полиморфизмом генов системы метаболизма ксенобиотиков, были проанализированы значения дозы метахолина (по результатам теста на бронхиальную гиперреактивность) с изученными полиморфными вариантами исследуемых генов. Признак не показал корреляции с возрастом обследуемых (r=-0,359, p=0,066). Учитывая значимые отклонения уровня метахолина от закона Гаусса (по данным теста Шапиро-Уилки, W=0,782, p=0,001), сравнение было проведено с помощью непараметрического медианного теста. В результате была показано близкое к статистически значимому различие «количественного фенотипа» БА у мужчин с полиморфизмом 313A>G гена GSTP1: для гомозиготных носителей GG генотипа характерна более низкая доза метахолина, по сравнению с мужчинами-носителями АА и AG генотипов (рис. 5, табл. 15). Следует отметить, что в доступных нам литературных источниках отмечается связь аллеля 313А гена GSTP1 с бронхиальной гиперреактивностью для европеоидной популяции [Cristina

et

al
., 2002].

Известно, что основными соединениями, вызывающими бронхиальную гиперреактивность, являются реактивные окислители – ключевые компоненты воспалительной реакции. Бронхиальная гиперреактивность может быть модулирована уровнем реактивных окислителей, возможно, с помощью их способности регулировать продукцию эйкозаноидов через стимуляцию освобождения арахидоновой кислоты.

Таблица 15

Взаимосвязь изменчивости уровня метахолина с распределением генотипов полиморфизма гена GSTP1 313A>G



Генотип

obs

exp



Мужчины(n=25)

AA

4,000

6,261

-2,261

AG

11,000

8,348

2,652

GG

1,000

1,391

-0,391

p=0,054*

Женщины (n=16)

AA

5,000

5,625

-0,625

AG

2,000

1,875

0,125

GG

3,000

2,500

0,500

p=0,789*



Примечание. obs – наблюдаемые средние значения, exp – ожидаемые средние значения, =obs-exp, * – достигнутый уровень значимости медианным тестом.
Гены глутатионовых S-трансфераз являются генами-кандидатами для одного из клинических проявлений астмы – бронхиальной гиперреактивности, а, следовательно, и для БА, поскольку кодируемые ими ферменты понижают уровень реактивных окислителей [Hayes, McLellan, 1999]. Эта точка зрения подтверждается исследованиями, показавшими, что индивиды с пониженной антиоксидантной способностью имеют повышенный риск атопической БА и уменьшение потока антиоксидантов ассоциировано с экспрессией связанных с астмой фенотипов.


Рис. 5. Уровни метахолина у носителей различных генотипов полиморфизма 313A>G гена GSTP1 у лиц мужского пола.
Полиморфизм в генах GSTT1 и GSTM1 не показал связи с бронхиальной гиперреактивностью, что может отражать различия в генной экспресии, также как изменчивости в метаболизме субстратов, имеющих отношение для развития БА. Действительно, несмотря на то, что в эпителиальных клетках легких человека экспрессируются различные генные продукты GST, глутатионовые S-трансферазы p класса составляют более чем 90% от общей GST-активности [Frayeretal., 1986].

Известно, что для БА аллергического характера характерно значительное повышение уровня общего IgE. Через IgE-опосредованный механизм целый ряд клеточных элементов: тучные клетки, макрофаги, лимфоциты, эпителиальные и эндотелиальные клетки независимо друг от друга или совместно принимают участие в воспалении дыхательных путей, тем самым, осуществляя иммунный ответ организма на внедрение антигена. В этом контексте была рассмотрена гипотеза, предполагающая зависимость изменчивости уровня общего IgEот генетического полиморфизма ферментов метаболизма ксенобиотиков. Было показано значимое повышение уровня IgЕ у женщин с генотипом *1/*1 гена CYP2C19по сравнению с носителями остальных генотипов (табл. 16).

Таблица 16

Распределение уровня IgEу носителей различных генотипов гена CYP2C19 (полиморфизма 681G>A) среди женщин



Генотип

n

Средние значения IgE±S.E.

p

*1/*1

20

408,0±73,4

0,044

                                                              
*1/*2+*2/*2
4

67,5±26,7



Примечание. n – абсолютное значение человек в группе; р – достигнутый уровень значимости для теста Манна-Уитни.
Анализ изменчивости уровня общего IgEу больных БА с другими, изученными в данной работе полиморфными вариантами генов метаболизма ксенобиотиков, не показал ассоциаций ни у мужчин, ни у женщин (р>0,05).


Таблица 17

Значение показателей спирометрии ±S.E. в зависимости от генотипа по полиморфизмам генов глутатионовых S-трансфераз GSTT1и GSTM1у больных бронхиальной астмой



Группа сравнения

Генотип

Форсированная жизненная емкость легких

Объем форсированного выдоха за 1 секунду

Пиковая скорость выдоха

GSTT1

Мужчины

GSTT1 +

(n=19)

2,32±0,41

1,97±0,45

4,31±1,11

GSTT1 0/0

(n=12)

2,58±0,50

2,29±0,42

4,82±0,84

р*

0,122

0,059

0,187

Женщины

GSTT1 +

(n=18)

2,46±0,73

2,02±0,67

3,86±1,33

GSTT1 0/0

(n=5)

2,42±0,34

2,09±0,70

4,26±1,18

р*

0,911

0,831

0,550

GSTM1

Мужчины

GSTM1 +

(n=8)

2,31±0,42

1,92±0,31

4,31±1,08

GSTM1 0/0

(n=23)

2,46±0,47

2,15±0,50

4,58±1,08

р*

0,415

0,236

0,538

Женщины

GSTM1 +

(n=4)

1,78±0,58

1,64±0,50

2,97±1,31

GSTM1 0/0

(n=19)

2,59±0,59

2,12±0,67

4,15±1,22

р*

0,021

0,191

0,097



Примечание. n– объемы выборок; * — уровень значимости для однофакторного дисперсионного анализа.
Учитывая важность показателей исследования функции внешнего дыхания у больных БА для оценки степени тяжести заболевания, проведен сравнительный анализ связи полиморфных вариантов генов метаболизма с основными спирометрическими показатели: форсированная жизненная емкость легких (FVC), объем форсированного выдоха за 1 секунду (FEV1) и пиковая скорость выдоха (PEF). Отмечена связь FVCс полиморфизмом гена GSTM1среди женщин (F=6,263, p=0,021), у мужчин таких различий не наблюдается (табл. 17). Кроме того, показаны близкая к статистической значимости связь FEV1 с полиморфизмом гена GSTT1у мужчин, а также PEFс полиморфизмом гена GSTM1у женщин.

Учитывая, что патогенные свойства M. tuberculosisв условиях развивающегося специфического процесса в легких непосредственно сказываются на особенностях реагирования системы крови, для больных ТБ были проанализированы параметры общего анализа крови: уровень гемоглобина, количество эритроцитов, лейкоцитов, скорость оседания эритроцитов (СОЭ); а также параметры биохимического анализа крови: количество билирубина (прямой и обратный), аланинаминотрансферазы (АЛТ) до начала лечения и через два месяца после лечения.

Воздействие инфекционного агента вызывает развитие комплекса изменений как специального, так и стрессового характера. Последние оказывают непосредственное влияние на формирование основного патологического процесса, в то же время специфика развивающегося туберкулезного процесса определяет особенности реакций общего адаптационного синдрома.

