Узнать стоимость написания работы
Оставьте заявку, и в течение 5 минут на почту вам станут поступать предложения!
Реферат

Реферат по предмету "Коммуникации и связь"


Акустические и капиллярные методы контроля РЭСИ Электролиз пузырьковый метод

Министерство образования Республики Беларусь
Белорусский государственный университет информатики и
радиоэлектроники
кафедра РЭС
РЕФЕРАТ
на тему:
«Акустические и капиллярные методы контроля РЭСИ. Электролиз (пузырьковый метод)»
МИНСК, 2008
Акустические методы
Акустические методы основаны на применении колебаний звукового и ульт­развукового диапазонов от 50 Гц до 50 МГц.
В ГОСТ 238229 приводится подробная классификация акустических методов и приборов неразрушающего контроля материалов и изделий. Наиболее широ­кое применение в настоящее время получила ультразвуковая дефектоскопия и в частности методы: прошедшего излучения (теневой метод), резонансного и от­раженного излучения (эхо-метод).
Метод прошедшего излучения (теневой метод) заключается в том, (см. рис. 1, а) что с одной стороны контролируемого изделия (8) при помощи излучателя (6) вводят ультразвуковые колебания (УЗК), а с другой стороны — при помощи приемника (7) регистрируют интенсивность прошедших колебаний. При посто­янной толщине и однородном материале контролируемого изделия уровень ин­тенсивности УЗК, падающих на приемник, почти постоянен, а показания инди­катора будут незначительно колебаться около некоторого определенного значе­ния, которое принимают за исходное.
Если на пути УЗК встречается дефект, то часть ультразвуковой энергии отра­зится от него и интенсивность колебаний, падающих на приемник, резко умень­шится, т. е. на головку приемника падает тень от дефекта. Для применения теневого метода необходим двусторонний доступ к контролируемому изделию, что является недостатком метода.
Резонансный метод ультразвукового контроля (рис.1,6) основан на возбуж­дении в объекте стоячих волн, возникающих в результате интерференции вво­димых в объект упругих колебаний и колебаний, отраженных от раздела «объект-воздух» или другой среды. Это возможно при условии получения резонанса вслед­ствие совпадения собственной частоты объекта и частоты возбуждаемых в нем упругих колебаний. Момент достижения резонанса фиксируют по импульсам на экране блока регистрации резонансов (4).
Данный метод применяют в основном для измерения толщины изделий с од­носторонним доступом, а также для выявления неоднородностей в биметаллах, расслоений в многослойных изделиях и зонах межкристаллической коррозии.
Эхо-метод ультразвуковой дефектоскопии получил наиболее широкое при­менение. Он основан на введении в контролируемый объект при помощи излу­чателя (1) (рис.3.3, в) коротких импульсов УЗК и регистрации (блоком индика­ций) интенсивности и продолжительности прихода эхо-сигналов, отряженных
/>/>
/>
Рисунок 1 – Схемы ультразвукового контроля
а – метод прошедшего излучения (теневой); б – резонансный метод; в – эхо-метод; 1 – блок генератора; 2 – блок усилителя; 3 – блок индикатора;
4 – блок регистрации резонансов; 5 – демпфер;
6 – излу­чатель; 7 – демпфер приемной головки;
8 – контролируемый объект;
9 – дефект.
