Конспект лекций по предмету "Правовая информатика"


КУРС ЛЕКЦИЙ ПО ОБЩЕЙ БИОХИМИИ

ГОУВПО УГМА Федерального агентства по здравоохранению и социальному развитию

Кафедра биохимии




КУРС ЛЕКЦИЙ



ПО ОБЩЕЙ БИОХИМИИ



Модуль 8. Биохимия водно-солевого обмена и кислотно-основного состояния

Автор: к.б.н., доцент кафедры биохимии Гаврилов И.В.

Екатеринбург,
2009г

ЛЕКЦИЯ № 24



Тема: Водно-солевой и минеральный обмен

Факультеты: лечебно-профилактический, медико-профилактический, педиатрический.
2 курс.
Водно-солевой обмен – обмен воды и основных электролитов организма (Na+, K+, Ca2+, Mg2+, Cl-, HCO3-, H3PO4).
Электролиты – вещества, диссоциирующие в растворе на анионы и катионы. Их измеряют в моль/л.
Неэлектролиты – вещества, недиссоциирующие в растворе (глюкоза, креатинин, мочевина). Их измеряют в г/л.
Минеральный обмен – обмен любых минеральных компонентов, в том числе и тех, которые не влияют на основные параметры жидкой среды в организме.
Вода – основной компонент всех жидкостей организма.

Биологическая роль воды

Вода является универсальным растворителем для большинства органических (кроме липидов) и неорганических соединений. Вода и растворенные в ней вещества создают внутреннюю среду организма. Вода обеспечивает транспорт веществ и тепловой энергии по организму. Значительная часть химических реакций организма протекает в водной фазе. Вода участвует в реакциях гидролиза, гидратации, дегидратации. Определяет пространственное строение и свойства гидрофобных и гидрофильных молекул. В комплексе с ГАГ вода выполняет структурную функцию.

ОБЩИЕ СВОЙСТВА ЖИДКОСТЕЙ ОРГАНИЗМА

Объем. У всех наземных животных жидкости составляет около 70% от массы тела.
Распределение воды в организме зависит от возраста, пола, мышечной массы,… При полном лишении воды смерть наступает через 6-8 дней, когда количество воды в организме снижается на 12%.


РЕГУЛЯЦИЯ ВОДНО-СОЛЕВОГО БАЛАНСА ОРГАНИЗМА

В организме водно-солевой баланс внутриклеточной среды поддерживается постоянством внеклеточной жидкости. В свою очередь, водно-солевой баланс внеклеточной жидкости поддерживается через плазму крови с помощью органов и регулируется гормонами.

Органы, регулирующие водно-солевой обмен

Поступление воды и солей в организм происходит через ЖКТ, этот процесс контролируется чувством жажды и солевым аппетитом. Выведение излишков воды и солей из организма осуществляют почки. Кроме того, воду из организма выводят кожа, легкие и ЖКТ.

Баланс воды в организме

Изменения в работе почек, кожи, легких и ЖКТ может привести к нарушению водно-солевого гомеостаза. Например, в жарком климате, для поддержания…

Гормоны, регулирующие водно-солевой обмен

Антидиуретический гормон (АДГ), или вазопрессин — пептид с молекулярной массой около 1100 Д, содержащий 9 АК, соединённых одним дисульфидным… АДГ синтезируется в нейронах гипоталамуса, переносится в нервные окончания… Высокое осмотическое давление внеклеточной жидкости активирует осморецепторы гипоталамуса, в результате возникают…

Ренин-ангиотензин-альдостероновая система



Ренин

Ренин — протеолитический фермент, продуцируемый юкстагломерулярными клетками, расположенными вдоль афферентных (приносящих) артериол почечного тельца. Секрецию ренина стимулирует падение давления в приносящих артериолах клубочка, вызванное уменьшением АД и снижением концентрации Na+. Секрецию ренина также способствует снижение импульсации от барорецепторов предсердий и артерий в результате уменьшения АД. Секрецию ренина ингибирует Ангиотензин II, высокое АД.
В крови ренин действует на ангиотензиноген.
Ангиотензиноген — α2-глобулин, из 400 АК. Образование ангиотензиногена происходит в печени и стимулируется глюкокортикоидами и эстрогенами. Ренин гидролизует пептидную связь в молекуле ангиотензиногена, отщепляя от него N-концевой декапептид - ангиотензин I, не имеющий биологической активности.
Под действием антиотензин-превращающего фермента (АПФ) (карбоксидипептидилпептидазы) эдотелиальных клеток, лёгких и плазмы крови, с С-конца ангиотензина I удаляются 2 АК и образуется ангиотензин II (октапептид).

