--PAGE_BREAK--
Введение
Мультимедиа. Это слово, а точнее понятие, часто упоминается в разговорах о компьютерах, о компьютерной периферии, при обсуждении тех или иных программных продуктов и даже в разговорах о таких вещах, как телевидение или кинематограф. Так что же такое мультимедиа? Трудно дать краткое и точное определение этому понятию. Мультимедиа – это технология, позволяющая объединить данные, звук, анимацию и графические изображения, переводить их из аналоговой формы в цифровую и обратно. «Мультимедиа» – сложное слово, состоящее из двух простых: «мульти» – много и «медиа» – носитель. Таким образом, термин «мультимедиа» можно перевести как «множество носителей», то есть мультимедиа подразумевает множество различных способов хранения и представления информации (звука, графики, анимации и так далее).
Если говорить о мультимедиа как о некоторой технологии представления информации, то необходимо упомянуть два аспекта – аппаратный и программный.
Аппаратная сторона мультимедиа может быть представлена как стандартными средствами (графический адаптер, монитор, звуковая карта, привод CD-ROM и так далее), так и дополнительными (видеокарта с телевизионным входом/выходом, приводы CD-R, CD-RW, DVD и др.)
Программная сторона мультимедиа может быть разделена на чисто прикладную (сами приложения, предоставляющие пользователю информацию в том или ином виде), а также специализированную, в которую входят средства, используемые для создания мультимедийных приложений. К этой категории можно отнести профессиональные графические редакторы, редакторы видеоизображений, средства для создания и редактирования звуковой информации и т.п.
Одними из первых пользовательских мультимедийных программ были компьютерные игры. Они являются наиболее распространенным программным продуктом, в полной мере использующим преимущества технологии мультимедиа: графика высокого разрешения, анимация, звуковое, музыкальное и голосовое сопровождение присутствуют во всех современных играх.
В книге М. Кирмайера «Мультимедиа» мультимедиа определена как сочетание возможностей создания видеоэффектов со звуковыми эффектами при управлении с помощью диалогового (интерактивного) программного обеспечения. Диалог означает, что пользователю в общении с компьютером отводится самая активная роль. Он может давать компьютеру свои указания и требовать их исполнения. А может обойтись и без этого, спланировав работу своих мультимедиа-приложений и возложив их исполнение целиком на компьютер.
Видеоэффекты могут быть представлены показом сменных компьютерных слайдов, мультфильмов и видеоклипов, смешением изображений и текстов, перемещением (скроллингом) изображений, изменением цветов и масштабов изображения, мерцанием и постепенным исчезновением изображения и т.д. Они обычно идут в сопровождении речи и музыки. Сочетание видео и аудиоэффектов значительно повышает объем информации, которая поступает от компьютера к пользователю, и обеспечивает эффективное и одновременное восприятие ее двумя важнейшими органами чувств человека – зрительное восприятие и слух.
Технология мультимедиа прочно вошла в повседневную жизнь и успешно применяется во многих пользовательских приложениях. Но для успешной работы таких приложений должен соответствовать требованиям мультимедиа и сам компьютер. Таким образом «мультимедийный компьютер» – это такой компьютер, на котором мультимедийные приложения могут в полной мере реализовать все свои возможности. Мультимедийный компьютер должен уметь многое: отображать на экране монитора графическую и видеоинформацию, анимацию, воспроизводить с высоким качеством различное звуковое сопровождение, музыку, в ом числе и с музыкальных компакт-дисков, и многое другое.
Аппаратная часть мультимедийного компьютера
В этом разделе будут рассмотрены основные устройства, входящие в состав мультимедийного компьютера.
Обычно под набором комплектующих, объединенных понятием «мультимедийный компьютер», понимают следующий их состав:
· Корпус с блоком питания
· Системная (материнская) плата
· Центральный процессор
· Оперативная память
· Видеоадаптер
· Монитор
· Накопитель на жестких дисках
· Клавиатура
· Мышь
· Дисковод CD-ROM
· Дисковод гибких дисков
· Звуковая карта
Для российских условий дополнительным оборудованием (во многих странах уже считающимся стандартным) являются:
· Дисковод DVD
· Модем
· Телевизионный и УКВ тюнер
Не так давно корпорация Intel и Microsoft при участии других грандов компьютерной индустрии подготовили спецификацию компьютера PC 99. Этот стандарт определяет типы систем персональных компьютеров, предназначенных для выполнения определенных функций (см. Приложение). Рассмотрим класс «EntertainmentPC» (развлекательный или мультимедийный компьютер).