от дефектов. УЗК, встречающие на своем пути дефекты (поры, расслоения, тре­щины, структурную неоднородность и т.д.), частично отражаются и в виде эха попадают обратно на головку излучателя. Остальная часть колебаний достигает противоположной стороны контролируемого объекта, отражается от раздела объект-воздух или другой среды, и также как эхо, попадает на головку излучате­ля. При этом отраженные от дефекта УЗК возвращаются раньше, чем от проти­воположной стороны объекта, поэтому вначале на экране дефектоскопа появля­ется импульс от дефекта (ДЕФ), а затем от противоположной стороны объекта (донный сигнал Д). На экране они располагаются один за другим на расстоя­нии, соответствующим продолжительности их возвращения. Измеряя промежу­ток времени от момента посылки импульса (начальный сигнал Н) до момента приема эхо-сигнала (донного сигнала Д) определяют расстояние до дефекта. По амплитуде эхо-сигнала судят о размерах дефекта. На передней панели дефектос­копа для этого имеется шкала, отградуированная в сантиметрах.
Критерием отбраковки при контроле служит амплитуда эхо-сигнала, а также условные глубина и ширина дефекта. Минимальные размеры выявленных де­фектов по глубине — 0,1… 0,3 мм и по ширине — 0,001… 0,003 мм.
Капиллярные методы
Методы основаны на капиллярном проникании индикаторных жидкостей (пенетрантов) в полости поверхностных, сквозных несплошностей контроли­руемого изделия и регистрации образующихся индикаторных следов визуаль­но или с помощью преобразователя. Капиллярные методы устанав­ливаются ГОСТ 18442-80 и их широко применяют для контроля изделий.
Схема процесса капиллярного цветового МНК приведена на рис.2. На по­верхность контролируемого изделия наносят специальную жидкость с большой смачивающей способностью, предварительно добавляя в нее в каче­стве индикатора люминофор (люминесцентный метод) или краситель (цветной метод). После определенной выдержки, для проникновения индикаторной жидкости в дефекты, ее остатки удаляют с поверхности изде­лия промывкой водой специальными очищающими составами или продувкой газопорошковой струей. Продолжительность выдержки изделия в индикатор­ной жидкости определяют по формуле:
/>
где
τ— время выдержки;
η— коэффициент вязкости жидкости;
/>— расстояние, на которое жидкость проникает в полость дефекта;
σ— поверхностное натяжение;
А— раскрытие дефекта;
θ— угол смачивания.
К контролируемому изделию предъявляются следующие требования:
чистота обработки поверхности изделия должна быть не менее >V5;
материал изделия должен быть непористым и стойким к воздействию органических растворителей;
форма и размеры контролируемых изделий могут быть любыми и состоять из черных и цветных металлов, пластмасс, стекла и керамики.
/>/>/>/>
Рисунок 2 – Схема процессов капиллярного цветового метода.
а) изделие очищено от загрязнений;
б) на поверхность изделия нанесена проникающая в дефекты индикаторная жидкость «и» (пенетрант);
в) с поверхности изделия удалены излишки прони­кающей жидкости;
г) нанесен тонкий слой проявителя и остав­шаяся в дефекте жидкость окрашивает проявитель или флуорес­цирует над дефектом.
Метод позволяет контролировать также объекты, изготовленные из ферро­магнитных материалов, если их магнитные свойства, форма, вид и месторас­положение дефектов в них не позволяют достигать требуемой чувствительно­сти магнитопорошковым или ферромагнитным методами.
Капиллярные методы подразделяются на четыре класса чувствительности (таблица 1).
Таблица 1
Классы чувствительности капиллярных МНК.
Класс чувствительности капиллярных МНК
Минимальный размер (раскрытие дефектов), мкм
1
Менее 1
2
1 — 10
3
10 — 100
4
100 — 500
технологический
не нормируется
Обозначение обнаруженных дефектов:
II– параллельный главной оси объекта,--PAGE_BREAK--
L– перпендикулярный к оси объекта,

