Реферат по предмету "Коммуникации и связь"


Полупроводники 3

--PAGE_BREAK--


  Наличие в спектре поглощения Полупроводники широких и интенсивных полос в области, w порядка DE показывает, что большое число валентных электронов слабо связано. Т. к. слабая связь легко деформируется внешним электрическим полем, то это обусловливает высокую поляризуемость кристалла. И действительно, для многих Полупроводники (алмазоподобные, AIVBVI и др.) характерны большие значения диэлектрической проницаемостиe. Так, в Ge e = 16, в GaAs e =11, в PbTe e = 30. Благодаря большим значениям e кулоновское взаимодействие заряженных частиц, в частности электронов и дырок, друг с другом или с заряженными примесями, сильно ослаблено, если они находятся друг от друга на расстоянии, превышающем размеры элементарной ячейки, что и позволяет во многих случаях рассматривать движение каждого носителя независимо от других. Иначе свободные носители тока имели бы тенденцию образовывать комплексы, состоящие и из электрона и дырки Или заряженной примесной частицы с энергиями связи ~ 10 эв. Разорвать эти связи за счёт теплового движения, чтобы получить заметную электропроводность, при температурах ~ 300 К было бы практически невозможно.


  Однако попарное связывание электронов и дырок в комплексы всё же происходит, но связь эта слаба (Есв ~ 10-2эв) и легко разрушается тепловым движением. Такие связанные состояния электрона и дырки в Полупроводники, называются экситонами, проявляются в спектрах поглощения в виде узких линий, сдвинутых на величину Есв от края поглощения в сторону энергий, меньших энергий фотона. Экситоны образуются, когда электрон, поглотивший квант света и оставивший дырку на своём месте в валентной зоне, не уходит от этой дырки, а остаётся вблизи неё, удерживаемый кулоновским притяжением.


  Прозрачность Полупроводники в узкой области частот вблизи края собственного поглощения можно изменять с помощью внешних магнитных и электрических полей. Электрическое поле, ускоряя электроны, может в процессе оптического перехода передать ему дополнительную энергию (малую, т.к. время перехода очень мало), в результате чего становятся возможными переходы из валентной зоны в зону проводимости под действием квантов с энергией, несколько меньшей DE. Чёткий край области собственного поглощения Полупроводники при этом слегка размывается и смещается в область меньших частот.


  Магнитное поле изменяет характер электронных состояний, в результате чего частотная зависимость показателя поглощения вместо плавной зависимости K ~  принимает вид узких пиков поглощения, связанных с переходами электрона между уровнями Ландау валентной зоны и зоны проводимости. Наряду с собственным поглощением Полупроводники возможно поглощение света свободными носителями, связанное с их переходами в пределах зоны. Такие внутризонные переходы происходят только при участии фононов. Вклад их в поглощение мал, т.к. число свободных носителей в Полупроводники всегда очень мало по сравнению с полным числом валентных электронов. Поглощение свободными носителями объясняет поглощения излучения с w


  В Полупроводники с заметной долей ионной связи в далёкой инфракрасной области спектра (w ~ 10-2эв) наблюдаются полосы поглощения, связанные с возбуждением (фотонами) колебаний разноимённо заряженных ионов друг относительно друга.


  Роль примесей и дефектов в полупроводниках. Электропроводность Полупроводники может быть обусловлена как электронами собственных атомов данного вещества (собственная проводимость), так и электронами примесных атомов (примесная проводимость). Наряду с примесями источниками носителей тока могут быть и различные дефекты структуры, например вакансии, междоузельные атомы, а также недостаток или избыток атомов одного из компонентов в полупроводниковых соединениях (отклонения от стехиометрического состава), например недостаток Ni в NiO или S в PbS.