Ангиотензин II

Ангиотензин II функционирует через инозитолтрифосфатную систему клеток клубочковой зоны коры надпочечников и ГМК. Ангиотензин II стимулирует синтез и секрецию альдостерона клетками клубочковой зоны коры надпочечников. Высокие концентрации ангиотензина II вызывают сильное сужение сосудов периферических артерий и повышают АД. Кроме этого, ангиотензин II стимулирует центр жажды в гипоталамусе и ингибирует секрецию ренина в почках.
Ангиотензин II под действием аминопептидаз гидролизуется в ангиотензин III (гептапептид, с активностью ангиотензина II, но имеющий в 4 раза более низкую концентрацию), который затем гидролизуется ангиотензиназами (протеазы) до АК.

Альдостерон

Синтез и секрецию альдостерона стимулируют ангиотензин II, низкая концентрация Na+ и высокая концентрацией К+ в плазме крови, АКТГ, простагландины.… Рецепторы альдостерона локализованы как в ядре, так и в цитозоле клетки.… В результате альдостерон стимулирует реабсорбцию Na+ в почках, что вызывает задержку NaCl в организме и повышает…

Схема регуляции водно-солевого обмена

Роль системы РААС в развитии гипертонической болезни
Гиперпродукция гормонов РААС вызывает повышение объема циркулирующей жидкости, осмотического и артериального давления, и ведет к развитию гипертонической болезни.
Повышение ренина возникает, например, при атеросклерозе почечных артерий, который возникает у пожилых.
Гиперсекреция альдостерона – гиперальдостеронизм, возникает в результате нескольких причин.
Причиной первичного гиперальдостеронизма (синдром Конна) примерно у 80% больных является аденома надпочечников, в остальных случаях — диффузная гипертрофия клеток клубочковой зоны, вырабатывающих альдостерон.
При первичном гиперальдостеронизме избыток альдостерона усиливает реабсорбцию Na+ в почечных канальцах, что служит стимулом к секреции АДГ и задержке воды почками. Кроме того, усиливается выведение ионов К+, Mg2+ и Н+.
В результате развиваются: 1). гипернатриемия, вызывающая гипертонию, гиперволемию и отёки; 2). гипокалиемия, ведущая к мышечной слабости; 3). дефицит магния и 4). лёгкий метаболический алкалоз.
Вторичный гиперальдостеронизм встречается гораздо чаще, чем первичный. Он может быть связан с сердечной недостаточностью, хроническими заболеваниями почек, а также с опухолями, секретирующие ренин. У больных наблюдают повышенный уровень ренина, ангиотензина II и альдостерона. Клинические симптомы менее выражены, чем при первичном альдостеронизе.