С точки зрения этапов развития аппаратной части компьютера наибольший интерес вызывают следующие требования:
· Полный отказ от интерфейса шины ISA
· Все компоненты системной (материнской) платы должны соответствовать спецификации Plug-and-Play
· Порты COM и LPT рекомендуется использовать только для подключения принтеров
· Интерфейсы IDE/ATA и ATAPI для внешних накопителей подлежат замене на IEEE1394
· Для модемов рекомендуется интерфейс USB
· Для сканеров и других устройств ввода изображений рекомендуется использовать интерфейсы SCSI или IEEE1394
· Для звуковых карт возможны интерфейсы USB или PCI
· Графические адаптеры допустимы только с интерфейсом AGP или PCI
· Подключать мышь и клавиатуру рекомендуется через интерфейс USB или PS/2
Впервые в спецификации отражены требования к разрешению и другим параметрам мониторов.
2 ноября 2000 года была утверждена следующая редакция документа – PC 2001 (см. Приложение).
Требования, приводимые в PC 2001, направлены на создание компьютеров под управлением Windows Me, Windows 2000 Professional, предназначенных для работы с типичными Windows-приложениями. Естественно, речь идет не о базовых аппаратных требованиях, предъявляемых операционными системами, а об оптимальных. Впервые PC 2001 не содержит классических рекомендаций — указываются только минимальные требования! Все то, что было из лучших побуждений рекомендовано в PC 99, либо стало требованием в PC 2001, либо безжалостно удалено.
Основная идея PC 2001 — сделать стандартом де-юре требования инициативы Intel Easy PC, направленной на превращение компьютера в несложный, надежный и стабильно работающий бытовой прибор. «Лейтмотив» Easy PC — отказ от шины ISA, быстрая загрузка и интеллектуальное управление питанием. Безусловно, это далеко не полный список идей Easy PC, однако он дает довольно четкое представление.
Особенность PC 2001 — отсутствие жесткого разделения ПК на классы. В частности из текста исключены упоминания об Office PC, Consumer PC и Entertainment PC, которые были четко специфицированы в PC 99. Теперь все, что не является Workstation (рабочей станцией) и Mobile (ноутбуком), попадает под категорию PC System.
В PC 2001 происходит полный отказ от шины ISA, а также признаются устаревшими ее производные – PS/2, COM, LPT, FDD. Последний пункт означает, сто 3,5-дюймовые дисководы флоппи-дисков либо исчезнут как класс, либо перейдут на новый интерфейс, вероятнее всего на USB. Причем сам USB должен эволюционировать до уровня спецификации 2.0, где скорость передачи данных достигает 480 Мбит/с.
--PAGE_BREAK--Центральный процессор
Центральный процессор – сердце и мозг компьютера, центральный элемент, управляющий всеми остальными компонентами, входящими в состав компьютера. Именно он в большей степени определяет скорость работы компьютера (его производительность). Обычно вместо «центральный процессор» говорят просто «процессор», хотя в компьютере имеются и другие устройства этого типа. Например, процессор, установленный на видеокарте, звуковой карте и так далее.
В IBM-совместимых компьютерах применяются процессоры, совместимые с семейством х86 фирмы Intel. В оригинальном IBMPC использовался процессор Intel 8088 с 16-разрядными регистрами. Все старшие модели процессоров включают в себя подмножество системы команд и архитектуры нижестоящих моделей, обеспечивая совместимость с ранее написанным программным обеспечением.
Устройство процессора.
На первый взгляд процессор – просто выращенный по специальной технологии кристалл кремния. Однако этот кристалл содержит в себе множество отдельных элементов – транзисторов, которые в совокупности и наделяют компьютер способностью «думать».
Если же посмотреть на центральный процессор с «большей высоты», можно выделить несколько важных составляющих:
· Собственно процессор – «вычислитель»
· Сопроцессор (FPU) – специальный блок для операций с плавающей точкой
· Кэш-память первого уровня – небольшая (несколько десятков килобайт) сверхбыстрая память, предназначенная для хранения промежуточных результатов вычислений
· Кэш-память второго уровня – эта память помедленнее, зато больше (измеряется уже сотнями килобайт). Она может быть интегрирована на самом кристалле процессора, а может быть выполнена в виде дополнительного кристалла.
