Реферат по предмету "Коммуникации и связь"


Цифровые измерительные приборы

СОДЕРЖАНИЕ

ПРИНЦИПЫ ПОСТРОЕНИЯ И ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИЗМЕРИТЕЛЬНЫХ

ПРИБОРОВ……………………………………………………………….2

СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА АНАЛОГОВЫХ И ЦИФРОВЫХ ПРИБОРОВ……………………………………………….8




ПОСТРОЕНИЕ ЦИВРОВЫХ ЭЛЕКТРОННЫХ ВОЛЬТМЕТРОВ, ЧАСТОТОМЕРОВ И ФАЗОМЕТРОВ. ПРИМЕНЕНИЕ МЕТОДА ДИСКРЕТНОГО СЧЕТА………………………………………………..10




ПРИМЕР СОВРЕМЕННОГО ЦИФРОВОГО ИЗМЕРИТЕЛЬНОГО ПРИБОРА. ЦИФРОВОЙ ИЗМЕРИТЕЛЬ НЕЛИНЕЙНЫХ ИСКАЖЕНИЙ СК6-13………………………………………………….25




СПИСОК ЛИТЕРАТУРЫ………………………………………………30


1. ПРИНЦИПЫ ПОСТРОЕНИЯ И ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЦИФРОВЫХ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ
Цифровой измерительный прибор (ЦИП) — средство измерений, автоматически вырабатывающее сигналы измерительной информации в цифровой форме. Цифровой измерительный прибор имеет ряд преи­муществ перед аналоговыми приборами: удобство отсчитывания зна­чений измеряемой величины, возможность полной автоматизации про­цесса измерений, регистрация результатов измерения с помощью циф- ропечатающих устройств и перфораторов. Поскольку результат измере­ния в ЦИП выражен в цифровом коде, измерительную информацию можно вводить в цифровую ЭВМ.

В ЦИП происходит преобразование непрерывной измеряемой вели­чины в цифровой код. Осуществляется этот процесс с помощью ана­лого-цифрового преобразователя (АЦП), в котором сигнал измеритель­ной информации подвергается дискретизации, квантованию и кодиро­ванию.

Дискретизация, т. е. процесс преобразования непрерывного сигна­ла измерительной информации в дискретный, может осуществляться как по времени, так и по уровню. Дискретизация по времени выпол­няется путем взятия отсчетов сигнала X(t) в определенные детермини­рованные моменты времени. Таким образом, от сигнала измеритель­ной информации сохраняется только совокупность отдельных значе­ний. Промежуток времени между двумя моментами дискретизации называют шагом дискретизации. Обычно моменты отсчетов на оси времени выбираются равномерно, т. е. шаг дискретизации по­стоянен.

Дискретизация значений измерительного сигнала по уровню но­сит название квантования. Операция квантования сводится к тому, что непрерывная по времени и амплитуде величина заменяется бли­жайшим фиксированным значением по установленной шкале дискрет­ных уровней. Эти дискретные (разрешенные) уровни образованы по оп­ределенному закону с помощью мер. Разность />между двумя раз­решенными уровнями называют интервалом (шагом или ступенью) квантования. Интервал квантования может быть как постоянным, так и переменным. Временная дискретизация измерительного сигнала имеет смысл, когда его величина изменяется во времени. Если измери­тельный сигнал постоянен, достаточно осуществить квантование. Осо­бым случаем является измерение времени (временного интервала).Процесс дискретизации здесь теряет смысл, и осуществляется кванто­вание самого времени.

