Конспект лекций по предмету "Физика"


Частица в прямоугольной потенциальной яме.

При выращивании пленки узкозонного полупроводника между двумя слоями широкозонного материала может быть реализован потенциальный рельеф, показанный на рис. 1.4.

Рис. 4. Энергетическая диаграмма прямоугольной потенциальной ямы

В этом случае задача определения стационарных состояний движения электрона сводится к задаче о поведении частицы в пря­моугольной потенциальной яме.
Для асимметричной потенциальной ямы (рис. 1.4, а) с

при E< U2 общие решения уравнения (1.1.2) в областях 1 - 3 (с по­стоянными значениями потенциала) можно представить в виде


(1.4.1)


где
Решения и записаны с учетом того, что они должны равняться нулю на бесконечности.
«Сшивая» волновые функции и их первые производные при x = ±0,5W, придем к уравнению
(1.4.2)
определяющему значения волнового вектора K, удовлетворяющие условиям данной задачи.
Подставляя и в (1.4.2), получим трансцендентное уравне­ние, позволяющее оценить разрешенные значения K:
KW=n (1.4.3)
где п = 1, 2, 3... нумерует разрешенные значения K в порядке их возрастания; /, j = 1, 2; значения арксинуса надо брать в интервале 0. . . /2 .
Уравнение (1.4.3) определяет набор положительных значений волнового вектора Кп и, следовательно, возможные уровни энер­гии, соответствующие этим состояниям. Таким образом, энергия частицы в потенциальной яме оказывается квантованной и принимает одно из разрешенных дискретных зна­чений Еп. Чтобы подчеркнуть это, потенциальные ямы (особенно узкие) часто называют квантовыми ямами (КЯ).
Поскольку аргумент арксинуса не может превышать 1, значе­ния K лежат только в интервале
. (1.4.4)
Если WG2<, то в КЯ находится не более одного разрешенно­го энергетического уровня. В общем случае количество разрешен­ных энергетических уровней в прямoугольной квантовой яме мож­но оценить, используя неравенство
n < (1.4.5)
Согласно (1.4.5) при U21 всегда найдутся столь малые зна­чения WG2 , для которых в КЯ не будет ни одного разрешенного уровня энергии. Заметим, что при U2 = U1 (рис. 1 .4, б) условие (1.4.5) для п = 1 всегда выполняется. Следовательно, симмет­ричная одномерная потенциальная яма с произвольными значе­ниями W и U всегда имеет не менее одного разрешенного энер­гетического уровня. Более того, если в случае произвольного одномерного потенциала асимптотические значения и между ними находится один минимум, то все­гда имеется, по крайней мере, один связанный уровень. Если же то связанного состояния может и не быть.В случае двух и трех измерений в неглубоких узких потенциаль­ных ямах связанных состояний может не быть даже при т.е. частица не будет «захватываться» ямой.
Отметим, что согласно законам классической механики частица мо­жет «захватываться» и совершать финитное движение в любой по­тенциальной яме, лишь бы энергия частицы была достаточно мала.
Особенно простой вид имеют решения уравнения (1.4.3) для бесконечно больших значений U1 и U2. В случае прямоугольной ямы с бесконечно высокими стенками (БПЯ) согласно (1.4.3)
Kn=, (1.4.6)
где п = 1, 2, 3... В этом случае на ширине ямы укладывается целое число длин полуволн де Бройля

При этом разрешенные дискретные уровни энергии частицы определяются соотношением, эВ:
(1.4.7)
где m0 - масса свободного электрона, W- в нм.
В случае БПЯ нормированные волновые функции частицы в состояниях с различными значениями Еп могут быть представле­ны в виде

если п - нечетное,
(1.4.8)
если п — четное.
Согласно (1.4.8) волновая функция основного состояния (состояния с наименьшей энергией) не имеет нулей внутри кванто­вой ямы, функция (волновая функция первого возбужденного состояния) имеет один нуль (узел) внутри КЯ, функция имеет два узла и т.д. Аналогичную зависимость числа узлов волновой функции от номера возбужденного состояния демонстрируют и другие одномерные системы, в которых движение происхо­дит в ограниченной области пространства.
В общем случае, когда разрешенные значения волно­вого вектора (а следовательно, и энергии) можно найти, решая уравнение (1.4.3) численно или графически. Однако и в этом слу­чае удается получить ряд соотношений, облегчающих практиче­ские оценки.
Во-первых, можно показать, что

(1.4.9)
здесь представляет собой эффективную длину области локализации частицы с энергией Еп и отражает тот факт, что частица, преимущественно локализованная внутри КЯ, все же проникает и в области барьеров.
Во-вторых, раскладывая arcsin в ряд, можно получить выраже­ние для оценки разрешенных значений волнового вектора. Полагая Еп<<Uj, получим
(1.4.10)
В первом приближении R1 =R2=1, При этом для Еп/Uтiп <0,25 ошибка в оценке Кп по (1.4.10) будет менее 5 %, Во втором приближении следует полагать
(1.4.11)
здесь - энергия n-го уровня, рассчитанная в первом прибли­жении при Rj=1. При использовании Rj в виде (1.4.11) ошибка в оценке Кп по (1.4.10) будет менее 2 % для Еп/Umin < 0,3 .
В-третьих, для симметричной КЯ (рис. 1.4, б) волновая функция, соответствующая состояниям положительной четности (n = 1 3,5...), может быть представлена в виде
(1.4.12)
где
(1.4.13)
Волновая функция, соответствующая состояниям отрицатель­ной четности (n= 2, 4, 6...),
(1.4.14)
здесь