Архитектура линии процессоров х86 фирмы Intel основана на концепции CISC(ComplexInstructionSetCalculation) – расширенной системе команд переменной длины, появившейся в 1978 году. Команды х86 могут иметь длину от 8 до 108 бит, и процессор должен последовательно декодировать инструкцию после определения ее границ. Тогда процессоры были скалярными устройствами (то есть могли в каждый момент времени выполнять только оду команду), конвейерная обработка практически не применялась (исключение составляли большие ЭВМ). Позже (в 1986 году) появились процессоры, основанные на архитектуре RISC (ReducedInstructionSetCalculation) – сокращенном наборе команд фиксированной длины, которая была оптимизирована для суперскалярных (с возможностью выполнения нескольких команд одновременно) конвейерных вычислений.
С тех пор обе линии до недавних пор развивались практически независимо. Intel с целью обеспечения совместимости не могла отказаться от архитектуры CISC даже в новейших моделях процессоров х86, а фирма Apple, ориентировавшаяся на процессоры с архитектурой RISC, не могла существенно увеличить свою долю на рынке PC из-за трудностей с использованием программ для х86 на своих компьютерах. Однако в отдельных модификациях своих процессоров фирме AMD удалось совместить обе архитектуры. То есть микроядро процессора работает на основе архитектуры RISC, а специальный блок интерпретирует команды CISC для обеспечения совместимости с системой команд х86.
Важным элементом процессора является блок обработки данных с плавающей точкой (FPU – FloatingPointUnit). Начиная с модели Intel 80486, он встроен в ядро процессора у всех без исключения процессоров разных производителей. От эффективности этого блока напрямую зависит скорость работы процессора со сложными приложениями (графика, мультимедиа, трехмерные объекты). Несмотря на все усилия конкурентов, фирме Intel до недавнего времени удавалось в своих процессорах удерживать лидерство по эффективности работы FPU. Однако с появлением процессора Athlon фирмы AMD положение по меньшей мере выровнялось. А на многих тестах Athlon опережает изделия Intel.
Скорость работы центрального процессора
Тактовая частота и объем установленной на процессоре кэш-памяти являются важнейшими факторами, влияющими на его производительность для всех типов задач. По спецификации PC99 тактовая частота процессора мультимедийного компьютера должна быть не менее 300 МГц, а в спецификации PC 2001 требования стали еще жестче и минимальная тактовая частота на 2001-2002 год составляет 667 МГц. Минимальный объем кэш-памяти – 128 Кб.
Имеется ряд специализированных задач, ускоренное решение которых возможно за счет оптимизации операций на аппаратном уровне. Впервые эту проблему попыталась решить Intel внедрением технологии MMX (MultiMediaExtension – мультимедийное расширение). И так немалый набор команд х86 был расширен за счет 57 дополнительных инструкций типа SIMD (SingleInstruction – MultipleData – одна инструкция для многих данных), позволивших распараллелить обработку данных. Технология MMX значительно ускорила работу процессора с мультимедийными приложениями. Но у него имелся существенный недостаток – невозможность обработки данных с плавающей точкой. А ведь именно такие операции характерны для приложений, интенсивно использующих трехмерную графику.
Впервые технология для обработки данных с плавающей точкой была реализована фирмой AMD в процессоре K6-2 и получила название 3DNow! Она включает в себя 21 инструкцию типа SIMD, оптимизированных для параллельной обработки данных с плавающей точкой.
С некоторым опозданием похожую технологию под названием SSE (StreamingSIMDExtension) реализовала фирма Intel в своем процессоре PentiumIII. Фактически Intel ввела новый режим работы процессора – параллельную обработку инструкций FPU и SSE.
продолжение
--PAGE_BREAK--Кристалл
При производстве процессоров используются так называемые технологические нормы, означающие допустимое расстояние между цепями на кристалле кремния и минимально возможный размер логических и других элементов. Естественно, что чем меньше это расстояние, тем больше элементов можно разместить на единице площади кристалла или при неизменном числе элементов сделать больше кристаллов из исходной кремниевой пластины. К тому же уменьшение размеров приводит и к уменьшению рассеиваемой мощности, что позволяет поднять рабочую частоту, на которой надежно функционируют элементы. Поэтому все производители процессоров стремятся ужесточать технологические нормы для повышения производительности. Еще недавно стандартом считался показатель 0,35 микрон, сейчас процессоры изготовляют по норме 0,25 и 0,18 микрон.