Следующим преобразованием измерительного сигнала, является кодирование. Цифровым кодом называется последовательность цифр или сигналов, подчиняющаяся определенному закону, с помощью ко­торой осуществляется ус­ловное представление чис­ленного значения величи­ны. Графически описан­ные преобразования пояс­няются на рис. 1.1. Исход­ный измерительный сигнал X(t) (рис. 4.1, а) представ­ляет собой непрерывную функцию времени. Дискре­тизация выполняется с ин­тервалом />. Моменты ди­скретизации отмечены на рис. 1.1, а цифрами1…9. Практически такую дискретизацию можно осу­ществить путем амплитуд­ной модуляции исходным сигналом X(t) последова­тельности коротких им­пульсов с периодом />. Как видно из рис. 1.1,б, значе­ния сигнала />полу­ченные после дискретиза­ции, точно соответствуют мгновенным значениям функции X(t). Если на том же рисунке отметить уровни квантования, рас­положенные друг от друга на расстоянии />, то часть дискретных значений сигнала окажется в проме­жутках между ними. Про­цесс квантования по уровню сводится к округлению дискретных значений сигнала до значений, соответствующих ближайшим разре­шенным уровням. Так, в момент 1 мгновенное значение сигнала превышает уровень Х3 на величину, несколько меньшую />(рис. 1.1,б). Округление производится в сторону уменьшения, и кван­тованное значение выбирается равным Х3. В момент2 значение сиг­нала превышает уровень Х4 на величину, большую чем />. Квантованное значение принимается равным Х5 (рис. 1.1,в). Последний этап заключается в преобразовании квантованного сигнала />в цифровой код. На рис. 1.1,г представлен для примера цифровойунитарный код />, соответствующий значениям квантованного сигнала. При таком способе кодирования число импульсов в кодовой группе прямо пропорционально уровню квантованного сигнала. На­пример, отсчету 7 соответствует уровень квантования Х6, и в кодо­вой группе n7 содержится шесть импульсов.

/>

Рис. 1.1.
Из рис. 1.1 ясно, что при дискретизации и квантовании сигнала возникает погрешность преобразования. Непрерывная функция X(t) анализируется только в моменты дискретизации. На интервале />меж­ду двумя отсчетными точками сигнал предполагается неизменным. Уменьшением интервала />, т. е. сближением отсчетных точек можно добиться снижения погрешности до допустимой величины. При изме­рении постоянных величин погрешность преобразования, связанная с дискретизацией, равна нулю. Погрешность, возникающая при кван­товании непрерывной измеряемой величины, обусловлена конечным числом уровней квантования. Эта погрешность характерна для всех ЦИП, она носит название погрешности дискретности />. При равно­мерном квантовании погрешность />находится в пределах />.

Следующий этап преобразований в ЦИП заключается в превраще­нии цифрового кода в показания цифрового отсчетного устройства. Для этого необходим дешифратор, который превращает кодовые груп­пы в соответствующие напряжения, управляющие работой цифрового индикатора.

Рассмотренная последовательность преобразований, осуществляе­мая в аналого-цифровом преобразователе (АЦП), дешифраторе и циф­ровом индикаторе, конечно дает упрощенное представление о работе ЦИП. Примером может служить случай измерения постоянной вели­чины. Для этого достаточно одного цикла преобразований, в резуль­тате которого получится кодовая группа. Но кодовая группа это «па­кет» импульсов, передаваемый в течение короткого интервала време­ни. Результат измерений должен сохраняться на экране достаточно долго, например до следующего цикла. Поэтому в состав ЦИП долж­но входить запоминающее устройство (ЗУ).

Пере­числим возможные режимы работы ЦИП и их характеристики.

Режим однократного измерения. Этот режим удобен, когда изме­ряемый параметр постоянен. Команда на проведение измерения подает­ся оператором, результат измерения хранится в запоминающем уст­ройстве и воспроизводится на цифровом индикаторе. В ЦИП осуще­ствляется квантование измерительного сигнала и его кодирование.

Режим периодического измерения. Процесс измерения повторяет­ся периодически через интервал />, установленный оператором. В ЦИП осуществляются операции дискретизации, квантования и коди­рования. После каждого цикла измерения результат на экране циф­рового индикатора обновляется.

Следящий режим измерения. Цикл измерения повторяется, после того как изменение измеряемой величины превысит ступень кванто­вания.
Помимо погрешности измерения, к числу важных характеристик ЦИП относится его быстродействие, время измерения и помехоустой­чивость. Под быстродействием ЦИП понимается максимальное число измерений, выполняемых в единицу времени с нормированной погреш­ностью. Время измерения — интервал от начала цикла преобразова­ния измеряемой величины до получения результата. Под помехоустой­чивостью понимают способность ЦИП с нормированной погрешностью производить измерения при наличии помех.