Для полиморфных вариантов генов глутатионовых S-трансфераз не показано связи с изменчивостью количественных показателей периферической крови (табл. 18). Однако получена ассоциация полиморфизма 681G>Aгена CYP2C19 фермента I-й фазы метаболизма ксенобиотиков у мужчин: аллель CYP2C19*2связан с низким уровнем эритроцитов (р=0,027) (табл. 19), для них также отмечена тенденция к снижению уровня гемоглобина (р=0,065). Для женщин таких различий не показано (р>0,05). Известно, что при ТБ имеет место снижение количества эритроцитов как за счет их ускоренного разрушения в периферической крови под влиянием токсических фракций M. tuberculosis, так и вследствие нарушения эритропоэза в результате туберкулезной интоксикации [Глебович, 1951; Милосердова, 1958; Шмелев, 1959; Радзинский, 1961; Кан, 1972].

Таблица 18

Средние значения (±S.E.) количественных параметров крови больных туберкулезом носителей разных генотипов полиморфизмов генов глутатионовых S-трансфераз



Группа сравнения

Генотип

Гемоглобин

(г/л)

Эритроциты

(х1012/л)

Лейкоциты (х109/л)

СОЭ

(мм/ч)

1

2

3

4

5

6

GSTT1

Мужчины

GSTT1 +

130,01±1,78

n=115

4,17±0,06

n=112

8,23±0,33

n=116

25,14±1,76

n=115

GSTT1 0/0

135,35±2,43

n=26

4,29±0,10

n=25

8,01±0,50

n=28

25,59±3,36

n=28

p

0,251*

0,353*

0,892*

0,486*

Женщины

GSTT1 +

119,14±1,04

n=69

3,90±0,06

n=65

7,06±0,36

n=69

25,41±2,26

n=67

GSTT1 0/0

121,82±1,99

n=13

3,72±0,14

n=12

7,04±0,51

n=13

23,94±6,96

n=12

p

0,613**

0,322*

0,489*

0,739*

GSTM1


Мужчины

GSTM1 +

129,26±2,42

n=51

4,10±0,09

n=49

8,56±0,45

n=53

27,50±2,61

n=52

GSTM1 0/0

131,98±1,96

n=90

4,25±0,06

n=88

7,96±0,36

n=91

23,00±1,92

n=91

p

0,263*

0,091*

0,158*

0,205*

Женщины

GSTM1 +

120,66±3,32

n=29

3,94±0,10

n=27

6,93±0,56

n=29

26,27±3,74

n=28

GSTM1 0/0

118,97±2,36

n=53

3,83±0,06

n=50

7,12±0,39

n=53

24,58±2,69

n=51

p

0,676**

0,393*

0,491*

0,656*

GSTP1 313A>G

Мужчины

AA

132,72±2,07

n=76

4,23±0,07

n=76

8,48±0,39

n=79

24,51±1,92

n=79

AG+GG

128,85±2,33

n=62

4,14±0,07

n=62

7,91±0,42

n=62

24,56±2,66

n=61

p

0,201*

0,309*

0,521*

0,871*

Женщины

AA

119,88±2,81

n=34

3,97±0,07

n=31

7,35±0,56

n=34

24,39±3,89

n=33

AG+GG

119,69±2,65

n=47

3,80±0,08

n=45

6,85±0,38

n=47

25,94±3,00

n=47

р

0,512*

0,207*

0,670*

0,461*



Примечание. В скобках указаны единицы измерения; n– объемы выборок;

*- достигнутый уровень значимости теста Манна-Уитни; ** — уровень значимости для однофакторного дисперсионного анализа.

Таблица 19

Средние значения (±S.E.) количественных параметров крови у больных туберкулезом носителей разных генотипов полиморфных вариантов генов цитохромов Р450



Группа сравнения

Генотип

Гемоглобин

(г/л)

Эритроциты

(х1012/л)

Лейкоциты (х109/л)

СОЭ

(мм/ч)

1

2

3

4

5

6

CYP2E1 7632T>A

Мужчины

ТТ

132,11±1,80

n=105

4,24±0,06

n=103

7,98±0,32

n=108

24,19±1,80

n=107

ТА+АА

127,94±2,98

n=34

4,05±0,08

n=32

8,99±0,57

n=34

25,75±3,25

n=34

p

0,204*

0,212*

0,091*

0,686*

Женщины

ТТ

120,07±2,20

n=67

3,88±0,06

n=62

7,06±0,36

n=67

26,31±2,46

n=65

ТА+АА

116,84±3,95

n=14

3,81±0,11

n=14

7,243±0,638

n=14

20,31±4,65

n=13

p

0,532**

0,707*

0,549*

0,283*

CYP2E1 1293G>C

Мужчины

C1C1

131,29±1,62

n=122

4,21±0,05

n=119

7,93±0,28

n=125

25,28±1,68

n=124

C1C2

129,11±4,50

n=19

4,10±0,15

n=18

9,84±1,04

n=19

20,46±3,90

n=19

p

0,925

0,669

0,060

0,215

Женщины

C1C1

119,42±1,96

n=80

3,87±0,05

n=75

7,04±0,32

n=80

25,92±2,20

n=77

C1C2

119,00±5,20

n=3

0,23±0,13

n=3

6,83±1,24

n=3

14,09±11,68

n=3

p

0,968**

0,845*

0,855*

0,219*

CYP2C19 681G>A

Мужчины

*1/*1

133,09±1,68

n=102

4,27±0,06

n=99

8,45±0,34

n=104

23,85±1,75

n=104

*1/*2+

*2/*2

124,81±3,40

n=36

3,96±0,08

n=35

7,60±0,52

n=37

26,66±3,52

n=36

 
p

0,065*

0,027*

0,195*

0,477*

 
Женщины

*1/*1

121,04±2,17

n=57

3,90±0,06

n=53

7,20±0,35

n=57

25,37±2,90

n=57

 
*1/*2+

*2/*2

115,89±3,98

n=24

3,78±0,10

n=23

6,83±0,69

n=24

25,57±4,04

n=23

 
р

0,469**

0,469*

0,341*

0,795*

 


Примечание. В скобках указаны единицы измерения; n– объемы выборок;

*- достигнутый уровень значимости теста Манна-Уитни; ** — уровень значимости для однофакторного дисперсионного анализа.
Данные об экспрессии гена CYP2C19 в костном мозге, позволяют предполагать, что наличие аллеля CYP2C19*2приводит к снижению функции соответствующего фермента, поэтому у индивидов, носителей мутантного аллеля течение ТБ может сопровождаться разрушающим действием токсинов M. tuberculosisна клетки костного мозга, что приводит к неэффективному эритропоэзу. Подобное предположение о связи делеционного полиморфизма гена GSTT1, сопровождающимся отсутствием соответствующего фермента II-й фазы биотрансформации ксенобиотиков, с неспособностью метаболизировать токсичные для гемопоэтических клеток субстраты, нашло свое подтверждение в исследовании о развитии приобретенной апластической анемии у детей [Dirksenetal., 2004].

Анализ остальных параметров периферической крови: лейкоцитов и скорости оседания эритроцитов не показал влияния исследуемых в работе полиморфизмов генов ФМК на изменчивость вышеперечисленных показателей как для мужчин, так и для женщин. Однако отмечена тенденция к повышению уровня лейкоцитов у носителей гетерозиготных генотипов полиморфных вариантов генов CYP2E1 7632T>AиCYP2E1 1293G>Cсреди мужчин (р=0,091, р=0,060 соответственно).Учитывая низкую частоту аллелей этих полиморфных вариантов, можно предположить, что статистическая мощность исследованной выборки оказалась недостаточной, чтобы установить значимую связь в отношении изменения уровня лейкоцитов крови.