Лидером в технологии всегда была фирма Intel, которая имеет возможность вкладывать большие средства в передовые разработки. Но в последнее время фирма AMD быстрее осваивает новые технологические нормы.
Конструктив
С «легкой руки» Intel в компьютерной индустрии появилось и понятие «конструктив». Это слово весьма точно передает суть некоего сооружения, в недра которого заключены процессоры Intel, начиная с PentiumII, предназначенные для установки в Slot 1. Там и процессорная плата, на которой располагаются кристаллы собственно процессора и кэш-память второго уровня, и корпус, охватывающий эту плату, и разъем под Slot1 или Slot 2. Вся эта конструкция была названа SECC (SingleEdgeContactCartridge – картридж с односторонними контактами). Следом за Intel и фирма AMD выпустила свой процессор Athlon для установки в разъем SlotA. (см. рисунок)
Процессоры Celeron корпуса не удостоился ввиду отсутствия отдельного кристалла кэш-памяти.
Поэтому логичным выглядел следующий шаг Intel – выпуск Celeron в конструктиве PPGA (PlasticPinGridArray), то есть возврат к технологии, характерной для интерфейса Socket 7.
Сравнительно недавно появились новые конструктивы: FC-PGA 370 для процессоров фирмы Intel и SocketA для процессоров AMDAthlon и Duron. То есть практически произошел возврат к технологическим решениям, характерным для Socket 7, но на ином технологическом уровне. (см. рисунок)
--PAGE_BREAK--Видеокарта
Бурное развитие и внедрение в качестве стандарта де-факто графического интерфейса операционных систем, прикладных и игровых программ явилось стимулом к появлению нового поколения видеоадаптеров, которые принято называть «графическими ускорителями». Обычно под этим понятием подразумевают, что многие графические функции выполняются в самом видеоадаптере на аппаратном уровне. Так как эти функции связаны с рисованием графических примитивов (линий, дуг, окружностей и прочих фигур), заливкой цветом участков изображения, перемещением блоков (например, окон), то есть с обработкой графики в двух измерениях на одной плоскости, то такие ускорители получили обозначение 2D-ускорителей.
Трехмерные (3D) ускорители из разряда экзотического профессионального оборудования перешли в массовый сектор благодаря опять же новым программам, прежде всего игровым, потребовавшим обсчета и построения трехмерных (объемных) изображений на экране монитора в реальном времени. Поначалу они выпускались в виде отдельных плат, занимавших отдельный слот PCI. Сейчас 2D/3D ускорители установлены на самой плате видеоадаптера.
Работа с графикой – одна из самых трудных задач, которые приходится решать мультимедийному компьютеру. Сложные изображения, миллионы цветов и оттенков… Поэтому нет ничего удивительного, что для этой работы приходится устанавливать в компьютер фактически второй мощный процессор. Он находится на видеокарте и предназначен для того, чтобы разгрузить центральный процессор при обработке графики.
Еще несколько лет назад перечень обязательных функций видеокарт состоял только из одной позиции – работа с обычной двумерной графикой. И именно исходя из быстроты и качества работы в 2D-режиме они оценивались.
Сегодня ситуация изменилась: все современные видеокарты способны быстро и качественно обрабатывать двумерную графику и ждать каких либо продвижений в этой области уже не стоит. Однако у видеокарты появились новые обязанности. Первая и обязательная для всех современных видеоадаптеров – поддержка объемной, трехмерной графики, то есть наличие 3D-ускорителя. Среди дополнительных функций – возможность приема телевизионного сигнала (встроенный TV-тюнер), аппаратное декодирование и воспроизведение VideoCD и DVD-дисков, наличие TV-входа/выхода.
Устройство и принцип работы
Современная видеокарта включает в себя следующие основные компоненты:
· SVGA-ядро
· Ядро 2D-ускорителя
· Ядро обработки 3D-графики
· Видеоядро
· Видео BIOS
· Контроллер памяти
· Видеопамять
· Интерфейс главной шины
· Интерфейс внешнего порта ввода-вывода
· RAMDAC – цифроаналоговый преобразователь с собственной памятью с произвольным доступом.
Последний компонент отвечает за формирование окончательного изображения на мониторе, то есть преобразует результирующий цифровой поток данных, поступающих от других элементов видеоадаптера, в уровни интенсивности, подаваемые на соответствующую электронную пушку (красную, зеленую, синюю) электронно-лучевой трубки монитора.