КАЛЬЦИЙ, МАГНИЙ, ФОСФОРНЫЙ ОБМЕН
Функции кальция в организме:
Неорганический компонент костей и зубов (гидроксиаппатит); Внутриклеточный посредник ряда гормонов (инозитолтрифосфатная система); Участвует в генерации потенциалов действия в нервах и мышцах; Участвует в свертывании крови; Запускает мышечное сокращение, фагоцитоз, секрецию гормонов, нейромедиаторов и т.д.; Участвует в митозе, апоптозе и некробиозе; Увеличивает проницаемость мембраны клеток для ионов калия, влияет на натриевую проводимость клеток, на работу ионных насосов; Кофермент некоторых ферментов; Функции магния в организме:
Является коферментом многих ферментов (транскетолаз (ПФШ), глюкозо-6ф дегидрогеназы, 6-фосфоглюконат дегидрогеназы, глюконолактон гидролазы, аденилатциклазы и т.д.); Неорганический компонент костей и зубов. Функции фосфата в организме:
Неорганический компонент костей и зубов (гидроксиаппатит); Входит в состав липидов (фосфолипиды, сфинголипиды); Входит в состав нуклеотидов (ДНК, РНК, АТФ, ГТФ, ФМН, НАД, НАДФ и т.д.); Обеспечивает энергетический обмен т.к. образует макроэргические связи (АТФ, креатинфосфат); Входит в состав белков (фосфопротеины); Входит в состав углеводов (глюкозо-6ф, фруктозо-6ф и т.д.); Регулирует активность ферментов (реакции фосфорилирования / дефосфорилирования ферментов, входит в состав инозитолтрифосфата – компонента инозитолтрифосфатной системы); Участвует в катаболизме веществ (реакция фосфоролиза); Регулирует КОС т.к. образует фосфатный буфер. Нейтрализует и выводит протоны с мочой.

Распределение кальция, магния и фосфатов в организме

Во взрослом организме содержится в около 1кг фосфора:
Кости и зубы содержат 85% фосфора; Внеклеточная жидкость – 1% фосфора. В сыворотке … Концентрация магния в плазме крови 0,7-1,2 ммоль/л.

Обмен кальция, магния и фосфатов в организме

С пищей в сутки должно поступать кальция - 0,7-0,8г, магния - 0,22-0,26г, фосфора – 0,7-0,8г. Кальций всасывается плохо на 30-50%, фосфор хорошо – на 90%.
Помимо ЖКТ, кальций, магний и фосфор поступают в плазму крови из костной ткани, в процессе ее резорбции. Обмен между плазмой крови и костной тканью по кальцию составляет 0,25-0,5г/сут, по фосфору – 0,15-0,3г/сут.
Выводится кальций, магний и фосфор из организма через почки с мочой, через ЖКТ с калом и через кожу с потом.

Регуляция обмена

Основными регуляторами обмена кальция, магния и фосфора являются паратгормон, кальцитриол и кальцитонин.

Паратгормон

Секрецию паратгормона стимулирует низкая концентрация Са2+, Mg2+ и высокая концентрация фосфатов, ингибирует витамин Д3.
Скорость распада гормона уменьшается при низкой концентрации Са2+ и… Паратгормон действует на кости и почки. Он стимулирует секрецию остеобластами инсулиноподобного фактора роста 1 и…

Гиперпаратиреоз

Гиперпаратиреоз вызывает:
1. разрушение костей, при мобилизации из них кальция и фосфатов.… 2. гиперкальциемию, при усилении реабсорбции кальция в почках. Гиперкальциемия приводить к снижению нервно-мышечной…

Гипопаратиреоз

Гипопаратиреоз обусловлен недостаточностью паращитовидных желёз и сопровождается гипокальциемией. Гипокальциемия вызывает повышение нервно-мышечной проводимости, приступы тонических судорог, судороги дыхательных мышц и диафрагмы, ларингоспазм.

Кальцитриол


1. В коже под влиянием УФ-излучения из 7-дегидрохолестерола образуется… 2. В печени 25-гидроксилаза гидроксилирует холекальциферол в кальцидиол (25-гидроксихолекальциферол, 25(OH)Д3).…

Кальцитонин

Кальцитонин — полипептид, состоит из 32 АК с одной дисульфидной связью, секретируется парафолликулярными К-клетками щитовидной железы или С-клетками паращитовидных желёз.
Секрецию кальцитонина стимулирует высокая концентрация Са2+ и глюкагона, подавляет низкая концентрация Са2+.
Кальцитонин:
1. подавляет остеолиз (снижая активность остеокластов) и ингибирует высвобождение Са2+ из кости;
2. в канальцах почек тормозит реабсорбцию Са2+, Mg2+ и фосфатов;
3. тормозит пищеварение в ЖКТ,

Изменения уровня кальция, магния и фосфатов при различных патологиях

Повышение концентрации Са2+ в плазме крови наблюдается при:
гиперфункции паращитовидных желез; переломы костей; полиартриты; множественные… Снижение концентрации фосфатов в плазме крови наблюдается при:
рахите; … Повышение концентрации фосфатов в плазме крови наблюдается при:
гипофункции паращитовидных желез; передозировка…

Роль микроэлементов: Mg2+, Mn2+, Co, Cu, Fe2+, Fe3+, Ni, Mo, Se, J. Значение церулоплазмина, болезнь Коновалова-Вильсона.