Метаболизм лекарственных препаратов и эффекты их дальнейшего пребывания в организме в большей степени зависят от генетического полиморфизма ферментов системы биотрансформации. На сегодня известно, что человек имеет 59 активных генов семейства цитохрома Р450, и 6 из них кодируют важные для лекарственного метаболизма ферменты [Ingelman-Sundberg, 2004]. Как отмечалось ранее, для ферментов биотрансформации характерна способность к метаболизму большого количества субстратов по причине того, что ферменты I-й и II-й фаз биотрансформации перекрываются в своей субстратной специфичности. Однако для многих форм Р450 выделены специфические лекарства, используемые для фармакокинетических оценок. Для исследуемых в настоящей работе цитохромов Р450 и глутатионовых S-трансфераз селективные субстраты представлены в табл. 20.

Основным органом, участвующим в метаболизме лекарств, является печень, где обозначены самые высокие концентрации ферментов метаболизма по сравнению с другими органами и наибольшее разнообразие экспрессируемых форм [Райс, Гуляева, 2000]. Полиморфизм генов метаболизма ксенобиотиков в настоящее время активно изучается в отношении индивидуальной чувствительности к лекарственной терапии и, особенно в проявлении многообразных побочных реакций, связанных с лечением.

Таблица 20

Специфичные субстраты для ферментов системы метаболизма



Фермент

Специфичный субстрат

Литературный источник

CYP2E1

Хлорзоксазон

Kharaschetal., 1993

CYP2C19

S-мефенитоин

DeMoraisetal., 1994

GSTT1

Трансстильбеноксид

Hallieretal., 1993

GSTM1

Хлористый метилен и хлористый метил

Seidegard et al., 1988

GSTP1

Этакриноваякислотаибензпирендиолэпоксид

Awasthi et al., 1993



Показано, что при биотрансформации новокаинамид превращается в метаболит, который может вызвать у медленных ацетиляторов картину болезни, похожую на красную волчанку, а сульфазалин у этих людей может вызвать лейкопению, гепатотоксичность и нейропатии. Эффективность терапии ТБ зависит как от индивидуальных способностей индивида в метаболизме лекарств, так и от взаимоотношения антимикобактериальных препаратов с системой цитохромов Р450 непосредственно самой микобактерии ТБ. Обнаружено, что геном M. tuberculosis содержит гены, кодирующие 20 различных цитохромов Р450, в том числе ферментов, являющихся мишенью действия для противогрибковых препаратов. Кроме того, опубликованные данные об угнетении метаболизирующей функции печени за счет снижения содержания цитохромов Р450 в этом органе при бактериальной и вирусной инфекции через цитокин-опосредованные механизмы, позволяют предполагать изменение фармакодинамики, а соответственно токсичности лекарственных препаратов [Prandota, 2002].

Во всех странах получило признание комбинированное применение химиопрепаратов, позволяющее добиться бактерицидного эффекта и предотвратить развитие лекарственной устойчивости в процессе лечения. Принцип комбинированного применения нескольких химиопрепаратов известен давно, еще в 1955 г. он был внедрен в практику химиотерапии как метод предупреждения лекарственной устойчивости M. tuberculosis. Актуальность лекарственных поражений печени во фтизиатрии обусловлена необходимостью полихимиотерапии туберкулеза, что создает высокую медикаментозную нагрузку на больного, и в большей степени ее испытывает печень, осуществляя метаболизм туберкулостатиков и патогенетических средств. Противотуберкулезные препараты изониазид, рифампицин, пиразинамид обладают значительной гепатотоксичностью (особенно этот эффект выражен при их комбинации), этамбутол, микобутин и другие – в меньшей степени. Лекарственные гепатиты у больных туберкулезом относят к категории преимущественно токсических побочных реакций химиотерапии.





Рис. 6. Взаимодействие между лекарственными препаратами и ферментативной системой метаболизма ксенобиотиков, приводящее к лекарственно-индуцированному гепатиту (по: Royetal., 2001).
Частым осложнением при лечении ТБ легких производными гидразина изоникотиновой кислоты, например, изониазидом, являются гепатотоксические реакции. Известно, что чаще они возникают у лиц, быстро инактивирующих изониазид, поскольку у них высвобождается значительно больше гидразина, в частности, ацетилгидразина, который может вызывать дистрофические поражения печени (рис. 6).

Аланинаминотрансфераза (АЛТ) — фермент, катализирующий трансаминирование, присутствует во многих тканях организма, в частности, в печени. В гепатоцитах он локализуется главным образом в цитозольной фракции.

Высвобождение АЛТ в кровь происходит при нарушениях внутренней структуры гепатоцитов и повышении проницаемости клеточных мембран, что свойственно как острому вирусному гепатиту, так и рецидивам хронического гепатита. В этой связи АЛТ считается индикаторным ферментом, и к его определению прибегают постоянно при постановке диагноза гепатитов любой природы.

Установлено статистически значимое увеличение уровней АЛТ (р=0,001) и билирубина (р=0,05) после двух месяцев применения антимикобактериальных препаратов (табл. 21). Значение АЛТ не показало корреляции с возрастом и полом (r=-0,161 и r=-0,152, соответственно, р>0,05). Выявлена ассоциация полиморфного варианта 313A>G гена глутатионовой S-трансферазы p1 (GSTP1) с увеличением активности АЛТ после лечения противотуберкулезными препаратами в течение двух месяцев (р=0,021) (табл. 22).

Поскольку метаболизм изониазида и рифампицина приводит к образованию более токсичных метаболитов, то одной из возможных причин полученного различия может быть прямая связь между генотипом индивида и изменением уровня активности показателя печеночной функции. Такой факт закономерен, так как известно, что глутатионовые S-трансферазы играют значительную роль в метаболизме противотуберкулезных препаратов, таких как изониазид и рифампицин [Sodhietal. 1996; Sodhietal., 1997].

Таблица 21

Изменения уровней аланинаминотрансферазы и билирубина до и после двух месяцев лечения



Значение уровня аланинаминотрансферазы (ммоль/(ч.л))

Значение уровня билирубина

(мкмоль/л)

До начала

лечения

После 2-х месяцев

лечения

До начала

лечения

После 2-х месяцев лечения

0,03-1,55

0,03-1,83

4,5-102,0

5,0-342,0

0,001

0,050



Примечание. В скобках указаны единицы измерения; р – достигнутый уровень значимости для теста Уилкоксона.
В доступных источниках литературы показано, что рифампицин индуцирует экспрессию глутатионовых S-трансфераз, а изониазид-индуцированные повреждения печеночных клеток у модельных животных показывают связь с истощением содержащегося в печени глутатиона, и соответственно, с пониженной активностью GST. Эти эффекты максимальны, когда применяются два препарата совместно [Steeleetal., 1991].

Полученные результаты представляют интерес в связи с тем, что последнее время появляются данные о развитии гепатотоксичности во время применения антимикобактериальных препаратов у лиц с определенным генотипом по генам ФМК. Так, показана связь «нулевого» генотипа гена GSTM1 с лекарственно-индуцированной гепатотоксичностью в Индии [Royetal., 2001]. Исследования у 318 пациентов при лечении ТБ в Тайвани показали ассоциации полиморфизма СYP2E1 (RsaI) с токсическим поражением печени [Huangetal., 2003].

Таблица 22

Средние уровни аланинаминотрансферазы и билирубина после двух месяцев лечения у носителей разных генотипов по генам глутатионовых S-трансфераз и цитохромов Р450 больных туберкулезом



Ген

полиморфизм

Генотип (n)

АЛТ±S.E.

р

Билирубин±S.E.