  Примеси и дефекты делятся на доноры и акцепторы. Доноры отдают в объём Полупроводники избыточные электроны и создают таким образом электронную проводимость (n-типа). Акцепторы захватывают валентные электроны вещества, в которое они внедрены, в результате чего создаются дырки и возникает дырочная проводимость (р-типа) (рис. 4). Типичные примеры доноров — примесные атомы элементов V группы (Р, As, Sb) в Ge и Si. Внедряясь в кристаллическую решётку, такой атом замещает в одной из ячеек атом Ge. При этом 4 из 5 его валентных электронов образуют с соседними атомами Ge ковалентные связи, а 5-й электрон оказывается для данной решётки «лишним», т.к. все связи уже насыщены. Не локализуясь ни в одной элементарной ячейке, он становится электроном проводимости. При этом примесный атом однократно положительно заряжен и притягивает электрон, что может привести к образованию связанного состояния электрона с примесным ионом. Однако эта связь очень слаба из-за того, что электростатическое притяжение электрона к примесному иону ослаблено большой поляризуемостью Полупроводники, а размеры области вблизи примеси, в которой локализован электрон, в десятки раз превышают размер элементарной ячейки кристалла. Энергия ионизации примеси ~0,01 эв в Ge и ~0,04 эв в Si, даже при температуре 77 К большинство примесей ионизовано, т. е. в Полупроводники имеются электроны проводимости с концентрацией, определяемой концентрацией донорных примесей.






Рис. 4. Электронные переходы, создающие электропроводность в полупроводнике: 1 — ионизация доноров (проводимость n-типа); 2 — захват валентных электронов акцепторами (проводимость р-типа); 3 — рождение электронно-дырочных пар (собственная проводимость); 4 — компенсация примесей.


  Аналогично атомы элементов III группы (В, Al, Ga, In) — типичные акцепторы в Ge и Si. Захватывая один из валентных электронов Ge в дополнение к своим 3 валентным электронам, они образуют 4 ковалентные связи с ближайшими соседями — атомами Ge — и превращаются в отрицательно заряженные ионы. В месте захваченного электрона остаётся дырка, которая так же, как электрон вблизи донорного иона, может быть удержана в окрестности акцепторного иона кулоновским притяжением к нему, однако на большом расстоянии и с очень малой энергией связи. Поэтому при не очень низких температурах эти дырки свободны.


  Такие же рассуждения объясняют в случае соединений AIII BV донорное действие примесей некоторых элементов VI группы (S, Se, Te), замещающих атом BV и акцепторное действие элементов II группы (Be, Zn, Cd), замещающих AIII. В Ge тот же Zn — двухзарядный акцептор. т.к. для того, чтобы образовать 4 валентные связи с соседями, он может захватить в дополнение к 2 своим валентным электронам ещё 2, т. е. создать 2 дырки. Атомы Cu, Au могут существовать в Ge в нейтральном, одно-, двух-и трёхзарядном состояниях, образуя одну, две или три дырки.


  Рассмотренные примеры относятся к примесям замещения. Примером примесей внедрения в Ge и Si является Li. Из-за малости иона Li+ он, не нарушая существенно структуры решётки, располагается между атомами Ge (в междоузлии); свой внешний валентный электрон, движущийся на существенно большем расстоянии, он притягивает очень слабо и легко отдаёт, являясь, т. о., типичным донором. Во многих Полупроводники типа AIVBVI источники свободных дырок — вакансии атомов AIV, а вакансии BVI — источники электронов проводимости. Из сказанного ясно, что введение определённых примесей (легирование Полупроводники) — эффективный метод получения Полупроводники с различными требуемыми свойствами.


  Сильно легированные полупроводники. При больших концентрациях примесей или дефектов проявляется их взаимодействие, ведущее к качественным изменениям свойств П. Это можно наблюдать в сильно легированных Полупроводники, содержащих примеси в столь больших концентрациях Nпр, что среднее расстояние между ними, пропорциональное N1/3пр, становится меньше (или порядка) среднего расстояния а, на котором находится от примеси захваченный ею электрон или дырка. В таких условиях носитель вообще не может локализоваться на каком-либо центре, т.к. он всё время находится на сравнимом расстоянии сразу от нескольких одинаковых примесей. Более того, воздействие примесей на движение электронов вообще мало, т.к. большое число носителей со знаком заряда, противоположным заряду примесных ионов, экранируют (т. е. существенно ослабляют) электрическое поле этих ионов. В результате все носители, вводимые с этими примесями, оказываются свободными даже при самых низких температурах.