Один из первых RAMDAC был разработан фирмой IBM в 1985 году и обеспечивал вывод изображения с разрешением 320х200 точек при цветовом охвате 8 бит. В дальнейшем схемотехника RAMDAC быстро развивалась и сегодня стандартом считается RAMDAC, обеспечивающий разрешение 1600х1200 точек при 32-битном цвете на частоте 75-85 Гц. Обязательным стало требование поддержки режима DirectColor, то есть прямого доступа к элементам DAC. Это позволяет создавать независимые таблицы для каждого из трех основных цветов и, тем самым, компенсировать цветовые искажения, вносимые электронной частью монитора. Такой эффект правки цвета получил название гамма-коррекции.
Качество получаемого изображения в решающей степени зависит от таких характеристик RAMDAC, как его частота, разрядность, время переключения с черного на белый и обратно, варианта исполнения (внешний или внутренний).
Частота RAMDAC говорит о том, какое максимальное разрешение при какой частоте кадровой развертки сможет поддерживать видеокарта. (см. таблицу)
Современными можно считать RAMDAC с частотой не ниже 170 МГц.
Разрешение
Частота
развертки, Гц
800х600
1024х768
1200х1024
80
90
100
51
57
64
83
94
103
139
158
173
Разрядность RAMDAC говорит о том, какое цветовое пространство способен охватывать видеоадаптер. Большинство микросхем этого типа поддерживает представление 8 бит на каждый канал цвета, что обеспечивает отображение около 16,7 млн. цветов. За счет гамма-коррекции исходное цветовое пространство расширяется еще больше. В последнее время появились RAMDAC с разрядностью 10 бит по каждому каналу цвета, охватывающие более миллиарда цветов.
Обычно не афишируемым, а зачастую и замалчиваемым производителями параметром является SlewRate. Это время, в течение которого электронный луч пушки кинескопа монитора включается, достигает максимальной яркости на отдельном пикселе и выключается (переключение черного сигнала на белый и наоборот). При установке параметров монитора в режим высокого разрешения при высокой частоте кадровой развертки случается, что не успевший полностью погаснуть луч переводится на следующий пиксель (или не достигший требуемой яркости луч перескакивает дальше). В результате изображение становится размазанным. Такой эффект получил название «замыливание» и встречается, к сожалению, довольно часто.
продолжение
--PAGE_BREAK--Трехмерная графика
Пространственная компьютерная графика часто называется трехмерной, или 3D-графикой. В обыденной жизни мы практически каждый день сталкиваемся с объектами, созданными либо средствами компьютерной 3D-графики, либо на основе трехмерных виртуальных моделей: телевизионные заставки и реклама, спецэффекты, персонажи и предметы в кинематографии и т.д.
Конечно же, чаще всего с объемной графикой сталкиваются пользователи мультимедийных компьютеров. Чаще всего это компьютерные игры и мультимедийные приложения.
Создание объемного, реалистичного изображения – задача непростая. Фактически, видеокарте приходится выполнять несколько сложных операций. 3D-ускоритель должен построить каркас каждого трехмерного объекта и быть готовым в любой момент показать его с любой точки зрения (сверху, сбоку, под углом). Причем набором нескольких основных видов тут не обойтись – важно не просто показать объект с четырех сторон, но и, что самое главное, воссоздать на экране его реальный объем.
Но воссоздание объема – не самая сложная задача. Ведь даже самая объемная фигура будет выглядеть бледно и бесцветно, если не наложить на нее текстуру. То есть просто раскрасить используя множество цветных объектов, как бы завернуть в фантик. Причем в реальном времени и весьма динамично.
И, наконец, третья область, в которой незаменим 3D-ускоритель – игровые спецэффекты. Туман, пламя, взрывы, отражение в воде или зеркале, тени и множество других.
Для работы с трехмерной графикой обычно используют специализированные прикладные программные библиотеки. Они очень важны потому, что производительность и качество работы видеокарты во многом зависит от поддерживаемых ей библиотек.
Библиотека OpenGL пришла на платформу PC из сферы графических станций во многом благодаря игре Quake, использовавшей несколько упрощенный ее вариант. Наличие поддержки этой библиотеки у видеоадаптера очень желательно, так как многие программы оптимизированы под OpenGL.
