Курсовая работа по предмету "Математика"


Вычисление наибольшего, наименьшего значения функции в ограниченной области



Практическая работа

На тему: «Вычисление наибольшего, наименьшего значения функции в ограниченной области»

Цель

1. Ознакомление и приобретение навыков вычисления наибольшего, наибольшего значения функции в ограниченной области.

Основные вопросы:

1.Наибольшее и наименьшее значение функции.

2.Ограниченная область.

3.Равномерно непрерывная функция.

Если функция f(x, y, …) определена и непрерывна в замкнутой и ограниченной области D, то в этой области найдется, по крайней мере, одна точка

N(x0, y0, …), такая, что для остальных точек верно неравенство

f(x0, y0, …) ? f(x, y, …)

а также точка N1(x01, y01, …), такая, что для всех остальных точек верно неравенство

f(x01, y01, …) ? f(x, y, …)

тогда f(x0, y0, …) = M - наибольшее значение функции, а f(x01, y01, …) = m - наименьшее значение функции f(x, y, …) в области D.

Непрерывная функция в замкнутой и ограниченной области D достигает по крайней мере один раз наибольшего значения и один раз наименьшего.

Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой ограниченной области D, а M и m - соответственно наибольшее и наименьшее значения функции в этой области, то для любой точки m I [m, M] существует точка

N0(x0, y0, …) такая, что f(x0, y0, …) = m.

Проще говоря, непрерывная функция принимает в области D все промежуточные значения между M и m. Следствием этого свойства может служить заключение, что если числа M и m разных знаков, то в области D функция по крайней мере один раз обращается в ноль.

Свойство. Функция f(x, y, …), непрерывная в замкнутой ограниченной области D, ограничена в этой области, если существует такое число К, что для всех точек области верно неравенство

Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой ограниченной области D, то она равномерно непрерывна в этой области, т.е. для любого положительного числа e существует такое число D > 0, что для любых двух точек (х1, y1) и (х2, у2) области, находящихся на расстоянии, меньшем D, выполнено неравенство

Точки, в которых функция принимает наибольшее или наименьшее значения в ограниченной замкнутой области, называют также точками абсолютного или глобального экстремума. Если наибольшее или наименьшее значения достигаются во внутренних точках области, то это точки локального экстремума функции z = f ( x , y ) . Таким образом точки, в которых функция принимает наибольшее или наименьшее значения являются либо локальными экстремумами, либо граничными точками области. Следовательно, чтобы найти наибольшее и наименьшее значения функции z = f ( x , y ) в ограниченной замкнутой области D, следует вычислить значение функции в критических точках области D, а также наибольшее и наименьшее значения функции на границе. Если граница задана уравнением ? ( x , y ) = 0 , то задача отыскания наибольшего и наименьшего значений функции на границе области D сводится к отысканию наибольшего и наименьшего значений (абсолютного экстремума) функции одной переменной, так как уравнение границы области D - ? ( x , y ) = 0 связывает переменные x и y между собой. Значит, если разрешить уравнение ? ( x , y ) = 0 относительно одной из переменных или параметрические уравнения границы области D и подставить их в уравнение z = f ( x , y ) , то придем к задаче нахождения наибольшего и наименьшего значений функции одной переменной. Если уравнение ? ( x , y ) = 0 невозможно разрешить относительно одной из переменных или невозможно найти параметрическое задание границы, то задача сводится к отысканию условного экстремума.

Правило нахождения наибольшего и наименьшего значений дифференцируемой в области D функции z = ?(х;у) состоит в следующем:

1. Найти все критические точки функции, принадлежащие D , и вычислить значения функции в них;

2. Найти наибольшее и наименьшее значения функции z = ?(х;у) на границах области;

3. Сравнить все найденные значения функции и выбрать из них наибольшее М и наименьшее.

Задачи:

1. Найти наибольшее и наименьшее значения функции z=х2у + ху2 + ху в замкнутой области, ограниченной линиями: у = 1/x, х = 1, х = 2, у = -1,5

Решение: Здесь zx=2ху+у2+у, zy2+2ху+х.

Находим все критические точки:

Решением системы являются точки (0;0), (-1;0), (0; -1),(-1/3;-1/3). Ни одна из найденных точек не принадлежит области D .

2. Исследуем функцию z на границе области, состоящей из участков АВ, ВС, СЕ и ЕА

На участке АВ:

Значения функции z(-1) = -1,

На участке ВС:

Значения функции z(1) = 3, z(2) = 3,5.

На участке СЕ:

zy=4у+6, 4у+6=0, у=-3/2.

Значения функции

На участке АЕ:

Значения функции z(1) = -3/4,z(2) = -4,5.

3. Найти наибольшее M и наименьшее m значения функции z = 4x2-2xy+y2-8x в замкнутой области D, ограниченной: x = 0, y = 0, 4x+3y=12 .

Решение

1. Построим область D (рис. 1.5) на плоскости Оху.

Угловые точки: О (0; 0), В (0; 4), А (3; 0).

Граница Г области D состоит из трёх частей:

Примеры:

1. Найти наибольшее и наименьшее значения функции z = х2у + ху2 + ху в замкнутой области, ограниченной линиями: х = 1, х = 2, у = 1,5

2. Найти наибольшее и наименьшее значения функции z = 2 x 3 ? 6 xy + 3 y 2 в замкнутой области D, ограниченной осью OY, прямой y = 2 и параболой y = x 2 при x ? 0 .

3. Найти наибольшее M и наименьшее m значения функции z = 4x2-2xy+y2-8x в замкнутой области D, ограниченной: x = 0, y = 0, 4x+3y=12 .

4. Найти наибольшее и наименьшее значения функции z=х2у + ху2 + ху в замкнутой области, ограниченной линиями: у = 1/x, х = 1, х = 2, у = -1,5

5. Найти наибольшее и наименьшее значения функции в треугольнике, ограниченном прямыми , , .




Не сдавайте скачаную работу преподавателю!
Данную курсовую работу Вы можете использовать для написания своего курсового проекта.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем курсовую работу самостоятельно:
! Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ.
! Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу.
! Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться.
! План курсовой работы Нумерованным списком описывается порядок и структура будующей работы.
! Введение курсовой работы Что пишется в введении, какой объем вводной части?
! Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать.
! Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа.
! Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема.
! Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом.
! Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ.

Читайте также:
Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия.
Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта.
Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты.
Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести.
Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя.
Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика.

Сейчас смотрят :

Курсовая работа Фискальная политика государства
Курсовая работа Расчет и проект пункта послеуборочной обработки и хранения зерна на
Курсовая работа Производительность труда и пути ее повышения
Курсовая работа Организация перевозки груза на воздушном транспорте
Курсовая работа Маркетинговые исследования потребителей туристского продукта
Курсовая работа Анализ производственной деятельности предприятия
Курсовая работа Пути повышения эффективности использования трудовых ресурсов предприятия (ООО "Кумертауский электродный завод")
Курсовая работа Интегрированные уроки как одно из средств повышения активности учащихся на уроках в старших классах
Курсовая работа Проектирование подсистем оперативного управления производством
Курсовая работа Рынок труда и политика занятости
Курсовая работа Финансовые услуги коммерческих банков
Курсовая работа Вирусы и природа их происхождения
Курсовая работа Деятельность органа федерального казначейства и его территориальных органов
Курсовая работа ПРОКУРАТУРА РОССИЙСКОЙ ФЕДЕРАЦИИ
Курсовая работа Организация работы вагоносборочного участка ремонтного депо пассажирских вагонов