Быстродействие ЦИП очень высокое. Современная элементная база позволяет строить ЦИП, обеспечивающие до 107 преобразований в секунду. Это, однако, оказывается излишним, поскольку регистри­рующие устройства обеспечивают фиксацию не более 100 результатов измерений в секунду. При визуальном наблюдении требования к быст­родействию резко снижаются, поскольку оператор способен оценить не более 2—3 результатов измерений в секунду.

Основные технические характеристики ЦИП:

1) номинальная статическая характеристика преобразования;

2) диапазон измерений;

3) вид кода, применяемого в АЦП, количество разрядов, вес единицы младшего разряда кода;

4) разрешающая способность, характеризующаяся количеством уровней квантования;

5) входное сопротивление;

6) быстродействие;

7) помехоустойчивость – способность ЦИП выполнять свои функции в условиях воздействия помех, численно характеризуется коэффициентом подавления помех на входе ИП;

8) время измерения – интервал времени от момента начала цикла преобразования измеряемой физической величины до момента высвечивания показания на табло;

9) погрешности. Нормируются 4 основных составляющих погрешности:

— погрешность дискретизации;

— погрешность реализации уровней квантования;

— погрешность сравнения;

— погрешность от воздействия помех.

Первая относится к методическим погрешностям, остальные – к инструментальным и обусловлены технической реализацией ИП;

10) класс точности. Обычно в ЦИП для установления класса точности нормируется относительная погрешность, рассчитываемая по так называемой «двухчленной формуле»:

/>,

где /> — относительная погрешность;

/> — числа, выбираемые из того же ряда, что и класс точности;

/> — конечное значение установленного предела излучения;

/> — измеряемое значение ФВ.

Класс точности обозначается />.


2. СРАВНИТЕЛЬНАЯ ХАРАКТЕРИСТИКА АНАЛОГОВЫХ И ЦИФРОВЫХ ПРИБОРОВ
Не следует считать, что ЦИП в будущем полностью вытес­няет аналоговые приборы. Аналоговые приборы просты и надежны. В тех случаях, когда оператору необходимо следить за уровнями из­меняющихся во времени сигналов, стрелочные указатели более удобны из-за наглядности представления об изменениях величины, о ее мини­мальном значении, приближении к порогу и т. п.

По результатам, полученным на основе опыта производства и эксплуатации аналоговых и цифровых приборов, можно обобщенно сравнить аналоговые и цифровые приборы в координатах «точность» и «быстродействие», «стоимость» и «сложность».

Каждый аналоговый и цифровой прибор можно изобразить одной точкой на плоскости в координатах «точность» и «быстродействие», а затем полосы, заполненные точками, сжать в обобщенные кривые, представленные на рис. 2.1.
/>

Рис. 2.1. Сравнение аналоговых и цифровых измерительных устройств
На основе полученных зависимостей можно сделать следующие выводы. В области средней и высокой точности цифровые приборы имеют значительно более высокое быстродействие, чем аналоговые, а в области наиболее высокого быстродействия более высокую точность имеют аналоговые приборы (рис. 2.1, а). Большая часть цифровых приборов имеет высокое быстродействие, но их возможная точность в этой области резко уменьшается, так как дальнейшее увеличение быстродействия после использования самых быстродействующих ключей возможно путем уменьшения числа ступеней квантования по значению, т.е. снижением точности. Точность аналоговых приборов с повышением быстродействия также уменьшается, но с определенного значения более медленно, чем у цифровых. Это объясняется использованием в аналоговых приборах с наиболее высоким быстродействием в качестве выходной величины перемещения почти безынерционного луча.

Если аналогичное изображение совокупности всех цифровых и аналоговых измерительных приборов представить в координатах стоимости прибора и сложности решаемой измерительной задачи, то получим кривые, представленные на рис. 2.1, б. Анализируя их можно прийти к следующим выводам:

менее сложные измерительные задачи с меньшими затратами решаются аналоговыми приборами;

более сложные измерительные задачи, например задачи измерительно-информационных систем, обрабатывающих результаты измерения по сложной программе, с меньшими затратами решаются автоматически цифровыми измерительными устройствами;

при повышении быстродействия элементов цифровых приборов точка пересечения кривых в координатах «точность» и «быстродействие» сдвигается вправо, расширяя зону, в которой более совершенны цифровые приборы;

применение микропроцессоров, позволяющее уменьшить число корпусов микросхем в ЦИП, снижает их стоимость. Это приводит к сдвигу точки пересечения кривых в координатах «стоимость» и «сложность» влево, что еще в большей степени расширяет зону, в которой более экономичны цифровые измерительные приборы.