Марганец –кофактор аминоацил-тРНК синтетаз.

Биологическая роль Na+, Cl-, K+, HCO3- - основных электролитов, значение в регуляции КОС. Обмен и биологическая роль. Анионная разность и ее коррекция.



Тяжелые металлы (свинец, ртуть, медь, хром и др.), их токсическое действие.

Снижение содержания хлоридов в сыворотке крови: алкалоз гипохлоремический (после рвоты), ацидоз респираторный, избыточное потоотделение, нефрит с… Повышенное выделение хлоридов с мочой: гипоальдостеронизм (болезнь Аддисона),… Снижение выведения хлоридов с мочой: Потеря хлоридов при рвоте, диареи, болезнь Кушинга, терминальная фаза почечной…

ЛЕКЦИЯ № 25



Тема: КОС

2 курс.
Кислотно-основное состояние (КОС) - относительное постоянство реакции…


Биологическое значение регуляции рН, последствия нарушений

Отклонение рН от нормы на 0,1 вызывает заметные нарушения со стороны дыхательной, сердечно-сосудистой, нервной и других систем организма.
При ацидемии возникает:
1. усиление дыхания до резкой отдышки, нарушение дыхания в результате бронхоспазма;


Основные принципы регуляции КОС

В основе регуляции КОС лежат 3 основных принципа:
1. постоянство рН. Механизмы регуляции КОС поддерживают постоянство рН.
2. изоосмолярность. При регуляции КОС, концентрация частиц в межклеточной и внеклеточной жидкости не изменяется.
3. электронейтральность. При регуляции КОС, количество положительных и отрицательных частиц в межклеточной и внеклеточной жидкости не изменяется.

МЕХАНИЗМЫ РЕГУЛЯЦИИ КОС

Принципиально существуют 3 основных механизма регуляции КОС:
Физико-химический механизм, это буферные системы крови и тканей; Физиологический механизм, это органы: легкие, почки, костная ткань, печень, кожа, ЖКТ. Метаболический (на клеточном уровне). В работе этих механизмов есть принципиальные различия:

Показатели
Буферные системы
Органы

Скорость регуляции КОС
быстро: секунды
медленно: минуты - часы

Степень регуляции КОС
частично
полностью

Расходование при регуляции КОС
расходуются
не расходуются


Физико-химические механизмы регуляции КОС

Буфер – это система, состоящая из слабой кислоты и ее соли с сильным основанием (сопряженная кислотно-основная пара).
Принцип работы буферной системы состоит в том, что она связывает Н+ при их избытке и выделяет Н+ при их недостатке: Н+ + А- ↔ АН. Таким образом, буферная система стремиться противостоять любым изменениям рН, при этом один из компонентов буферной системы расходуется и требует восстановления.
Буферные системы характеризуются соотношением компонентов кислотно-основной пары, емкостью, чувствительностью, локализацией и величиной рН, которую они поддерживают.
Существует множество буферов как внутри, так и вне клеток организма. К основным буферным системам организма относят бикарбонатный, фосфатный белковый и его разновидность гемоглобиновый буфер. Около 60% кислых эквивалентов связывают внутриклеточные буферные системы и около 40% -внеклеточные.