р

GSTT1

del

GSTT1 +(92)

0,27±0,03

0,383*

15,53±3,91

0,682*

GSTT1 0/0(27)

0,22±0,04

9,40±0,99

GSTM1

del

GSTM1 +(51)

0,20±0,02

0,149*

10,81±1,89

0,557*

GSTM1 0/0(68)

0,29±0,04

16,63±5,12

GSTP1

313A>G

AA (61)

0,29±0,04

0,021**

16,87±5,66

0,604**

AG (49)

0,20±0,03

10,98±1,95

GG (8)

0,32±0,05

13,69±6,39

CYP2C19 681G>A

*1/*1 (86)

0,26±0,03

0,580*

15,37±4,16

0,543*

*1/*2+ *2/*2 (32)

0,22±0,02

10,74±1,62

CYP2E1 7632T>A

TT (90)

0,27±0,03

0,706*

15,52±4,01

0,198*

TA+AA (29)

0,21±0,03

9,84±0,68

CYP2E1 1293G>C

C1C1 (106)

0,26±0,03

0,976*

14,66±3,41

0,603*

C1C2+C2C2 (13)

0,22±0,04

9,85±1,18



Примечание. АЛТ±S.E.– средние значения уровня аланинаминотрансферазы со стандартной ошибкой; билирубин±S.E. – средние значения уровня билирубина со стандартной ошибкой; n– объем выборки; * — достигнутый уровень значимости по тесту Манна-Уитни; ** — достигнутый уровень значимости по тесту Краскела-Уоллиса.

Отмечена ассоциация статуса медленного ацетилятора NAT2 и гепатита, вызванного применением антимикобактериальных препаратов [Huangetal., 2002]. Данные проведенного исследования у жителей г. Томска предполагают участие полиморфного варианта гена GSTP1 (313A>G) в изменчивости уровня показателя печеночной функции при лечении ТБ антимикобактериальными препаратами.

Таким образом, в большинстве случаев для исследуемых количественных признаков наблюдали статистически значимые отклонения распределения от нормального (по данным теста Шапиро-Уилки). С учетом этого сравнение проводили с помощью непараметрических критериев Манна-Уитни, Краскела-Уоллиса и медианного теста. При анализе «количественного фенотипа» больных БА с распределением полиморфных вариантов генов системы метаболизма отмечено: тенденция к снижению уровня метахолина, вызывающего бронхоспазм для гомозиготных носителей аллеля 313G гена GSTP1, значимое повышение уровня IgE у носителей генотипа *1/*1 гена CYP2C19, связь делеционного полимофизма гена GSTM1 с изменчивостью показателя FVC, а также близкая к статистической значимости значения FEV1 и PEFc полиморфизмом генов глутатионовых S-трансфераз GSTM1 и GSTT1.

Оценка «количественного фенотипа» ТБ показала связь гена фермента I-ой фазы метаболизмаCYP2C19(полиморфизм 681G>A)с изменчивостью уровня эритроцитов. Анализ изменчивости показателей печеночной функции показал значимые различия в уровне АЛТ и билирубина до и после двух месяцев лечения антимикобактериальными препаратами. В ходе анализа выявлена ассоциация полиморфного варианта 313A>Gгена глутатионовой S-трансферазы p1 (GSTP1) cувеличением уровня АЛТ.



--PAGE_BREAK--ЗАКЛЮЧЕНИЕ

Ферментативная система метаболизма ксенобиотиков является практически универсальным механизмом, поддерживающим внутренний баланс и способствующим сохранности здоровья организма человека. Существовавшая изначально для метаболизма эндогенных субстратов, система эволюционировала, адаптируясь к техногенному загрязнению окружающей среды. В её функционировании задействованы уникальные по своим свойствам ферменты: гемопротеид – цитохром Р450, низкомолекулярный трипептид — глутатион и др. С помощью целых семейств этих ферментов с одинаковой каталитической активностью и различной субстратной специфичностью метаболизируются сотни самых разных по химическому составу соединений. Одним из важнейших свойств системы метаболизма является индукция – активация транскрипции гена в присутствии субстрата. Тканеспецифичная экспрессия различных изоформ метаболизма определяет ее адаптацию к структурно-функциональной организации той или иной системы организма. Наибольшая экспрессия ферментов в печени обеспечивает наиболее активное участие этого органа в метаболизме ксенобиотиков. В совокупности все ферменты, участвующие в деградации молекул ксенобиотиков, функционируют как единый, четко скоординированный комплекс. Поэтому отклонение их функции неизменно приводит к вредным для организма человека последствиям. Это обстоятельство подтверждают многочисленные исследования о функционировании системы метаболизма при различных воздействиях окружающей среды и патологических состояниях [Linetal., 1998; Иващенко и др., 2000; Ляхович и др., 2000, 2002; Delfinoetal., 2000; Вавилин и др., 2002; Rollinsonetal., 2003; Бикмаева и др., 2004].

Согласно современным представлениям БА и ТБ относятся к группе дистропных болезней. Однако многочисленные проведенные исследования поиска генетической компоненты подверженности к этим заболеваниям показали ряд «общих» генов, белковые продукты которых задействованы на всех этапах патогенеза.С этой точки зрения целесообразным и перспективным представлялся сравнительный анализ полиморфных вариантов генов системы метаболизма ксенобиотиков,поскольку кодируемые ими ферменты задействованы в деградации эндогенных субстратов, а именно многочисленных медиаторов воспаления (простагландинов, лейкотриенов и т. д.), что легло в основу настоящего исследования.

Ряд работ показал связь генов ферментов метаболизма ксенобиотиков с развитием БА и её клиническими проявлениями в различных популяциях [Luszawaka-Kutrzela, 1999; Ляхович и др., 2000, 2002; Fryeretal., 2000; Иващенко и др., 2001; Gawronska-Szklarzetal., 2001; Вавилин и др., 2002; Gilliandetal., 2002; Сафронова и др., 2003; Brasch-Andersenetal., 2004; Tameretal., 2004; Carroll, 2005]. Однако, учитывая значительные этнические различия в полиморфизме генов этой системы, существует противоречивая информация об их значимости для развития заболевания.

При оценке роли полиморфизма генов метаболизма ксенобиотиков для развития БА у жителей г. Томска показана ассоциация полиморфизма генов ферментов как I-й – CYP2E1, так и IIфазы – GSTM1 с заболеванием.

Для носителей делеции гена GSTM1,приводящей к утрате активности соответствующего фермента, существует возможность дисбаланса процессов детоксикации экзогенных и эндогенных веществ, что повышает для них в два раза риск развития заболевания БА по сравнению с индивидами, имеющими функциональный генотип. Следует отметить, что подобные данные были получены во многих исследованиях, как для европеоидных, так и для монголоидных популяций [Вавилин и др., 2002; Ляхович и др., 2000; Zhangetal., 2004]. Можно предполагать, что эта ассоциация является важным следствием множественности биологических функций глутатионовых S-трансфераз и обусловлена их участием в метаболизме эндогенных медиаторов воспаления (простагландинов Н2, E2, F2a, лейкотриена С4). Однако интересно, что в проявлении тяжести заболевания не отмечена значимость этого гена, а у пациентов с легкой степенью тяжести преобладал делеционный генотип гена GSTT1. Тяжесть БА определяется многими факторами (пол, возраст начала, отягощенная наследственность, предшествующее лечение, сопутствующие аллергические заболевания), и в настоящее время нет четких представлений о формировании клинического полиморфизма заболевания [Огородова и др., 2002]. В данном случае, можно лишь предполагать, что при наличии отчетливо неблагоприятного генотипа, развитие патологического процесса может сдерживаться присутствием в геноме индивида генов, контролирующих выработку белковых структур, которые препятствуют развитию более тяжелой степени течения БА.