3. ПОСТРОЕНИЕ ЦИВРОВЫХ ЭЛЕКТРОННЫХ ВОЛЬТМЕТРОВ, ЧАСТОТОМЕРОВ И ФАЗОМЕТРОВ. ПРИМЕНЕНИЕ МЕТОДА ДИСКРЕТНОГО СЧЕТА
Преобразовать значение измеряемой величины во времен­ной интервал можно с помощью вспомогательного пилообразного напряжения. На рис. 3.1,а показа­на постоянная измеряемая величина/>и вспомогательное линейно нарастающее напряжение/>. В момент />значение пилообраз­ного напряжения оказывается равным нулю, что служит командой для формирователя стробирующих импульсов, который начинает вырабатывать импульс прямоугольной формы (рис. 3.1, б). В момент/>линейно нарастающее напряжение достигает значения/>. В этотмомент вырабатывается команда на окончание импульса, и напряже­ние на выходе генератора/>уменьшается до нуля. Сигналы команд вырабатываются в сравнивающем устройстве, которое имеет два входа(/>и />). Когда/>на выходе сравнивающего устройствапоявляетсяимпульс.

/>

Рис. 3.1.

Таким образом, измеряемая величинаи
х преобразуется во времен­ной интервал ТХ1 при этом сохраняется линейная зависимость между Тх ии
х
. Нетрудно убедиться из рис. 4.2, а, что если изменить значе­ниеи
х
, например, в сторону уменьшения, становится меньше и дли­тельность сформированного импульса.

Следующий этап преобразования заключается в превращении вре­менного интервала в код. Для этого служат счетные импульсыи
сч (рис.3.1, б), следующие с периодомТ
сч
. Этими импульсами заполняет­ся временной интервал Тх. Выполнить эту операцию можно с по­мощью стробирующего устройства, пропускающего счетные импульсы на свой вход, когда на один из его входов поступает разрешающий сигнал. В качестве разрешающего (стробирующего) сигнала использует­ся прямоугольный импульс длительностьюТ
х
. На выходе стробирую­щего устройства получаем группу изN счетных импульсов. Число импульсовN
=
Т
х

сч, т.е. имеется линейная связь между числом им­пульсов и временным интерваломТ
х
. Сигнал икод (рис. 3.1,г) является унитарным кодом измеряемой величины.

Действительно, как следует из рис. 3.1, а,/>. Значение />есть скорость нарастания напряжения, В/с. Следо­вательно />. Так как/>, имеем:

/>

Из последней формулы видно, что при постоянных значенияхТ
сч и
v число импульсов N пропорционально измеряемой величинеи
х и, следовательно, сигнал, показанный на рис. 3.1, г, является ее унитарным кодом. Так как уни­тарный код имеет недостатки, следующим этапом преобразований является перекодирование, т. е. превращение унитар­ного кода в другой код, например двоично-десятичный. Перекодиро­вание можно осуществить достаточно просто с помощью счетчика импульсов.

Структурная схема АЦП с времяимпульсным преобразованием изоб­ражена на рис. 3.2. Генератор счетных импульсов является мерой. Ста­бильность частоты />обеспечивается кварцевым генератором. Счет­ные импульсы поступают на сравнивающее устройство. Сравниваю­щее устройство вырабатывает команды в моменты />и />, на основе ко­торых в формирователе стробирующих импульсов вырабатывается сиг­нал, управляющий стробирующей схемой. С выхода стробирующей схемы импульсы поступают на счетчик. Устройство управления выра­батывает сигналы, управляющие генератором пилообразного напря­жения />и счетчиком.

/>

Рис. 3.2. Структурная схема АЦП с времяимпульсным преобразованием
Построение цифровых электронных вольтметров
По рассмотренному методу строятся вольтметры с времяимпульсным преобразованием. Принцип действия таких вольтметров основан на том, что измеряемое напряжение преобразуется в интервал времени, длительность которого измеряется методом дискретного счёта.