Бикарбонатный (гидрокарбонатный) буфер

Состоит из Н2СО3 и NaНСО3 в соотношении 1/20, локализуется в основном в межклеточной жидкости. В сыворотке крови при рСО2 = 40 мм.рт.ст., концентрации Na+ 150 ммоль/л он поддерживает рН=7,4. Работа бикарбонатного буфера обеспечивается ферментом карбоангидразой и белком полосы 3 эритроцитов и почек.
Бикарбонатный буфер является одним из самых важных буферов организма, что связано с его особенностями:
Несмотря на низкую емкость – 10%, бикарбонатный буфер очень чувствителен, он связывает до 40% всех «лишних» Н+; Бикарбонатный буфер интегрирует работу основных буферных систем и физиологических механизмов регуляции КОС. В связи с этим, бикарбонатный буфер является индикатором КОС, определение его компонентов – основа для диагностики нарушения КОС.

Фосфатный буфер

Состоит из кислого NaН2РО4 и основного Na2НРО4 фосфатов, локализуется в основном в клеточной жидкости (фосфатов в клетке 14%, в межклеточной жидкости 1%). Соотношение кислого и основного фосфатов в плазме крови составляет ¼, в моче - 25/1.
Фосфатный буфер обеспечивает регуляцию КОС внутри клетки, регенерацию бикарбонатного буфера в межклеточной жидкости и выведение Н+ с мочой.

Белковый буфер

Наличие у белков амино и карбоксильных групп придает им амфотерные свойства – они проявляют свойства кислот и оснований, образуя буферную систему.
Белковый буфер состоит из протеин-Н и протеин-Na, локализуется он преимущественно в клетках. Наиболее важный белковый буфер крови – гемоглобиновый.

Гемоглобиновый буфер

Гемоглобиновый буфер находиться в эритроцитах и имеет ряд особенностей:
у него самая высокая емкость (до 75%); его работа напрямую связана с газообменом; он состоит не из одной, а из 2 пар: HHb↔H+ + Hb- и HHbО2↔H+ + HbО2-; HbО2 является относительно сильной кислотой, он даже сильнее угольной кислоты. Кислотность HbО2 по сравнению с Hb в 70 раз выше, поэтому, оксигемоглобин присутствует в основном в виде калийной соли (КHbО2), а дезоксигемоглобин в виде недиссоциированной кислоты (HHb).

Работа гемоглобинового и бикарбонатного буфера




Физиологические механизмы регуляции КОС

Образующиеся в организме кислоты и основания могут быть летучими и нелетучими. Летучая Н2СО3, образуется из СО2, конечного продукта аэробного… Нелетучие кислоты лактат, кетоновые тела и жирные кислоты накапливаются в… Летучие кислоты выделяются из организма главным образом легкими с выдыхаемым воздухом, нелетучие – почками с мочой.

Роль легких в регуляции КОС

Регуляция газообмена в легких и соответственно выделение Н2СО3 из организма осуществляется через поток импульсов от хеморецепторов и… В норме за сутки легкие выделяют 480л СО2, что эквивалентно 20 молям Н2СО3.… Легочные механизмы поддержания КОС являются высокоэффективными, они способны нивелировать нарушение КОС на 50-70%.…

Роль почек в регуляции КОС

Почки регулируют КОС:
1. выведением из организма H+ в реакциях ацидогенеза, аммониогенеза и с… 2. задержкой в организме Na+. Na+,К+-АТФаза реабсорбирует Na+ из мочи, что вместе с карбоангидразой и ацидогенезом…

Роль костей в регуляции КОС

1. Са3(РО4)2 + 2Н2СО3 → 3 Са2+ + 2НРО42- + 2НСО3-
2. 2НРО42- + 2НСО3- + 4НА → 2Н2РО4- (в мочу) + 2Н2О + 2СО2 + 4А-
3. А- + Са2+ → СаА (в мочу)


Роль печени в регуляции КОС

Печень регулирует КОС:
1. превращением аминокислот, кетокислот и лактата в нейтральную глюкозу;
2. превращением сильного основания аммиака в слабо основную мочевину;
3. синтезируя белки крови, которые образуют белковый буфер;
4. синтезирует глутамин, который используется почками для аммониогенеза.
Печеночная недостаточность приводит к развитию метаболического ацидоза.
В тоже время печень синтезирует кетоновые тела, которые в условиях гипоксии, голодания или сахарного диабета способствуют ацидозу.