  Условие сильного легирования: ×a ~ 1, легко достигается для примесей, создающих уровни с малой энергией связи (мелкие уровни). Например, в Ge и Si, легированных примесями элементов III или V групп, это условие выполняется уже при Nпр~ 1018—1019см-3 в то время как удаётся вводить эти примеси в концентрациях вплоть до Nпр ~ 1021см-3при плотности атомов основного вещества ~ 5×1022см-3. В Полупроводники AIVBV практически всегда с большой концентрацией (³ 1017—1018см-3) присутствуют вакансии одного из компонентов, а энергии связи носителей с этими вакансиями малы, так что условие a > 1 практически всегда выполнено.


  Равновесные концентрации носителей тока в полупроводниках. При отсутствии внешних воздействий (освещения, электрического поля и т.п.) концентрации электронов и дырок в Полупроводники полностью определяются температурой, шириной его запрещенной зоны DE, эффективными массами носителей, концентрациями и пространственным распределением примесей и дефектов, а также энергиями связи электронов и дырок с ними. Это т. н. равновесные концентрации носителей.


  При самых низких температурах (вблизи Т = 0 К) все собственные электроны Полупроводники находятся в валентной зоне и целиком заполняют её, а примесные локализованы вблизи примесей или дефектов, так что свободные носители отсутствуют. При наличии в образце доноров и акцепторов электроны с доноров могут перейти к акцепторам. Если концентрация доноров Nd больше концентрации акцепторов Na, то в образце окажется Na отрицательно заряженных акцепторных ионов и столько же положительно заряженных доноров. Только Nd — Na доноров останутся нейтральными и способными с повышением температуры отдать свои электроны в зону проводимости. Такой образец является Полупроводники n-типа с концентрацией носителей Nd — Na. Аналогично в случае Na> Nd Полупроводники имеет проводимость р-типа. Связывание донорных электронов акцепторами называется компенсацией примесей, а Полупроводники, содержащие доноры и акцепторы в сравнимых концентрациях, — компенсированными.


  С повышением температуры тепловое движение «выбрасывает» в зону проводимости электроны с донорных атомов и из валентной зоны (для определённости имеется в виду проводимость n-типа). Однако если энергия ионизации донора Ed






Рис. 5. Температурная зависимость концентрации n носителей тока в умеренно легированном (1) и сильно легированном (2) полупроводниках: I — область частичной ионизации примесей; II — область их полной ионизации; III — область собственной проводимости.


  Определение равновесных концентраций носителей тока в Полупроводники основывается на распределении Ферми (см. Статистическая физика) электронов по энергетическим состояниям (в зонах и на примесных уровнях). Вероятность f того, что состояние с энергией E занято электроном, даётся формулой:




  Здесь EF — уровень Ферми — энергия, отделяющая уровни преимущественно заполненные (f > 1/2) от преимущественно незаполненных (f


Если уровень Ферми лежит в запрещенной зоне на расстоянии > kT от дна зоны проводимости и от потолка валентной зоны, то в зоне проводимости f > kT от её дна. Это означает, что все состояния в этой зоне от дна до уровня Ферми заполнены носителями тока с вероятностью f (E) » 1.


Положение уровня Ферми зависит от температуры и легирования. В объёме пространственного однородного Полупроводники оно определяется условием сохранения полного числа электронов или, иными словами, условием электронейтральности: n + Na-= р + N+d     (10)


  Здесь Nd — концентрация ионизованных доноров, Na- — акцепторов, захвативших электрон.


  В сильно легированных Полупроводники концентрация носителей остаётся постоянной и равной (Nd — Na) при всех температурах вплоть до области собственной проводимости, где они не отличаются от др. Полупроводники (кривая 2, рис. 5). При низких температурах носители в сильно легированных Полупроводники вырождены, и такие Полупроводники формально следовало бы отнести к плохим металлам. Они действительно обнаруживают ряд металлических свойств, например сверхпроводимость (SrTiO3, GeTe, SnTe) при очень низких температурах.