/>

Рис. 3.3. Структурная схема вольтметра с времяимпульсным преобразованием

УС – устройство сравнения; ФИ – формирователь импульсов; ВС – временной селектор; СИ – счётчик импульсов; ЦОУ – цифровое отсчётное устройство; ГПН – генератор пилообразного напряжения.
Измерения происходят циклами, задаваемыми узлом управления.

Источники основных погрешностей:

1) нелинейность пилообразного напряжения и нестабильность скорости его нарастания;

2) нестабильность частоты следования счётных импульсов;

3) нестабильность порогов срабатывания компаратора;

4) конечное быстродействие формирователя импульсов;

5) наличие методической погрешности дискретности.

Основным достоинством таких вольтметров является простота реализации, а недостатками то, что вольтметры реагируют на мгновенное значение напряжения, поэтому у них низкая помехоустойчивость. На входе ставят пассивные помехоподавляющие фильтры. Однако из-за этого снижается быстродействие.

От указанных недостатков свободны интегрирующие ЦЭВ. Еще их называют вольтметрами с интегрированием «вверх-вниз», вольтметры с двойным времяимпульсным преобразованием.

/>

Рис. 3.4. Структурная схема вольтметра с двойным времяимпульсным преобразованием

ИОН – источник опорного напряжения; И – интегратор.

/>

Рис. 3.5. Принцип действия вольтметра с двойным времяимпульсным преобразованием
Устройство управления вырабатывает тактовые импульсы с неизменной />и обеспечивает нужное состояние компаратора, коммутатора и счётчика импульсов. При этом в течение длительности тактового импульса на первый вход коммутатора поступает постоянное измеряемое напряжение. Через коммутатор напряжение поступает на интегратор, напряжение на выходе которого определяется как />.

/>

Рис. 3.6.

На выходе интегратора напряжение нарастает. Этот участок называется интегрирование «вверх». В момент окончания тактового импульса состояние коммутатора изменяется на противоположное, а на вход интегратора поступает опорное напряжение, имеющее противоположную полярность. Этот участок называется интегрирование «вниз».

Простейший способ реализации источника опорного напряжения:
/>

Рис. 3.7.
1) в конце интервала времени />:

/>;

2) в конце интервала времени />:

/>;

3) в момент времени />:

/>;

/>;

/>.

Измеряемое напряжение, с точностью до константы, равно количеству счётных импульсов.

Основные погрешности:

1) погрешность дискретности;

2) погрешность преобразования, которая обусловлена нестабильностью тактовых импульсов и напряжения источника опорного напряжения;

3) погрешность сравнения, обусловленная нестабильностью порога срабатывания компаратора;

Основными достоинствами таких вольтметров являются высокая помехоустойчивость и высокая чувствительность (0.1 мкВ).

Основные недостатки – сложность схемной реализации и обеспечения заданной стабильности заданного напряжения, длительности импульса.

Для уменьшения погрешности дискретности тактовые импульсы формируют из счётных путём деления частоты.
Построение цифровых частотомеров
В измерительной технике наиболее точно измеряется частота. На сегодняшний день наиболее распространённым методом измерения частоты является метод дискретного счёта. При этом измеряемая частота сигнала />сравнивается с дискретным значением образцовой частоты />, которая воспроизводится мерой.

/>

Рис. 3.8.
Результат сравнения – число />или кратность сравниваемых частот:

/>;

/>.

Необходимые узлы для аппаратурной реализации:

формирователь импульсов;

устройство, вырабатывающее сигнал образцовой частоты (задающий генератор);

устройство, формирующее импульсы длительностью />(строб-импульсы или «временные ворота»);

устройство, сравнивающее строб-импульсы с периодом следования сигнала измеряемой частоты.

/>

Рис. 3.9.