Cn=-Dn (1.4.15)

Для симметричной КЯ ширины W и глубины U0, введя нормиро­ванные переменные Y = Е/Е* и Х = U0/Е* (Е*=- энергия первого разрешенного уровня в БПЯ), выражение (1.4.2) можно представить в виде
(1.4.16)
Анализ (1.4.16) показывает, что в симметричной КЯ конечной глубины для 0<Х≤1 возможно существование лишь одного раз­решенного состояния с энергией Е1Е*, для 1<xколичество разрешенных состояний равно 2, для 4<X9 равно 3 и т.д. Кроме того, если в симметричной квантовой яме возможно существование n-го энергетического состояния (с n2), то независимо от глубины КЯ U0 а общее число разре­шенных энергетических уровней п в симметричной прямоугольной КЯ можно оценить, используя неравенство

Выполнив разложение (1.4.3) при Y/X<<1 (большие значения W и (или) U0), для основного состояния в первом приближении получим, что
(1.4.17a)
Возникающая при такой аппроксимации ошибка представлена на рис. 1.5. Видно, что при Y>0,37 ошибка определения положения первого разрешенного энергетического уровня в КЯ не превысит 5 %.

Рис.1.5. Характер ошибки, возникающей при аппроксимации выражения (1.4.16):
Кривая 1- с использованием (1.4.17а), 2 - с использованием (1.4.17б), 3 - с использованием (1.4.17в), 4 - с использованием (1.4.19), 5 - с использованием (1.4.20)

Во втором приближении выражение для оценки Y принимает вид
(1.4.17б)
Такая аппроксимация дает ошибку меньше 5 % для Y ≥ 0,13. Если в (1.4.17б) изменить коэффициент перед в круглых скобках, т.е. положить, что
(1.4.17в)
то погрешность определения Y станет меньше 5 % уже для Y ≥ 0,04
При очень малых W (узкая КЯ) разложение (1.4.3) в ряд для симметричной КЯ позволяет представить выражение для оценки энергии основного состояния в виде


или в переменных X и Y
Y (1.4.186)
Данное выражение можно использовать только при очень малых W. Анализ показывает, что расширить интервал приемлемых оце­нок положения основного состояния в КЯ в области малых X мож­но, изменяя коэффициент перед X в знаменателе (1.4.18б). На рис. 1.5 представлено поведение ошибки при использовании выражения
Y (1.4.19)
Еще лучшие результаты могут быть достигнуты при использова­нии выражения
(1.4.20)
Существует и другая возможность для оценки энергетического положения разрешенных состояний в симметричной КЯ конечной глубины. В этом случае, используя (1.4.16), рассчитывают зависи­мости Х от Y. При этом

. (1.4.21)
Зависимости Х(Y) для первых трех энергетических уровней, рассчитанные с использованием (1.4.21), приведены на рис. 1.6. По ним, задаваясь параметрами КЯ W, U0 и т (т.е. X), можно определить Y и энергетическое положение уровней. Видно, что для КЯ за­данной ширины с уменьшением глубины U0 (т.е. X) будут происхо­дить уменьшение энергии разрешенных состояний Y и последова­тельное выталкивание их из ямы (т.е. уровни будут сгущаться медленнее, чем уменьшается глубина ямы). Причем при изменении U0 до En-1() энергия n-го уровня в КЯ конечной глубины будет уменьшаться от Еп() лишь до En-1(), а при даль­нейшем уменьшении U0 п-й уровень будет вытолкнут из ямы.
Решив одномерную задачу, в данном случае легко получить ре­шение и для двумерного, и для трехмерного случая. Например, если частица движется в потенциальном поле U=U(x)+U(y)+U(z), где
, ,
,
то ее волновая функция , a E=E1+E2+E3. В этом случае трехмерное уравнение Шредингера распадается на три независимых одномерных уравнения:




Рис.1.6. Зависимость X(Y) для первых трёх энергетических уровней с n=1,2 и 3 (кривые 1-3 соответственно), рассчитанные с использованием выражения (1.4.21)

Таким образом, чтобы получить решение для данной трехмерной задачи, достаточно решить одно из этих уравнений (что мы уже сде­лали ранее) и по аналогии записать решения для двух других урав­нений. Отметим, что при hкаждому значению энергии бу­дет соответствовать одна волновая функция (х,у,z). Другими словами, в системе отсутствуют вырожденные состояния. В случае h=d=W симметрия поля совпадет с симметрией куба и система может иметь двукратно и трехкратно вырожденные уровни. Кроме того, особый характер зависимости потенциаль­ной энергии от координаты в данном случае может приводить к дополнительному (случайному) вырождению.


Не сдавайте скачаную работу преподавателю!
Данный конспект лекций Вы можете использовать для создания шпаргалок и подготовки к экзаменам.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем конспект самостоятельно:
! Как написать конспект Как правильно подойти к написанию чтобы быстро и информативно все зафиксировать.