В ходе исследования были получены данные о связи ТБ с другими генами системы метаболизма. Так, в отношении инфекционного заболевания показана протективная роль полиморфиза 313A>Gгена GSTP1 фермента II-й фазы метаболизма. Эта ассоциация объясняется с позиции высокой экспрессии глутатионовой S-трансферазы π1 в легких, защищающих таким образом человека на пути воздействия на организм токсичных агентов окружающей среды (например, химических соединений, содержащихся в табачном дыме и выхлопных газах), которые можно отнести к факторам, провоцирующим развитие ТБ.

Анализ полиморфизма исследуемых генов в формировании и степени выраженности клинических проявлений ТБ показал, что последствия возможной активации CYP2C19 нарушают оксидантное равновесие при уже развившемся заболевании, а развитие окислительного стресса способствует усилению процессов деструкции в легочной ткани.

Несомненно, единственной причиной развития ТБ является инфицирование организма M. tuberculosis. Однако дальнейшая судьба возбудителя болезни зависит от многих факторов, которые в совокупности определяют полиморфизм клинических форм заболевания. Так, показаны различия между группами больных с ТБ внутригрудных лимфоузлов и инфильтративным ТБ для полиморфизма 313A>Gгена GSTP1, играющего роль в подверженности к заболеванию.

В исследованиях дизайна «случай-контроль» особую важность приобретает использование для анализа ассоциаций генетических факторов с заболеванием семейного материала, позволяющего проследить наследование аллелей, связанных с болезнью. В ходе данного исследования показано предпочтительное наследование аллеля 313Gгена GSTP1больными БА потомками от гетерозиготных родителей.

Важная информация о взаимодействии ферментов системы метаболизма двух фаз для оценки их вклада в подверженность к заболеваниям была получена при анализе носителей определенных сочетаний генотипов. Отмечена комбинация генотипов генов ферментов IIфазы метаболизма GSTM1 и GSTP1, оказывающая протективную роль как в отношении развития БА, так и ТБ. В большинстве случаев протективная роль комбинаций генотипов в отношении БА показана при сочетании аллелей генов, которые обеспечивают полноценное функционирование соответствующих ферментов системы метаболизма обеих фаз. Выявлена комбинация генотипов полиморфных вариантов генов GSTM1 и CYP2E1, предрасполагающая к развитию БА, но оказывающая протективную роль в отношении ТБ. Среди всех проанализированных комбинаций полиморфных вариантов генов не показано ни одного сочетания, имеющего патогенетическую значимость в развитии ТБ. Полученные данные свидетельствуют, что эффекты комбинаций определенных генотипов генов ФМК различны в развитии БА и ТБ.

Следующим этапом исследования было изучение связи исследуемых полиморфных вариантов генов с количественными лабораторными показателями, характеризующими особенности течения различных по этиологии и патогенезу заболеваний. Учитывая варьирование количественных признаков в зависимости от пола, оценка вклада полиморфизма генов системы биотрансформации ксенобиотиков была проведена отдельно для мужчин и женщин и показала участие генов ферментов как I-й так и II-й фаз метаболизма. Так отмечена связь гена CYP2C19 с изменчивостью IgEу женщин и GSTM1 – с показателем форсированной жизненной емкости легких, которые относятся к важным количественным характеристикам проявлений БА. Оценка гематологических показателей крови у мужчин, больных ТБ выявила связь полиморфизма гена CYP2C19 с изменчивостью уровня эритроцитов в периферической крови. Неодинаковый характер ассоциаций генов ферментов метаболизма с количественными признаками у мужчин и женщин позволяет предположить, что та часть структуры наследственной компоненты предрасположенности к заболеваниям, которая связана с полиморфизмом этих генов, неодинакова у представителей разного пола, что выражается в дифференциальной частоте многих болезней у мужчин и женщин в одной популяции.

Особую ценность для практического здравоохранения приобретают результаты настоящего исследования в свете участия генов ферментов метаболизма ксенобиотиков в формировании гепатотоксичных реакций на противотуберкулезную терапию. Выявленная ассоциация повышения активности аланинаминотрансферазы после лечения антимикобактериальными препаратами с полиморфным вариантом гена GSTP1 в дальнейшем может использоваться для разработки комплекса профилактических мер по предотвращению побочных реакций от химиотерапии ТБ.

В целом, полученные результаты свидетельствуют, что наличие определенных генотипов и их комбинаций генов ферментов метаболизма ксенобиотиков может оказывать существенное влияние на предрасположенность и формирование клинического фенотипа БА и ТБ. Сравнительный анализ участия генов ферментов биотрансформации ксенобиотиков в развитии БА и ТБ позволил раскрыть некоторые генетические аспекты этих дистропных заболеваний. В ходе исследования показана дифференциация генов, задействованных в формировании клинического фенотипа заболеваний: гены GSTM1и CYP2E1связаны с БА и ее клиническими проявлениями, а GSTP1— с развитием ТБ. Из исследуемых полиморфных вариантов генов ферментативной системы биотрансформации отмечен «общий» ген – CYP2C19, ассоциированный с изменчивостью признаков, характеризующих некоторые особенности течения этих двух заболеваний. Одним из предполагаемых функциональных механизмов, лежащих в основе полученных ассоциаций, может быть участие белковых продуктов соответствующих генов в метаболизме эндогенных ксенобиотиков, в том числе многочисленных медиаторов воспалительных реакций. Актуальность продолжения исследований сравнительного характера клинически различных групп заболеваний не вызывает сомнения, поскольку полученные результаты позволяют не только приблизиться к пониманию молекулярно-генетических основ подверженности к ним, но и в дальнейшем открывают перспективы профилактики их развития.


ВЫВОДЫ:
1.                 Исследованная выборка русских жителей города Томска по частотам аллелей и генотипов полиморфных вариантов генов цитохромов Р450 — CYP2C19 (681G>A),CYP2E1(7632T>A; 1293G>C) и глутатионовых S-трансфераз – GSTT1(делеция),GSTM1 (делеция), GSTP1 (313A>G) соответствует таковым для европеоидных популяций.

2.                 Риск развития бронхиальной астмыувеличивают«нулевой» генотип гена GSTM1 и гетерозиготный генотип по полиморфизму 7632T>Aгена CYP2E1. Генотип G/Gполиморфизма 313A>Gгена GSTP1снижает риск развития туберкулеза (OR=0,43; 95%CI: 0,20-0,91; p=0,026).

3.                 «Нулевой» генотип гена GSTT1 (р=0,045) выступает в качестве фактора, определяющего легкое течение бронхиальной астмы. Для полиморфного варианта 313A>Gгена GSTP1установлена ассоциация с инфильтративной формой туберкулеза (р=0,026); гомозиготный генотип *1/*1 полиморфизма 681G>Aгена CYP2C19 преобладал у больных с распространенным процессом в легочной ткани (р=0,040).

4.                 Аллельные варианты генов ферментов метаболизма ксенобиотиков ассоциированы с «количественными фенотипами» болезней: для больных бронхиальной астмой отмечены связь полиморфизма 681G>AгенаCYP2C19с изменчивостью уровня IgE(р=0,044), делеционного полимофизма гена GSTM1с изменчивостью форсированной жизненной емкости легких (p=0,021) у женщин; у мужчин, больных туберкулезом полиморфизм гена CYP2C19 связан с некоторыми гематологическими показателями – в частности, с уровнем эритроцитов (р=0,027).