Библиотека Direct3D является частью программного интерфейса MicrosoftDirectX и поддерживается практически всеми ускорителями. Начиная с шестой версии технология Direct3D является по своим возможностям достойным конкурентом OpenGL.
Glide – собственная библиотека фирмы 3Dfx, временно завоевавшая популярность благодаря бурному распространению ускорителей VoodooGraphics. Она слабо поддерживается другими ускорителями и, видимо, в ближайшее время сойдет со сцены.
Трехмерными ускорителями оснащены сегодня практически все видеокарты, ведь по требованиям спецификации PC 2001 мультимедийный компьютер должен иметь видеоадаптер со встроенным 3D-ускорителем.
Форм-фактор
На сегодняшний день существует два формата видеокарт – PCI и AGP.
PCI – достаточно старый и устаревший стандарт видеокарт для компьютеров, выпущенных до эпохи PentiumII. Видеокарты, исполненные в формате PCI, уже не выпускаются, однако их еще можно встретить на многих компьютерах.
Интерфейс AGP значительно быстрее, чем старый PCI, а главное дает возможность видеоадаптеру задействовать основную оперативную память компьютера для размещения текстур в трехмерных играх. Видеокарты, выполненные именно в формате AGP, должны быть установлены на домашнем компьютере по стандарту PC 2001. AGP-слот имеется на любой материнской плате для процессоров PentiumII и старше.
--PAGE_BREAK--Стандарты безопасности и электропотребления
Современный монитор обязательно должен соответствовать требованиям по медицинским, эргономическим и экологическим параметрам одного из стандартов безопасности – MPRII, TCO 92, TCO 95, TCO 99. Для длительной работы с мониторами, не соответствующими хотя бы одному из этих стандартов необходимо использовать защитный экран.
MPRII – базовый стандарт безопасности по излучению, которому просто обязаны соответствовать современные мониторы. С таким монитором уже не нужен защитный экран.
ТСО 92 – стандарт безопасности, соответствие которому свидетельствует о практически полной безопасности монитора.
В стандарте ТСО 95 впервые появились требования к эргономике и экологичности монитора.
В стандарте ТСО 99 эти требования ужесточились. Также в ТСО 99 устанавливаются самые жесткие требования к качеству изображения (яркость, контрастность, мерцание, антибликовое покрытие экрана) и энергопотреблению.
Стандарт EnergyStar устанавливает требования к электропотреблению и электросбережению. Мониторы, соответствующие стандарту EnergyStar, обладают способностью переходить в режим пониженного потребления энергии при длительном простое компьютера.
Жидкокристаллические мониторы
Жидкокристаллическая технология – одна из самых перспективных сегодня. И вот уже в течении многих лет производители мониторов пытались выпустить на рынок мониторов для настольных компьютеров устройства, созданные на ее основе.
В 1997 году дело, наконец, сдвинулось с мертвой точки: на рынке появился сразу десяток моделей жидкокристаллических мониторов с диагональю 13,3, 14 и 15 дюймов, что соответствует стандартным 14, 15 и 17-дюймовым мониторам на ЭЛТ.
ЖК-дисплеи изготавливают по двум различным технологиям:
· Мониторы с активной матрицей (TFT) – самые качественные и дорогие. В TFT-мониторах применена специальная система контроля цветов, при которой каждый мельчайший ЖК-элемент экрана – пиксель имеет свой контроллер – специальный транзистор, отдающий команды только ему. Вследствие этого картинка на TFT-мониторах способна меняться практически мгновенно, не оставляя следов.
· Мониторы с пассивной матрицей (DSTN) лишены этой особенности. Вследствие этого изображение на них более бледное, да и меняется оно с явным опозданием. Однако DSTN-мониторы дешевле.
Впрочем, независимо от типа ЖК-дисплея у любого из них есть масса преимуществ перед традиционными мониторами на ЭЛТ. Они компактны и легки, их толщина составляет всего несколько сантиметров, безопасны в медицинском и экологическом отношении, потребляют в несколько раз меньше энергии, а главное – обладают плоским экраном, более качественным по сравнению с традиционным выпуклым.
По количеству отображаемых цветов и разрешению жидкокристаллические мониторы с активной матрицей уже почти встали на один уровень с обычными. Пока что максимальным разрешением для большинства моделей является режим 1024х768 при частоте вертикальной развертки 75 Гц. Правда, такая низкая частота, в отличии от мониторов на электронно-лучевой трубке, практически не вызывает дискомфорта у пользователей. Хуже то, что жидкокристаллический монитор пока еще несколько зернистее ЭЛТ – практически стандартные модели с экраном 14 и 15 дюймов имеют размер зерна 0,28 мм.