А – единичные, Б – групповые, В – повсеместно распределенные,
О – допустимые, без знака – недопустимые,
* – сквозные дефекты.
Пример обозначения дефектов:
AII— дефект единичный, допустимый, сквозной, расположенный парал­лельно главной оси объекта.
Недостатки метода:,
– длительность процесса -20 мин;
– необходимость тщательной очистки поверхностей изделий.
Электролиз (пузырьковый метод).
В последнее время все большее распространение получают комбинированные методы, сочетающие два или более различных по физической сущности МНК. Таким примером могут служить электрохимические методы. В их основе лежат различные способы, позволяющие визуализировать дефекты, реакциями у дефектных мест или декорированием. Рассмотрим, например, метод, осно­ванный на реакциях у дефектных мест с образованием газовых пузырьков.
Метод применяется для обнаружения дефектов типа сквозных пор и отвер­стий в диэлектрических пленках. Указателем наличия пор (микроотверстий) являются локально выделяющиеся из дефектных мест газообразные продукты электролиза электролита, наблюдаемые под микроскопом или по току в цепи электрод-электролит-подложка.
В качестве электролита могут быть использованы следующие растворы:
слабый водный раствор KCL (3-10- процентный);
раствор серной кислоты (2-3 процентный);
ацетон или метиловый спирт;
деионизованная вода, CuSO4 и желатин.
/>/>/>
Рисунок 3 –Виды включения измерительной ячейки электролит-пленка-подложка
а) без смещения; б) прямое смещение; в) обратное смещение.
Условием определения дефектности пленок с помощью данного метода яв­ляется проникновение раствора электролита в поры исследуемой пленки.
Такое проникновение возможно далеко не всегда: большое поверхностное натяжение на границе раствор-пленка, малый размер пор и отсутствие смеще­ния на ячейке препятствуют проникновению раствора к полупроводниковой пластине (см. рис.3, а)
При приложении напряжения определенной величины и полярности (« — » к кремниевой подложке, «+» к раствору электролита – рис. 3, б) наблюдается выделение пузырьков газа (водорода) и появляется электрический ток. Это объясняется тем, что на границе «раствор – диэлектрик» имеется двойной электрический слой, образованный адсорбированными ионами раствора элек­тролита.
Полярность этого слоя обычно определяется правилом Коэна: тела с боль­шей диэлектрической проницаемостью заряжаются положительно. Так как диэлектрическая проницаемость большинства пленок находится в пределах 4-10, а водных растворов электролитов до 81, то полярность двойного электри­ческого слоя на границе раствор-диэлектрик будет соответствовать положительному заряду раствора. На каплю раствора в этом случае будут действовать силы, стремящиеся затянуть ее в пору диэлектрика. Затягивание раствора в мелкие капилляры происходит только при достижении определенного напряжения (20 -50 В).
При приложении напряжения обратной полярности между подложкой и раствором будет происходить выталкивание капли раствора из поры (см. рис.3, в)
Процесс электролиза включает в себя следующие стадии:
-диссоциация молекул воды
/>(1)
-образование иона гидроксония
/>(2)
дрейф иона гидроксония к катоду (исследуемой пластине кремния с пористым диэлектриком SiO2);
нейтрализация иона гидроксония электроном
/>(3)
-образование молекулы водорода
/>(4)
-формирование из молекул Н2пузырька водорода и всплытие его в жидко­ сти под действием выталкивающей силы F, равной:
/> (5)
где
R – радиус пузырька;
рж – плотность жидкости;
g– ускорение свободного падения.
Ток в поре диэлектрика определяется по формуле:
/> (6)
где
е – заряд электрона;
N – число молекул водорода в объеме пузырька;
t – время образования пузырька.
От напряжения внешнего электрического поля зависят лишь третий и чет­вертый этапы. Оценка пористости пленки включает в себя определение диа­метра пор и числа пор на единицу поверхности.
Оценка диаметра пор может проводиться следующими методами:
1)Визуально, по радиусу окрашиваемого пятна
/> (7)
где