ВхУ – входное устройство, ФИ – формирователь импульсов, ВС – временной селектор, СИ – счётчик импульсов, ЦОУ – цифровое отсчётное устройство, ЗГ – задающий генератор, ДЧ – делитель частоты, ГМВ – генератор меток времени, УУ – устройство управления.
ВхУ преобразует сигнал по уровню, обеспечивая нормальное функционирование ФИ, который преобразует входной сигнал произвольной формы в последовательность коротких однополярных импульсов одинаковой амплитуды, следующих с частотой />. С выхода ФИ сигнал поступает на один из входов ВС, на другой вход которого подаётся строб-импульс образцовой частоты длительностью />. Строб-импульс формируется из сигнала, вырабатываемого ЗГ, который представляет собой кварцевый генератор опорной частоты, с помощью делителя частоты. ДЧ представляет собой набор делителей частоты, на выходе которых обычно формируются сигналы с частотами 100 кГц, 10 кГц, 1 кГц и т.д., которые определяют соответствующие длительности строб-импульсов («временных ворот»). ЗГ вместе с ДЧ принято называть генератором меток времени (ГМВ), а длительность «временных ворот» – временем измерения.
/>

Рис. 3.10.
СИ подсчитывает количество импульсов с частотой, равной измеряемой, которые прошли через ВС за интервал времени />.

Основными источниками погрешности при измерении частоты электронно-счётным частотомером являются:

— погрешность меры, где функцию меры выполняет ЗГ. Под погрешностью меры понимают нестабильность частоты ЗГ. С целью уменьшения этой погрешности, ЗГ выполняется в виде кварцевых генераторов импульсов, кроме того, ЗГ размещают в термостате. Такие меры позволяют иметь суточную погрешность (нестабильность частоты) до />.

— погрешность дискретности, которая обусловлена несинхронностью двух сигналов: измеряемого и вырабатываемого ЗГ. Наличие этой несинхронности приводит к тому, что в отрезке длительностью />укладывается нецелое число периодов измеряемой частоты />.

В соответствии с принципом действия:

/>;

/>.

Из этих соотношений следует, что:

/>,

где /> — количество импульсов на выходе ВС или кратность частот.

Обычно метки времени формируют из сигнала, вырабатываемого ЗГ, путём деления частоты. Тогда с учётом коэффициента деления частоты />имеем:

/>,

где /> — частота сигнала, вырабатываемого ЗГ.

Таким образом, с точностью до константы />измеряемая частота равна частоте ЗГ.

Из вышесказанного следует, что максимальная абсолютная погрешность дискретности:

/>,

а наибольшая относительная погрешность дискретности:

/>.

Из этих формул следует:

— чем меньше />, тем больше относительная погрешность дискретности;

— чем больше частота ЗГ, тем больше относительная погрешность дискретности.

Существует несколько путей уменьшения погрешности дискретности:

увеличение кратности частот />, т.е. уменьшение />с помощью умножителя частоты измеряемого сигнала. Это приводит к аппаратурному усложнению частотомера, т.к. необходимо увеличение количества разрядов СИ;

увеличение длительности />, что тоже неудобно, т.к. />определяет время измерения частотомера.

Поэтому на НЧ измеряют не частоту, а период колебаний сигнала.

Электронно-счётный частотомер представляет собой многофункциональный прибор, позволяющий измерять частоту, период, длительность импульса, кратность частот.
Построение цифровых фазометров
Приборы для измерения фазового сдвига называются фазометрами.

Фазовый сдвиг – модуль разности начальных фаз гармонических сигналов одинаковой частоты.

Широкое распространение получили фазометры, построенные на основе метода дискретного счёта, в связи с чем, рассмотрим метод преобразования фазового сдвига в интервал времени.

Исследуемые сигналы преобразуются в последовательность коротких импульсов, например, эти импульсы формируются в моменты перехода напряжения сигнала через «нуль» (когда производные имеют одинаковый знак). Интервалы времени между двумя ближайшими короткими импульсами пропорциональны фазовому сдвигу:

/>;

/>.
/>

Рис. 3.11.
Для уменьшения влияния помех на результат измерения, измеряют не мгновенное, а среднее значение фазового сдвига, для чего необходим формирователь длительности времени измерения />, т.е. «временных ворот».
/>

Рис. 3.12.
/>

Рис. 3.13. Аппаратурная реализация электронно-счётного фазометра

ВхУ – входное устройство, ФИ – формирователь импульсов, УУ – устройство управления, ВС – временной селектор, ГСИ – генератор счётных импульсов, СИ – счётчик импульсов, ЦОУ – цифровое отсчётное устройство.
Исследуемые сигналы в виде напряжений />и />(одинаковой частоты) через входные устройства ВхУ1 и ВхУ2 поступают на формирователи импульсов ФИ, назначение которых – преобразовать входные сигналы в последовательности коротких импульсов в определённые моменты времени. Сформированные импульсы поступают на вход УУ, на выходе которого формируются импульсы длительностью />, по форме близкие к прямоугольным; эти импульсы поступают на один вход временного селектора ВС, на другой вход поступает сигнал с выхода генератора счётных импульсов ГСИ; счётчик СИ подсчитывает количество импульсов, прошедших через ВС за время />.