Влияние ЖКТ на КОС

ЖКТ влияет на состояние КОС, так как использует HCl и НСО3- в процессе пищеварения. Сначала в просвет желудка секретируется HCl, при этом в крови накапливаются НСО3- и развивается алкалоз. Затем НСО3- из крови с панкреатическим соком поступают в просвет кишечника и равновесие КОС в крови восстанавливается. Так как пища, которая поступает в организм, и кал, который выделяется из организма в основном нейтральны суммарный эффект на КОС оказывается нулевым.
При наличии ацидоза в просвет выделяется больше HCl, что способствует развитию язвы. Рвота способна компенсировать ацидоз, а диарея – усугубить. Длительная рвота вызывает развитие алкалоза, у детей она может иметь тяжелые последствия, вплоть до летально исхода.

Клеточный механизм регуляции КОС

Кроме рассмотренных физико-химический и физиологических механизмов регуляции КОС существует еще клеточный механизм регуляции КОС. Принцип его работы заключается в том, что избыточные количества H+ могут размещаться в клетках в обмен на К+.

ПОКАЗАТЕЛИ КОС

1. рН - (power hydrogene - сила водорода) – отрицательный десятичный логарифм (-lg) концентрации Н+. Норма в капиллярной крови 7,37 - 7,45,… 2. рСО2 – парциальное давление углекислого газа, находящегося в равновесии с… 3. рО2 – парциальное давление кислорода в цельной крови. Норма в капиллярной крови 83 - 108 мм.рт.cт., в венозной –…

НАРУШЕНИЯ КОС

Коррекция КОС – приспособительная реакция со стороны органа, вызвавшего нарушение КОС.

Выделяют два основных вида нарушений КОС – ацидоз и алкалоз.


Ацидоз

I. Газовый (дыхательный). Характеризуется накоплением в крови СО2 (рСО2=↑, AB, SB, BB=N,↑).
1). затруднение выделения СО2, при нарушениях внешнего дыхания (гиповентиляция легких при бронхиальной астме, пневмонии, нарушениях кровообращения с застоем в малом круге, отёке лёгких, эмфиземе, ателектазе легких, угнетении дыхательного центра под влиянием ряда токсинов и препаратов типа морфина и т.п.) (рСО2=↑, рО2=↓, AB, SB, BB=N,↑).
2). высокая концентрация СО2 в окружающей среде (замкнутые помещения) (рСО2=↑, рО2, AB, SB, BB=N,↑).
3). неисправности наркозно-дыхательной аппаратуры.
При газовом ацидозе происходит накопление в крови СО2, Н2СО3 и снижение рН. Ацидоз стимулирует реабсорбцию в почках Na+ и через некоторое время в крови происходит повышение AB, SB, BB и как компенсация, развивается выделительный алкалоз.
При ацидозе в плазме крови накапливается H2PO4-, который не способен реабсорбироваться в почках. В результате он усиленно выделяется, вызывая фосфатурию.
Для компенсации ацидоза почки с мочой усиленно выделяются хлориды, что приводит к гипохроремии.
Избыток H+ поступает в клетки, взамен из клеток выходит К+ вызывая геперкалиемию.
Избыток К+ усиленно выводится с мочой, что в течение 5-6 дней приводит к гипокалиемии.