/> – радиус поры;
к– поправочная функция на несферичность пузырька;
/>– радиус пузырька водорода;
σ– поверхностное натяжение на границе газ-раствор.
Радиус пор может быть вычислен также по приближенному соотношению:
/> (8)
2) По номограмме.
Для определения величины диаметра поры необходимо значение диа­метра пятна />соединить прямой линией со значением напряжения />(см. рис. 4). Затем прямой линией соединить значения времени />и толщины окисной пленки кремния />. Точки пересечения этих прямых (а и b) со вспо­могательными осями 1 и 2 соединяются между собой, и точка пересечения (δ) этой линии с осью />определяет величину диаметра поры. Этот метод оценки размера сквозных дефектов может быть использован практиче­ски для любых диэлектрических пленок.    продолжение
--PAGE_BREAK--
3)По ВАХ структурам (полупроводник-диэлектрик-электролит ПДЭ).
Если при обратной полярности по цепи структуры ПДЭ протекает ток в несколько миллиампер (см. рис.5), то это свидетельствует о том, что все существующие в диэлектрической пленке поры имеют размеры, пре­вышающие 1 мкм. Мелкие поры характеризуются отсутствием тока в данной цепи.
Оценка среднего числа пор на единицу поверхности производится по формуле:
/> (9)
где />— общее количество дефектов при фиксированном поле;
S– площадь исследуемой структуры;
к– число наблюдений при фиксированном поле.
Зависимость пористости диэлектрических пленок на кремниевых под­ножках от способов получения пленок представлена в таблице 3.
Испытательная ячейка для электролиза представлена на рис. 6.
/>
Рисунок 4 – Определение величины диаметра поры по номограмме.
/>
Рисунок 5 – ВАХ структуры полупроводник-диэлектрик-электролит
Таблица 3
Зависимость пористости диэлектрических пленок на кремниевых подложках от способов получения пленок
N
Различные способы осаж­дения пленок SiO2
Плотность пор,
см2
Эффективный диа­метр пор, мкм
1
Термические
10-60
0,1 — 0,5
2
Термические, после опе­рации фотолитографии
100 — 500
102- 103
3
Пиролитические
50 — 200
0,1 -0,5
4
Электронно-лучевые
104 — 105
0,01 — 0,05
5
Катодные
104 — 106
0,1 — 10
/>
Рисунок 6 – Испытательная ячейка для электролиза
1 – исследуемая структура; 2 – нижний электрод; 3 — резиновое кольцо; 4 – электролит; 5 – верхний электрод.
ЛИТЕРАТУРА
Глудкин О.П. Методы и устройства испытания РЭС и ЭВС. – М.: Высш. школа., 2001 – 335 с 2001
Испытания радиоэлектронной, электронно-вычислительной аппаратуры и испытательное оборудование/ под ред. А.И.Коробова М.: Радио и связь, 2002 – 272 с.
Млицкий В.Д., Беглария В.Х., Дубицкий Л.Г. Испытание аппаратуры и средства измерений на воздействие внешних факторов. М.: Машиностроение, 2003 – 567 с 2003
Национальная система сертификации Республики Беларусь. Мн.: Госстандарт, 2007 2007
Федоров В., Сергеев Н., Кондрашин А. Контроль и испытания в проектировании и производстве радиоэлектронных средств – Техносфера, 2005. – 504с.


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.

Сейчас смотрят :

Реферат Земельная реформа в России и эффективность использования земельных угодий ОПХ "Белоусовское"
Реферат Интенсивная технология возделывания кукурузы на силос
Реферат Землеустройство с основами геодезии
Реферат Изучение продуктивности сортов ячменя в условиях северной лесостепи Челябинской области
Реферат Изучение устойчивости перспективных сортов картофеля к болезням разной природы происхождения и их влияние на урожайность в условиях Кемеровской области
Реферат Изучение влияния соединений тяжёлых металлов на почву и растения (на примере соединений кадмия и свинца)
Реферат Изучение продуктивности сорго-суданковых гибридов в предварительном испытании в предгорной зоне Крыма
Реферат Библиография по гипнозу
Реферат Чарльз Диккенс. Домби и сын
Реферат Н. Г. Гарин-Михайловский. Гимназисты
Реферат Конкурс 1401-го года
Реферат Определение горизонтальной составляющей магнитного поля земли.
Реферат «Зуки [з], [з,], буквы з з»
Реферат Лесная таксация
Реферат Местные породы скота