5.                 Протективное значение имеет комбинация генотипов GSTM1+ и GSTP1 G/Gв развитии бронхиальной астмы (OR=0,10; 95% CI: 0,0-0,76; p=0,018) и туберкулеза (OR=0,37; 95% CI: 0,14-0,98; p=0,045). Подверженность к астме увеличивают комбинации генотипов GSTT1+ и GSTM1 0/0 (OR=1,89; 95% CI: 1,13-3,19; р=0,015) и GSTM1 0/0 и CYP2E1 T/A(OR=3,18; 95% CI: 1,31-7,87; р=0,008), генотипическая комбинация GSTM1 0/0 и CYP2E1 T/Aобеспечивает резистентность к туберкулезу (OR=0,15; 95% CI: 0,06-0,42; р=0,000).

6.                 У больных туберкулезом легких показано статистически значимое увеличение уровня показателей печеночной функции при применении антимикобактериальных препаратов. Установлена связь полиморфизма 313A>Gгена GSTP1с изменчивостью уровня аланинаминотрансферазы (р=0,021).

7.                 Выявлены различия в структуре генетической подверженности к бронхиальной астме и туберкулезу по генам ферментативной системы метаболизма ксенобиотиков: гены GSTM1, CYP2E1и CYP2C19связаны с бронхиальной астмой и значимыми для заболевания качественными и количественными признаками, а GSTP1 и CYP2C19ассоциированы с туберкулезом и клиническими проявлениями инфекционной патологии.


ЛИТЕРАТУРА
1.                 Авербах М. М. Иммунология и иммунопатология туберкулеза. — М.: Медицина, 1976. — 311 с.

2.                 Аксенович Т.И Статистические методы генетического анализа признаков человека: Учеб. Пособие / Новосиб. гос. ун-т. Новосибирск, 2001. — 128 с.

3.                 Афанасьева И.С., Спицин В.А. Наследственный полиморфизм глутатион S-трансферазы печени человека в норме и при алкогольном гепатите // Генетика. – 1990. – Т. 26 (7). – С. 1309-1314.

4.                 Баранов В.С., Баранова Е.В., Иващенко Т.Э. и др. Геном человека и гены «предрасположенности». (Введение в предиктивную медицину).- СПб.: Интермедика, 2000.- 272 с.

5.                 Бикмаева А.Р., Сибиряк С.В., Хуснутдинова Э.К. Инсерционный полиморфизм гена CYP2E1 у больных инфильтративным туберкулезом легких в популяциях республики Башкортостан // Молекулярная биология. – 2004. – Т. 38. -№ 2. – С. 239-243.

6.                 Бикмаева А.Р., Сибиряк С.В., Хуснутдинова Э.К. Инсерционный полиморфизм гена CYP2E1 у больных инфильтративным туберкулезом легких и в популяциях республики Башкортостан // Молекулярная биология. – 2004. – Т. 38. — № 2. – С. 239-243.

7.                 Бочков Н.П., Захаров А.Ф., Иванов В.И. Медицинская гентика. – М.: Медицина, 1984. – 366 с.

8.                 Вейр Б. Анализ генетических данных: Пер. с англ. – М.: Мир, 1995. – 400 с.

9.                 Вавилин В. А., Макарова С. И., Ляхович В, В. и др. Ассоциация полиморфных ферментов биотрансформации ксенобиотиков с предрасположенностью к бронхиальной астме у детей с наследственной отягощенностью и без таковой // Генетика. – 2002. – Т. 38. — № 4. – С. 539-545.

10.            Гинтер Е.К. Популяционная генетика и медицина // Вестник РАМН. – 2001. — № 10. – С. 25-31.

11.            Гланц С. Медико-биологическая статистика. – М.: Практика, 1998. — 459 с.

12.            Глебович О. В. Диагностическая ценность исследования пунктата грудины при туберкулезе легких. — Ленинград., 1951. – 132 с.

13.            Гончарова И. А., Фрейдин М. Б., Дунаева Л. Е., Белобородова Е. В., Белобородова Э. И., Пузырев В. П. Анализ связи полиморфизма Ile50Val гена рецептора интерлейкина-4 (IL4RA) с хроническим вирусным гепатитом // Молеклярная биология. – 2005. – Т. 3. — № 3. – С. 379-384.

14.            Гриппи М.А. Патофизиология легких. – М.: Восточная книжная компания, 1997. – 344 с.

15.            Гусев В.А., Даниловская Е.В. Роль активных форм кислорода в патогенезе пневмокониозов // Вопр. мед. химии. – 1987. — № 5. – С. 9-15.

16.            Животовский Л. А. Интеграция полигенных систем в популяциях. Проблемы анализа комплекса признаков. – М.: Наука, 1984. – 183 с.

17.            Земскова З. С., Дорожкова И. Р. Скрыто протекающая туберкулезная инфекция. – М.: Медицина, 1984. – 224 с.
    продолжение
--PAGE_BREAK--
18.            Иващенко Т. Э., Сиделева О. Г., Петрова М. А. и др. Генетические факторы предрасположенности к бронхиальной астме // Генетика. – 2001. – Т. 37., № 1. – С. 107-111.

19.            Ильина Н.И. Эпидемия аллергии – в чем причины? // Консилиум-медикум. – 2001. – Приложение. – С. 3-5.

20.            Кан Е. Л. Изменения в системе крови и их диагностическое значение // Руководство по туберкулезу органов дыхания. — 1972. — С. 116—128.

21.            Крынецкий Е.Ю. Полиморфизм ферментов, участвующих в метаболизме лекарственных средств: структура генов и ферментативная активность // Молекулярная биология. – 1996. – Т.31 Выпуск 1. – 33-42.

22.            Кулинский В.И. Обезвреживание ксенобиотиков // Cоросовский образовательный журнал. – 1999. — № 1. – С. 8-12.

23.            Лакин Г. Ф. Биометрия: Учеб. Пособие для биол. Спец. ВУЗов – 4-е изд., перераб. И доп. – М.: Высш. шк., 1990. – 352 с.

24.            Лильин Е. Т., Трубников В. И., Ванюков М. М. Введение в современную фармакогенетику. – М.: Медицина, 1984. – 160 с.

25.            Литвинов В. И., Чуканова В. П., Маленко А. Ф. и др. Проблемы иммуногенетики болезней легких // Сборник трудов Центр. научн-исслед. ин-та туберкулеза. – 1983. – Т. 37. – С. 16-19.

26.            Литвинов В. И., Чуканова В. П., Поспелов Л. Е. и др. Роль иммуногенетических факторов при легочной патологии // Всесоюзный съезд фтизиаторов, 10-й. – Харьков, 1986. – С. 71-71.

27.            Ляхович В. В., Вавилин В. А., Макарова С. И. и др. Роль ферментов биотрансформации ксенобиотиков в предрасположенности к бронхиальной астме и формировании особенностей ее клинического фенотипа // Вестник РАМН. – 2000. — № 12. – С. 36-41.

28.            Ляхович В. В., Гавалов С. М., Вавилин В.А. и др. Полиморфизм генов ферментов биотрансформации ксенобиотиков и особенности бронхиальной астмы у детей // Пульмонология. – 2002. – Т. 12. — № 2. – С. 31-38.

29.            Ляхович В.В., Цырлов И.Б. Индукция ферментов метаболизма ксенобиотиков — Новосибирск: Наука, 1981. – 242 с.

30.            Маниатис Т., Фрич Э., Сэмбук Дж. Методы генетической инженерии. Молекулярное клонирование. – М.: Мир, 1984. – 480 с.

31.            Меньшиков В. В. Лабораторные методы исследования в клинике. — М.: Медицина, 1987. — 350 с.

32.            Меньщикова Е.Б., Зенков Н.К. Метаболическая активность гранулоцитов при хронических неспецифических заболеваниях легких // Терапевт. арх. – 1991. — № 11. – С 85-85.