II. Негазовый. Характеризуется накоплением нелетучих кислот (рСО2=↓,N, AB, SB, BB=↓).
1). Метаболический. Развивается при нарушениях тканевого метаболизма, которые сопровождаются избыточным образованием и накоплением нелетучих кислот или потерей оснований (рСО2=↓,N, АР = ↑, AB, SB, BB=↓).
а). Кетоацидоз. При сахарном диабете, голодании, гипоксии, лихорадке и т.д.
б). Лактоацидоз. При гипоксии, нарушении функции печени, инфекциях и т.д.
в). Ацидоз. Возникает в результате накопления органических и неорганических кислот при обширных воспалительных процессах, ожогах, травмах и т.д.
При метаболическом ацидозе происходит накопление нелетучих кислот и снижение рН. Буферные системы, нейтрализуя кислоты, расходуются, в результате в крови снижается концентрация AB, SB, BBи повышается АР.
Н+ нелетучих кислот при взаимодействии с НСО3- дают Н2СО3, которая распадается на Н2О и СО2, сами же нелетучие кислоты образуют с Na+ бикарбонатов соли. Низкая рН и высокое рСО2 стимулирует дыхание, в результате рСО2 в крови нормализуется или снижается с развитием газового алкалоза.
Избыток Н+ плазме крови перемещает внутрь клетки, а взамен из клетки выходит К+, в плазме крови возникает транзиторная гиперкалиемия, а клетках - гипокалигистия. К+ интенсивно выводится с мочой. В течение 5-6 дней содержание К+ в плазме нормализуется и затем становится ниже нормы (гипокалиемия).
В почках усиливаются процессы ацидо-, аммониогенеза и восполнения дефицита бикарбоната плазмы. В обмен на НСО3- в мочу активно экскретируется Сl-, развивается гипохлоремия.
Клинические проявления метаболического ацидоза:
- расстройства микроциркуляции. Происходит уменьшение притока крови и развитие стаза под действием катехоламинов, изменяются реологические свойства крови, что способствует углублению ацидоза.
- повреждение и повышение проницаемости сосудистой стенки под влиянием гипоксии и ацидоза. При ацидозе повышается уровень кининов в плазме и внеклеточной жидкости. Кинины вызывают вазодилатацию и резко повышают проницаемость. Развивается гипотония. Описанные изменения в сосудах микроциркуляторного русла способствуют процессу тромбообразования и кровоточивости.
- при рН крови менее 7,2 возникает снижение сердечного выброса.
- дыхание Куссмауля (компенсаторная реакция направленная на выделение избытка СО2).

2. Выделительный. Развивается при нарушении процессов ацидо- и аммониогенеза в почках или при избыточной потере основных валентностей с каловыми массами.
а). Задержка кислот при почечной недостаточности (хронический диффузный гломерулонефрит, нефросклероз, диффузный нефрит, уремия). Моча нейтральная или щелочная.
б). Потеря щелочей: почечная (почечный канальцевый ацидоз, гипоксия, интоксикация сульфаниламидами), гастроэнтеральная (диарея, гиперсаливация).
3. Экзогенный.
Прием кислой пищи, лекарств (хлористого аммония; переливание больших количеств кровозамещающих растворов и жидкостей для парентерального питания, рН которых обычно <7,0) и при отравлениях (салицилаты, этанол, метанол, этиленгликоль, толуол и др.).
4. Комбинированный.
Например, кетоацидоз + лактоацидоз, метаболический + выделительный и т.д.
III. Смешанный (газовый + негазовый).
Возникает при асфиксии, сердечно-сосудистой недостаточности и т.д.

Алкалоз

1). усиленное выведение СО2, при активации внешнего дыхания (гипервентеляция легких при компенсаторной одышке, сопровождающей ряд заболеваний, в том… 2). Дефицит О2 во вдыхаемом воздухе вызывает гипервентеляцию легких и… Гипервентиляция приводит к снижению в крови рСО2 и повышению рН. Алкалоз ингибирует реабсорбцию в почках Na+,…

Негазовый алкалоз



Литература

1. Бикарбонаты сыворотки или плазмы /Р. Марри, Д. Греннер, П. Мейес, В. Родуэлл // Биохимия человека: в 2-х томах. Т.2. Пер. с англ.: - М.: Мир, 1993. - с.370-371.
2. Буферные системы крови и кислотно-основное равновесие /Т.Т. Березов, Б.Ф. Коровкин// Биологическая химия: Учебник /Под ред.акад. РАМН С.С. Дебова. - 2-е изд. перераб. и доп. - М.: Медицина, 1990. - с.452-457.


Не сдавайте скачаную работу преподавателю!
Данный конспект лекций Вы можете использовать для создания шпаргалок и подготовки к экзаменам.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем конспект самостоятельно:
! Как написать конспект Как правильно подойти к написанию чтобы быстро и информативно все зафиксировать.