Такая аппаратурная реализация используется для измерения мгновенных значений сдвига фаз.

Основным недостатком таких устройств является подверженность влиянию помех, в результате чего фазовые сдвиги изменяются случайным образом, поэтому чаще используются фазометры, измеряющие средние значения фазовых сдвигов за определённый интервал времени.
/>

Рис. 3.13. Структурная схема фазометров, измеряющих средние значения фазовых сдвигов за определённый интервал времени.
ВхУ – входное устройство, ФИ – формирователь импульсов, УУ – устройство управления, ВС – временной селектор, ГСИ – генератор счётных импульсов, ДЧ – делитель частоты, СИ – счётчик импульсов, ЦОУ – цифровое отсчётное устройство.
Для построения таких фазометров добавляют ВС2, на один вход которого подаётся строб-импульс. Длительность интервала времени измерений задают так, чтобы />, где /> — период исследуемого сигнала, /> — количество пачек счётных импульсов. СИ подсчитывает количество импульсов />, поступивших на его вход за интервал времени />.

/>;

/>;

/>,

где />, />. Тогда с точностью до константы />.

Основные источники погрешностей:

несинхронность во времени исследуемых сигналов и счётных импульсов, что приводит к появлению погрешности дискретности, для уменьшения которой в электронно-счётных фазометрах счётные импульсы формируют из одного из исследуемых сигналов />или />путём умножения частоты;

погрешность, обусловленная неточным определением момента перехода сигналов через нуль. В связи с этим, большое значение имеет отсутствие искажений формы исследуемых сигналов.

4. ПРИМЕР СОВРЕМЕННОГО ЦИФРОВОГО ИЗМЕРИТЕЛЬНОГО ПРИБОРА. ЦИФРОВОЙ ИЗМЕРИТЕЛЬ НЕЛИНЕЙНЫХ ИСКАЖЕНИЙ СК6-13
/>

Рис. 4.1. Внешний вид цифрового измерителя нелинейных искажений СК6-13
Автоматизированный цифровой прибор СК6-13 предназначен для измерения коэффициента гармоник при работе со встроенным генератором и среднеквадратического значения напряжения. Измеритель СК6-13 состоит из измерителянелинейных искажений и перестраиваемого синхронно с ним генератора, чтопозволяет повысить производительность измерений при сокращении необходимых измерительных средств. Прибор СК6-13 обеспечивает автоматическое иручное переключение пределов измерения, возможность запоминания значенийчастоты и напряжения генератора, вывод результата измерения на печать.
Основные технические характеристики прибора СК6-13

Диапазон рабочих частот: при измерений коэффициента гармоник –10 Гц – 120 кГц; при измерении напряжения – 10 Гц – 600 кГц;

Диапазон измерения коэффициента гармоник (для входных напряжений0.1… 100 В) 0,003-100% на пределах 0.01, 0.1, 1, 10, 100%;

Диапазон измерения среднеквадратического значения напряжения синусоидальной и искаженной формы (с КГ не более 30%) — 100 мкВ ...100 В на пределах 1, 10, 100 мВ;

1, 10, 100 В в частотном диапазоне10 Гц… 600 кГц;

Входное сопротивление прибора 15 кОм в режиме измерения КГ и неменее 500 кОм в режиме измерения напряжения;

Диапазон установки напряжения встроенного генератора – 1 мВ…9.99В, выходное сопротивление Rвых=600 Ом. Для напряжений 1…99.9 мВ (со встроенным делителем) Rвых не более 10 Ом.