33.            Милосердова А. И. Система крови при первичном туберкулезе и туберкулезном менингите у детей и ее изменение при химиотерапии: Автореф. дисс. … док-ра. мед. наук. — Кишенев, 1958. – 48 с.

34.            Национальная программа «Бронхиальная астма у детей. Стратегия лечения и профилактика»: — М., 1997 г. – 93 с.

35.            Огородова Л.М., Петровская Ю.А., Камалтынова Е.М. с соавт. Тяжелая бронхиальная астма у детей: факторы риска, течение // 2002. – С. 68-71.

36.            Поспелов Л. Е., Серова Л. Д., Маленко А. Ф. и др. Изучение связи распределения антигенов локуса HLA-DRи туберкулеза в различных популяциях // Пробл. туб. – 1987. — № 10. – С. 54-56.

37.            Проблемы наследственности при болезнях легких / Под ред. А. Г. Хоменко. – М.: Медицина, 1990. – 240 с.

38.            Пузырев В. П., Фрейдин М. Б., Рудко А. А., Стрелис А. К., Колоколова О. В. Анализ взаимосвязи полиморфных маркеров генов NRAMP1 и IL12p40 и туберкулеза // Медицинская генетика. – 2002. – Т. 1. — № 1. С. 44-46.

39.            Пузырев В. П., Фрейдин М. Б., Огородова Л. М., Кобякова О. С. Взаимосвязь полиморфных вариантов генов интерлейкинов и их рецепторов с атопической бронхиальной астмой // Медицинская генетика. – 2002. – Т. 1. — № 2. – С. 86-92.

40.            Пузырев В. П., Фрейдин М. Б., Рудко А. А., Стрелис А. К., Колоколова О. В. Полиморфизм генов-кандидатов подверженности к туберкулезу у славянского населения Сибири: пилотное исследование // Молекулярная биология. – 2002. – Т. 36. — № 5. – С. 788-791.

41.            Пузырев В. П., Степанов В. А., Назаренко С. А. Геномные исследования наследственной патологии и генетическое разнообразие сибирских популяций // Молекулярная биология. – 2004. – Т. 38. — № 1. – С. 129-138.

42.            Пузырев В.П. Генетика мультифакториальных заболеваний: между прошлым и будущим // Медицинская генетика. – 2003. – Т. 2. № 12. – С. 498-508.

43.            Пузырев В. П. Вольности генома и медицинская патогенетика // Бюл. Сиб. Медицины. – 2002. — Т. 2. – С. 16-29.

44.            Пузырев В. П. Феном и гены-синтропии // Генетика человека и патология: Сб. науч. трудов / Под ред. В. П. Пузырева. – Вып. 7. – Томск: Печатная мануфактура, 2004. – 296 с.

45.            Пузырев В.П., Никитин Д.Ю., Напалкова О.В. Ген NRAMP1: структура, функция и инфекционные болезни человека // Молекулярная генетика, микробиология и вирусология. – 2002. – №3. – С.34-40.

46.            Пузырев В.П., Степанов В.А. Патологическая анатомия генома // Новосибирск: «Наука». – 1997. – 224 с.

47.            Рабухин А. Е. Туберкулез органов дыхания у взрослых. — М.: Медицина, 1976. — 328 с.

48.            Радзинский А. Г. Гематологическая характеристика свежих неослажненных случаев туберкулеза легких при антибактериальной терапии // Врачебное дело. — 1961. — № 4.- С. 61-66.

49.            Райс Р. Х., Гуляева Л. Ф. Биологические эффекты токсических соединений: курс лекций / Новосиб. Гос. Ун-т. – Новосибирск. – 2003. – 208 с.

50.            Российская Научно-практическая программа «Бронхиальная астма у детей: диагностика, лечение и профилактика» Москва, 2004. – 46 с.

51.            Рудко А.А., Ондар Э.А., Фрейдин М.Б., Пузырев В.П. Генетика подверженности к туберкулезу у тувинцев // Вестник этнической медицины. – 2004. — Т.1. — №1. – С. 17-21.

52.            Сафронова О. Г., Вавилин В. А., Ляпунова А. А. Взаимосвязь между полиморфизмом гена GSTP1 и бронхиальной астмой и атопическим дерматитом // Бюл. Эксп. Биол. Мед. – 2003. – Т. 136. — № 1. – С. 73-75.

49. Сибиряк С. В. Цитокины как регуляторы цитохром Р-450 –зависимых монооксигеназ Теоретические и прикладные аспекты // Цитокины и воспаление. – 2003. — №2. – Р. 27-31.

53.            Состояние противотуберкулезной помощи неселению Сибирского и Дальневосточного Федеральных округов по итогам работы в 2003 г. / Под общей редакцией Заслуженного врача Российской Федерации д.м.н., профессора В. А. Краснова. – Новосибирск. – 2004. – 44 с.

54.            Тиунов Л.А., Головенко Н.Я., Галкин Б.Н., Баринов В.А. Биохимические механизмы токсичности окислов азота // Успехи соврем. биологии. – 1991. – Т. 111, вып. 5. – С. 738-750.

55.            Фогель Ф., Мотульски А. Генетика человека. В 3-х т./ Пер. с англ. – М.: Мир, 1990.

56.            Фрейдин М.Б., Кобякова О.С., Огородова Л.М. с соавт. Наследуемость уровня общего интерлейкина-5 и полиморфизм С-703Т гена IL5 у больных бронхиальной астмой // Бюлл. Эксп. Биол. Мед. – 2000. – Т. 129 (прил. 1). – С. 50-52.

57.            Фрейдин М.Б., Огородова Л.М., Пузырев В.П. Вклад полиморфизма генов интерлейкинов в изменчивость количественных факторов риска атопической бронхиальной астмы // Медицинская генетика. – 2003. — Т.2. -№ 3. – С. 130-135.

58.            Хоменко А. Г., Литвинов В. И., Чуканова В. П. и др. Антигены комплекса HLAу больных туберкулезом и здоровых лиц в различных популяциях // Иммунология. – 1985. — № 1. – С. 22-24.

59.            Цинзерлинг А.В., Цинзерлинг В.А. Патологическая анатомия // Учебник для педиатрических факультетов медицинских вузов. – Сотис. Санкт-Петербург. – 1996. – 369 с.

60.            Чучалин А.Г. Генетические аспекты бронхиальной астмы // Пульмунология. – 1999. — № 12. – Р. 6-10.

61.            Шайхаев Г.О. Туберкулез проблема не только социальная… // Природа. – 1999. — № 10. – С. 8-12.

62.            Шангареева З.А., Викторова Т.В., Насыров Х.М. и др. Анализ полиморфизма генов, участвующих в метаболизме этанола, у лиц с алкогольной болезнью печени // Медицинская генетики. – 2003. — Т. 2. – № 11. – С. 485-490.

63.            Шарафисламова Э.Ф., Викторова Т.В., Хуснутдинова Э.К. Полиморфизм генов глутатион S-трансфераз М1 и Р1 у больных эндометриозом из Башкортостана // Медицинская генетика. – 2003. — Т. 2. – №. 3. – С. 136-140.

64.            Шмелев Н. А. Цитологический анализ крови и его значение при туберкулезе. - М., 1959. – 140 с.

65.            Adjers K., Pessi T., Karjalainen J. et al. Epistatic effect of IL1A and IL4RA genes on the risk of atopy // J. Allergy Clin. Immunol. – 2004. – V. 113. — № 3. – P. 445-7.