Другая проблема связана с тем, что пока еще не выработан стандарт на ЖК-мониторы. Да и специальные видеокарты, на которых должен иметься цифровой выход, довольно трудно найти.
--PAGE_BREAK--Дисковод CD-ROM
Мультимедийный компьютер должен иметь дисковод для чтения компакт-дисков – CD-ROM (CDReadOnlyMemory – память только для чтения на компакт-дисках). Это обязательное требование.
Появился этот дисковод сравнительно давно – более 10 лет назад. Но и сегодня найти ему замену непросто. Такая популярность CD-ROM обусловлена очень малой стоимостью хранения информации, большой емкостью носителя и универсальностью.
CD-ROM пригоден для хранения самых различных форматов данных:
· Цифровая, компьютерная информация
· Звуковая информация в формате AudioCD (до 80 минут звучания)
· Звуковой информации в формате MP3 (около 9 часов звучания)
· Видеоинформации в формате VideoCD и CD-I (до 1 часа видео)
· Изображений, записанных в формате «библиотеки фотографий» фирмы Kodak (KodakPhotoCD)
И множества других видов информации.
Носителем информации на компакт-диске является рельефная подложка из поликарбоната, на которую нанесен тонкий слой отражающего свет металла (обычно алюминия). При записи матрицы компакт-диска лазерный луч прожигает в ней крохотные ямки – питы. При чтении диска в CD-ROM световой поток от лазера фокусируется с помощью оптической системы таким образом, что точка фокуса располагается на поверхности дискового носителя записи. При совмещении точки фокуса с питом, отраженный от поверхности микроуглубления световой поток за счет дифракции практически не попадает на поверхность линзы. Однако если световой поток отражается от поверхности диска, покрытого защитным слоем, он достигает линзы и, пройдя через расщепитель, попадает на фотоприемник. При этом логической единице соответствует участок отражающей поверхности, а логическому нулю – участок рассеивающей поверхности, то есть микроуглубление.
В компьютер компакт-диск пришел из техники цифровой аудиозаписи. Аудио компакт-диск, называемый AudioCD, как и грампластинка, имеет один спиральный трек, начинающийся с периферийной стороны диска. Эта спираль имела 22188 витков и длину более 5 километров. Для выравнивания продольной плотности записи диск вращается с переменной скоростью, а привод обеспечивает постоянство линейной скорости носителя, проходящего под головкой. Скорость считывания аудиоданных, требуемая для воспроизведения звука в реальном времени, соответствует информационной скорости 150 Кб/с. Диск способен хранить информацию 74 минут звучания стереофонического аудиосигнала с частотой квантования 44,1 кГц и 16-разрядными выборками. На диске диаметром 120 мм используется только одна поверхность. В таком же виде появились и первые компакт-диски для хранения данных.
Современные приводы CD-ROM достигли высоких скоростей считывания информации благодаря внедрению технологии CAV (ConstantAngularVelocity – постоянная угловая скорость). В этом режиме угловая скорость диска остается постоянной, соответственно на периферийных участках диска данные считываются с большей скоростью, чем на внутренних участках. Средняя скорость считывания при этом гораздо ближе к минимальным значениям, поскольку запись на диске начинается с внутренних областей. Сегодняшние максимальные скорости дисководов CD-ROM, указываемые производителями, традиционно рассчитываются исходя из кратности по отношению к стандартной единице, равной производительности первых CD-ROM (150 Кб/с).
Самые современные дисководы имеют 58-кратную скорость считывания. Так как дальнейшее увеличение производительности за счет увеличения частоты вращения диска практически невозможно (из-за ограничений по механике), сейчас ведутся исследования в других направлениях. Например, фирма ZenResearch разработала технологию TrueX, суть которой заключается в параллельном считывании данных с нескольких соседних витков дорожки. Таким образом обеспечивается практически одинаковая скорость считывания по всей поверхности диска, а производительность заметно возрастает.
Главный недостаток стандартных дисководов CD-ROM – возможность считывать, но не записывать информацию. Для этого необходимы другие устройства – дисководы CD-R или CD-RW.