  Неравновесные носители тока. Важной особенностью Полупроводники, определяющей многие их применения, является возможность относительно легко изменять в них концентрации носителей по сравнению с их равновесными значениями, т. е. вводить дополнительные, неравновесные (избыточные) электроны и дырки. Генерация избыточных носителей возникает под действием освещения, облучения потоком быстрых частиц, приложения сильного электрического поля и, наконец, инжекции («впрыскивания») через контакты с др. Полупроводники или металлом.


  Фотопроводимость полупроводников — увеличение электропроводности Полупроводники под действием света; как правило, обусловлена появлением дополнительных неравновесных носителей в результате поглощения электронами квантов света с энергией, превышающей энергию их связи. Различают собственную и примесную фотопроводимости. В первом случае фотон поглощается валентным электроном, что приводит к рождению пары электрон — дырка. Очевидно, такой процесс может происходить под действием света с длиной волны, соответствующей области собственного поглощения Полупроводники: w ³DE. Пары электрон — дырка могут создаваться и фотонами с энергией, несколько меньшей DE, т.к. возможны процессы, в которых электрон, поглощая фотон, получает дополнительную энергию за счёт теплового движения (кристаллической решётки или от равновесного носителя тока), например энергия w достаточна для создания экситона, который затем под действием теплового движения распадается на свободные электрон и дырку. Под действием существенно более длинноволнового света фотопроводимость возникает только при наличии примесей, создающих локальные уровни в запрещенной зоне, и связана с переходом электрона либо с локального уровня в зону проводимости, либо из валентной зоны на локальный уровень примеси (рождение дырки).


  Явление фотопроводимости позволяет за короткое время (~ мксек или ~ нсек) изменять электропроводность Полупроводники в очень широких пределах, а также даёт возможность создавать высокие концентрации носителей тока в Полупроводники, в которых из-за относительно большой DE и отсутствия подходящих примесей не удаётся получить заметных равновесных концентраций носителей. Использование фотопроводимости Полупроводники с разными DE и глубиной примесных уровней (Si, Te, InSb, PbS, CdS, РЬТе, Ge, легированный Zn или Au и т.д.) позволяет создавать высокочувствительные приёмники света для различных областей спектра от далёкой инфракрасной до видимой (см. Инфракрасное излучение, Фотопроводимость).


Прохождение быстрых частиц через полупроводники. Значит. доля энергии частицы (~30%) при этом тратится в конечном счёте на создание электронно-дырочных пар, число которых, т. о., порядка отношения DE к энергии частицы. Для частиц с энергиями от 10 кэв до 10 Мэв это отношение ~104— 107. Явление может использоваться для счёта и измерения энергии быстрых частиц (см. Полупроводниковый детектор).


Рекомбинация. Захват свободных носителей примесями или дефектами. Рекомбинацией называется любой процесс, приводящий к переходу электрона из зоны проводимости в валентную зону с заполнением какого-либо дырочного состояния, в результате чего происходит исчезновение электрона и дырки. Переход электрона из зоны проводимости в состояние, локализованное вблизи примеси или дефекта, называют его захватом. Захват дырки означает переход электрона с примесного уровня в незанятое электронами состояние в валентной зоне. В условиях термодинамического равновесия тепловая генерация носителей и ионизация доноров и акцепторов уравновешивают процессы рекомбинации и захвата, а скорости этих взаимно обратных процессов находятся как раз в таком соотношении, которое приводит к распределению Ферми для электронов по энергиям.


  Если же в Полупроводники появляются неравновесные носители, то число актов рекомбинации и захвата возрастет. Т. о., после прекращения внешнего воздействия рекомбинация происходит интенсивнее, чем генерация, и концентрация носителей начинает убывать, приближаясь к своему равновесному значению. Среднее время t, которое существуют неравновесные носители, называется временем их жизни. Оно обратно пропорционально быстроте рекомбинации или захвата примесями. Время жизни t носителей в Полупроводники варьируется от 10-3сек до 10-10сек. Даже в одном и том же Полупроводники в зависимости от температуры, содержания примесей или дефектов, концентрации неравновесных носителей значения t могут изменяться на несколько порядков.