66.            Al-Arif L., Affronti L. F., Goldstein R. Predposition a la tuberculose et antigenes HLA dans une population noire de Washington // Bull. Union int. contre Tuberc. – 1979. – V. 54. — № 2. – P. 151-159.

67.            Alexandrie A.K., Ingelman-sundberg M., Seidegaard J. et al Genetic susceptibility to lung cancer: a study of host factors in relation to age of onset and histological cancer types // Carcinogenesis (Lond.). – 1994. – V. 15. – P. 1785-1790.

68.            Anderson G. G., Cookson W. O. C. M. Recent advances in the genetics of allergy and asthma // Mol. Med. Today. — 1999. – V. 5. – P. 264-273.

69.            Anttila S., Luostarinen L., Hirvonen A. et al. Pulmonary expression of glutathione S-transferase M3 in lung cancer patients: assotiation with GSTM1 polymorphism, smoking, and asbestos exposure // Cancer Res. – 1995. — V. 55.– P. 3305-3309.

70.            Arai K.I., Lee F., Miyajima A. et al. Cytokines co-ordinators of immune and inflammatory responses // Ann. Rev. Biochem. – 1990. – V. 59. – P. 783-802.

71.            Awasthi S. S., Srivastava F. K., Ahmad F. et al. Interaction of glutathione S-transferase-pi with ethacrynic acid and its glutathionic conjugate // Biochem. Biophys. Acta. – 1993. – V. 1164. – P. 173-178.

72.            Baldini M., Lohman I.C., Halonen M et al. A Polymorphism in the 5’ flanking region of the CD14 levels and with total serum immunoglobulin E // Am. J. Respir. Cell Mol. Biol. – 1999. – V. 20. – P. 976 -983.

73.            Bartsch H., Nair U., Risch A. et al. Genetic polymorphism of CYP genes, alone or in combination, as a risk modifier of tobacco-related cancers // Cancer Epidemiology, Biomarkers and Prevention. – 2000. – V. 9. – P. 3-28.

74.            Beckett G.J., Hayes J.D. Glutathione S-transferases: biomedical applications // Adv. Clin. Chem. – 1993. – V. 30. – P. 281-380.

75.            Bellamy R. Identifyng genetic susceptibility factors for tuberculosis in African: a combined approach using a candidate gene study and a genome-wide screen // Clinical Science. – 2000. – V. 98. – P. 245-250.

76.            Bellamy R., Ruwende C., Corra T. et al. Variation in the NRAMP1 gene and susceptibility to tuberculosis in West Africans // The New England Journal of Medicine. – 1998. – V. 338. — № 10. – P. 640-644.

77.            Bertz R. J., Granneman G. R. Use of in vitro and in vivo date to estimate the likelihood of metabolic pharmacokinetic interactions // Clin Pharmacokinet. – 1997. – V. 32. – P. 210-258.

78.            Board P.G., Webb G.C., Coggan M. Isolation of cDNA clone and localization of the human glutathione S-transferase 3 on chromosome bands 11q13 and 12q13-14 // Ann. Hum. Genet. – 1989. – V. 53. – P. 205-213.

79.            Bornman L., Campbell S. J., Fielding K. et al. Vitamin D receptor polymorphisms and susceptibility to tuberculosis in West Africa: a case-control and family study // J. Jnfect. Dis. – 2004. — V. 190. — № 9. – P. 1631-1641.

80.            Brasch-Andersen C, Christiansen L, Tan Q.Possible gene dosage effect of glutathione-S-transferases on atopic asthma: using real-time PCR for quantification of GSTM1 and GSTT1 gene copy numbers // Hum Mutat. – 2004. – V.24. — № 3. – Р. 208-214.

81.            Brockmoller J., Cascorbi I., Kerb R. Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferase M1 and T1, microsomal epoxide hydrolase, and cytochrome P450 enzymes as modulators of bladder cancer risk // Cancer Res. – 1996. – V. 56. – P. 3915-3925.

82.            Burchard E. G., Silverman E. K., Rosenwasser L. J. et al. Assotiation between a sequence variant in the IL4 promoter and FEV(1) in asthma // Am. J. Respir. Crit. Care Med. – 1999. — № 160. – P. 919-922.

83.            Cannone-Hergaux F., Gruendheid S. et al The NRAMP1 protein and its role resistence to infection and makrophage funktion // Proc. Amer. Physicians. – 1998. – V. 111. — № 4. – P. 283-289.

84.            Carroll W.D., Lenney W., Child F. et al. Maternal glutathione S-transferase GSTP1 genotype is a specific predictor of phenotype in children with asthma //Pediatr Allergy Immunol.- 2005. — V.1. — № 16. – P. 32-39.

85.            Carter C.O. Polygenic inheritance in man // Br. Med. Bull. – 1996. – V. 25. – P. 52-57.

86.            Cervino A. C. L., Lakiss S., Sow O. et al. Allelic assotiation between the NRAMP1 gene and susceptibility to tuberculosis in Guinea-Conakry // Ann. Hum. Genet. – 2000. – V. 64. – P. 507-512.

87.            Chen H., Sandler D.P., Taylor J.A. et al. Increased risk for myelodysplastic syndromes in individuals with glutathione transferase theta 1 (GSTT1) gene defect // The lancet. – V. 347. – 1996. – P. 295-297.

88.            Chung K.F., Barnes P.J. Cytokines in asthma // Thorax. – 1999. – V. 54. – P. 825-857.

89.            Cristina E. Mapp MD, Anthony A.et al. Glutathione S-transferase GSTP1 is a susceptibility gene for occupational asthma induced by isocyanates // Environmental and Occupational Disorders. – 2002.

90.            Crump C., Chen C., Appelbaum F.R. et al. Glutathione S-transferase theta 1 gene deletion and risk of acute myeloid leukemia // Cancer Epidemiology, Biomarkers &Prevention. – V. 9. – 2000. – P. 457-460.

91.            CytochromeP450 [Электронный ресурс]. – Режим доступа: http://drnelson.utmem.edu/CytochromeP450.html/

92.            Daniels S.E., Bhattacharrya B., James A. et al. A genome-wide search for quantitative trait loci underlying asthma. // Nature. – 1996. – V. 383. – P. 247-250.

93.            De Long J.L., Chang T.M., Whang-Peng J. et al. The human liver glutathione S-transferase gene superfamily: expression and chromosome mapping of an Hb subunit cDNA // Nucleic. Acid Res. – 1988. – V. 16. – P.8541-8554.

94.            De Morais S. M. F, Wilkinson G. R., Blaisdell J. et al. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in human // J. Biol. Chem.-1994.- V. 269.- №22. — P. 15419-15422.
    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Современная аптека
Реферат Автоматизація управління трудовими ресурсами на рівні підприємства
Реферат Урок литературы "Война - жесточе нету слова" по произведениям писателей-фронтовиков о Великой Отечественной войне
Реферат Национальная политика Австрии
Реферат Джеймс Фенимор Купер. Пионеры, или У истоков Саскуиханны
Реферат Новосибирск 7-8 апреля 2011 года Съезд. 7 апреля, четверг Место проведения: конференц зал Сиб агс, ул. Нижегородская, 6 (М «Октябрьская»)
Реферат Проект реконструкции моторного участка с разработкой технологического процесса на восстановление
Реферат Смутное время на Руси.
Реферат Файлові системи і бази даних Потреби інформаційних систем
Реферат Конспект лекций Технологии обработки данных
Реферат Заточка, Титков
Реферат Режим "санації" в Польщі: витоки і наслідки
Реферат Этика PR-специалиста в работе со СМИ
Реферат Право обвиняемого на защиту и его соотношение с презумпцией невиновности
Реферат 1 Постановка задачи