Метрологические параметры прибора

Основная относительная погрешность измерения коэффициентагармоник />[%];

Основная погрешность измерения напряжения />[В];

Погрешность установки частоты встроенного генератора ±0.01f, напряжения />[В];

Коэффициент гармоник встроенного генератора составляет 0.002…0.004% в диапазоне частот 100 Гц…20 кГц и не хуже 0.02% в диапазоне 20…120 кГц.

Прибор позволяет вывести результат измерения в двоично-десятичном коде 8-4-2-1 на разъем принтера.Прибор состоит из трех блоков – измерителя, генератора и микропроцессорной системы (рис. 4.2).
/>

Рис. 4.2. Структурная схема измерителя нелинейных искаженийСК6-13
В режиме измерения коэффициента гармоник «/>»сигнал со входа измерителя поступает на масштабный усилитель-компрессор. Он ограничивает динамический диапазон сигнала с 60 до 6 дБ – то есть при изменении уровня входного сигнала от 0,1 до 100 В уровень выходного сигнала усилителя поддерживается в пределах 0,85...2,25 В. Это упрощает работу блоков фильтрации и цифрового вольтметра и снижает искажения, вносимые самим прибором.

Далее сигнал поступает на вход режекторного фильтра, построенного на основе трех RC-звеньев с коммутацией резистивных и емкостных матриц.

Этот фильтр удаляет (вычитает) из сигнала первую гармонику, оставляя высшие гармоники без изменения. Настройка режекторного фильтра производится микропроцессором тем же кодом, что и перестройка генератора. Тем самым обеспечивается точная настройка фильтра на частоту входного сигнала.

С выхода фильтра сигнал, представляющий собой сумму высших гармоник, подается на цифровой вольтметр. В его составе находится переключатель диапазонов измерения, преобразователь (детектор) среднеквадратического значения и аналого-цифровой преобразователь (АЦП). В приборе использован квадратичный детектор на сборке полевых транзисторов. Постоянное напряжение после детектора преобразуется АЦП двойного интегрирования в цифровой код.

Для вычисления коэффициента гармоник, согласно формуле:

/>

требуется сигнал суммы высших гармоник нормировать к уровню первой гармоники. Для этого в приборе предусмотрен блок выделения сигнала первой гармоники. Это полосовой фильтр и линейный детектор- выпрямитель. Постоянное напряжение, пропорциональное уровню первой гармоники, подается в качестве опорного на АЦП цифрового вольтметра. При этом АЦП вырабатывает код, равный отношению среднеквадратической суммы высших гармоник к уровню первой гармоники, как и полагается по формуле.

В режиме измерения напряжения «V» входной сигнал подается непосредственно на вольтметр. В качестве опорного в АЦП используется его собственный образцовый источник постоянного напряжения.

Генератор прибора представляет собой функциональный генератор с цифровым управлением. Он содержит два интегратора и суммирующий усилитель. Частота генератора регулируется переключением матрицы конденсаторов и резистивной матрицы делителя напряжения. Уровень выходного напряжения стабилизирован по амплитуде. К выходу функционального генератора подключен дискретный аттенюатор с цифровым управлением. Для получения малых значений выходного напряжения (до 100 мВ) предусмотрен дополнительный делитель напряжения 1:100, включаемый вручную тумблером на передней панели.

Управляющая часть прибора представляет собой цифровой блок, реализующий:

прием и обработку команд с клавиш управления прибором;

управление работой цифрового вольтметра;

перестройку частоты генератора и режектроного фильтра;

запоминание 9 значений частоты и уровня сигнала генератора (режим ПАМЯТЬ);

переключение пределов измерения в ручном или автоматическом режимах;

индикацию результатов измерения на цифровом табло.

5. СПИСОК ЛИТЕРАТУРЫ

Атамалян Э. Г. Приборы и методы измерения электрических величин. М.: Высш. шк., 1986.

Б.П. Хромой, Ю.Г. Моисеев. Электрорадиоизмерения: Учебник для техникумов. – М.: Радио и связь, 1985 – 288 с.

Измерения на звуковых и ультразвуковых частотах. Курс лекций для студентов специальностей 7.091201 ”Акустические средства и системы”, 7.091202 ”Медицинские акустические и биоакустические приборы и аппараты”/ Сост. А. И. Бахин, И. С. Бачинская. – К.: НТУУ “КПИ”, 2008 – 124с.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.