  Рекомбинация и захват всегда означают переход носителя на более низкие уровни энергии (в валентную зону или запрещенную). Различные механизмы рекомбинации отличаются друг от друга тем, куда и каким образом передаётся выделяемая при таком переходе энергия. В частности, она может излучаться в виде кванта света. Такая излучательная рекомбинация наблюдается в любом Полупроводники Полное число актов излучательной рекомбинации в сек пропорционально произведению p-n и при небольших концентрациях носителей этот механизм рекомбинации мало эффективен. Однако при больших концентрациях (~1017см3) некоторые Полупроводники становятся эффективными источниками света (рекомбинационное излучение) в узком диапазоне длин волн, близких к lмакс. Ширина спектра ~kT, обусловленная различием энергии рекомбинирующих носителей, гораздо меньше средней энергии фотонов. Используя разные Полупроводники, можно создавать источники света почти любой длины волны в видимой и близкой инфракрасной областях спектра. Так, например, меняя в сплаве GaAs — GaP содержание GaP от 0 до 100%, удаётся перекрыть видимый спектр от красной до зелёной областей включительно.


  Если концентрация неравновесных носителей столь высока, что наступает их вырождение, т. е. вероятность заполнения носителем каждого состояния вблизи края соответствующей зоны больше 1/2, то возможно образование инверсной заселённости уровней, когда вышележащие по энергии уровни (у дна зоны проводимости) в большей степени заполнены электронами, чем нижележащие (у верхнего края валентной зоны). Тогда вынужденное излучение фотонов превосходит их поглощение, что может привести к усилению и генерации света. Таков принцип действия полупроводникового лазера.


При безызлучательной рекомбинации выделяемая энергия в конечном счёте превращается в тепловую энергию кристалла. Наиболее важным её механизмом при невысоких концентрациях носителей является рекомбинация через промежуточные состояния в запрещенной зоне, локализованные около примесей или дефектов. Сначала один из носителей захватывается примесью (изменяя её заряд на 1), а затем та же примесь захватывает носитель с зарядом противоположного знака. В результате оба захваченных носителя исчезают, а примесный центр возвращается в первоначальное состояние. Если концентрация неравновесных носителей мала по сравнению с равновесной концентрацией основных носителей, время жизни определяется быстротой захвата неосновных носителей (дырок в Полупроводники n-типа, электронов в Полупроводники р-типа), поскольку их значительно меньше, чем основных, и время попадания одного из них на примесный центр является наиболее длительной частью процесса рекомбинации. Роль центров рекомбинации могут играть многие примеси (например, Cu в Ge) и дефекты, имеющие уровни, расположенные глубоко в запрещенной зоне и эффективно захватывающие в одном зарядовом состоянии электроны из зоны проводимости, а в другом — дырки из валентной зоны. Далеко не все примеси и дефекты обладают этим свойством. Некоторые могут эффективно захватывать лишь один носитель и при не слишком низкой температуре раньше выбрасывают его обратно в зону, из которой он был захвачен, чем захватывают носитель противоположного заряда. Это т. н. центры прилипания, или ловушки. Они могут существенно удлинять время жизни неравновесных носителей, т.к. если, например, все неравновесные неосновные носители захвачены ловушками, то избыточным основным носителям не с чем рекомбинировать и др. примеси — центры рекомбинации оказываются неэффективными.


    продолжение
--PAGE_BREAK--


Не сдавайте скачаную работу преподавателю!
Данный реферат Вы можете использовать для подготовки курсовых проектов.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем реферат самостоятельно:
! Как писать рефераты
Практические рекомендации по написанию студенческих рефератов.
! План реферата Краткий список разделов, отражающий структура и порядок работы над будующим рефератом.
! Введение реферата Вводная часть работы, в которой отражается цель и обозначается список задач.
! Заключение реферата В заключении подводятся итоги, описывается была ли достигнута поставленная цель, каковы результаты.
! Оформление рефератов Методические рекомендации по грамотному оформлению работы по ГОСТ.

Читайте также:
Виды рефератов Какими бывают рефераты по своему назначению и структуре.