--PAGE_BREAK--Звуковая карта
Мультимедийный компьютер обязательно должен уметь воспроизводить качественный звук. Основным устройством для работы со звуком стали специализированные звуковые карты. Они появились на рынке около 10 лет назад.
Сама по себе звуковая карта звучать, разумеется, не может. Поэтому для того, чтобы услышать звук к ней необходимо подключить колонки. На большинстве звуковых карт имеются два входа: линейный и для микрофона, один или два выхода: для колонок и для наушников, а также разъем для подключения внешнего MIDI-устройства или джойстика.
Устройство и принцип работы
Любая звуковая карта имеет дело с двумя основными форматами компьютерного звука: цифровой (Wave-формат) и синтезированный (MIDI). Следовательно, в ее конструкции есть два основных элемента, отвечающих за работу с этими видами звука: Цифро-аналоговый и аналогово-цифровой преобразователь (ЦАП/АЦП) и синтезатор. Разумеется, на плате располагаются и другие элементы, например, микросхема, отвечающая за обработку сжатого звука, а иногда – еще и модуль спецэффектов.
Цифровой звук можно сравнить с фотографией. Это точная цифровая копия музыки, человеческой речи и любого другого звука. Принцип воспроизведения такого звука звуковой картой похож на принцип работы магнитофона. В этом случае звуковая карта лишь переводит цифровой звук в аналоговую форму. Возможно и обратное – аналогово-цифровое преобразование. Оно происходит при записи в компьютер звука от внешнего источника.
Цифровой звук – основной стандарт компьютерного звука сегодня. Именно оцифрованный звук мы слышим, играя в компьютерные игры, слушая аудио компакт-диск или просматривая мультимедиа-энциклопедию.
Если цифровой звук можно сравнить фотографией, то синтезированный (MIDI) звук можно уподобить конструкции, собираемой из стандартных блоков. Блоки – это, проще говоря, звуки, сыгранные определенным инструментом. При воспроизведении MIDI-музыки на звуковую карту идет не цифровой звуковой поток, а команды, заставляющие ее воспроизводить какую-либо ноту определенным музыкальным инструментом. И звуковая карта конструирует из посланного ей кода какую-нибудь мелодию.
Существуют два основных метода воспроизведения MIDI-звука – с помощью частотного синтеза (FM-синтезатор) или волновой таблицы (Wavetable-синтезатор).
В FM-синтезаторе каждый инструмент описан как совокупность нескольких частотных генераторов простых частот, для каждой из которых заданы амплитуда, частота, фаза и другие параметры. Поэтому качество музыки на звуковой карте с FM-синтезатором оставляет желать лучшего. В настоящее время все крупные производители звуковых карт прекратили их выпуск.
В табличном синтезаторе используется волновая таблица. Это своего рода банк, где хранятся оцифрованные образцы звучания реальных инструментов. Поэтому музыка на табличном синтезаторе звучит более реалистично и качественно. Табличным синтезатором снабжены практически все современные звуковые карты.
Основные характеристики
Современные звуковые карты бывают 16 или 20-разрядными. Отличие этих двух типов карт в качестве воспроизводимого ими звука. 16-итные карты обеспечивают неплохое звучание и являются звуковыми картами на каждый день. 20-битная карта – выбор профессионалов.
Звуковые карты также различаются по количеству голосов, которые может одновременно воспроизводить установленный на ней синтезатор при воспроизведении MIDI-музыки. Конечно, лучше карты с большим числом голосов. Однако редко в какой MIDI-мелодии можно найти более 32 голосов, то есть партий инструментов.
Еще одной важной характеристикой является частота квантования звука. Стереозвук высокого качества должен иметь частоту не менее 44,1 кГц. Многие сегодняшние звуковые карты поддерживают даже частоту 48 кГц, хотя на практике такая частота вряд ли понадобится. 44 кГц – вполне приличная частота оцифровки и именно такая частота используется при записи аудио компакт-дисков.
Наличие полного дуплекса говорит о том, что звуковая карта может и воспроизводить и записывать звук одновременно. Этот режим особенно актуален при использовании Internet-телефонии. Полнодуплексными являются практически все карты, выпущенные после 1998 года.
В 1998 году на рынке звуковых карт произошла настоящая революция: после многолетней ориентации на старый интерфейс ISA звуковые карты плавно перешли на более скоростной интерфейс PCI. И сегодня практически все звуковые карты выпускаются именно в этом форм-факторе.
--PAGE_BREAK--