Конспект лекций по предмету "Физика"


Поток из куба; теорема Гаусса

Рассмотрим теперь частный случай потока из маленького ку­бика и получим интересную формулу. Ребра куба пусть нап­равлены вдоль осей координат (фиг. 3.5), координаты вершины, ближайшей к началу, суть х, у, z, ребро куба в направлении х равно Dx, ребро куба (а точнее, бруска) в направлении у равно Dy, а в направлении z равно Dz. Мы хотим найти поток вектор­ного поля С через поверхность куба. Для этого вычислим сумму потоков через все шесть граней. Начнем с грани 1 (см. фиг. 3.5).
Поток наружу сквозь нее равен x-компоненте С с минусом, проинтегрированной по площади грани. Он равен



Так как куб считается малым, этот интеграл можно заменить значением Сх в центре грани 1эту точку мы обозначили (1), умноженным на площадь грани DyDz:
Поток сквозь 1 наружу=-Cx(1)DyDz.
Подобным же образом поток наружу через грань 2 равен
Поток сквозь 2 наружу= Cx(2) DyDz.

Фиг. 3.5. Вычисление потока вектора С из маленького кубика.

Величины Cx(1) и Сх(2), вообще говоря, слегка отличаются. Ес­ли Dх достаточно мало, то можно написать


Существуют, конечно, и другие члены, но в них входит (Dx)2 и высшие степени Dx, и в пределе малых Dx ими запросто можно пренебречь. Значит, поток сквозь грань 2 равен

Складывая потоки через грани 1 и 2, получаем

Производную нужно вычислять в центре грани 1, т. е. в точке [x,y+(Dy/2), z+(Dz/2)]. Но если куб очень маленький, мы сде­лаем пренебрежимую ошибку, если вычислим ее в вершине (х, у, z).
Повторяя те же рассуждения с каждой парой граней, мы получаем


а

А общий поток через все грани равен сумме этих членов. Мы обнаруживаем, что

Сумма производных в скобках как раз есть Ñ•С, a DxDyDz=DV (объем куба). Таким образом, мы можем утверждать, что для бесконечно малого куба


(3.17)
Мы показали, что поток наружу с поверхности бесконечно ма­лого куба равен произведению дивергенции вектора на объем куба. Теперь мы понимаем «смысл» понятия дивергенции век­тора. Дивергенция вектора в точке Р — это поток С («исте­чение» С наружу) на единицу объема, взятого в окрестности Р. Мы связали дивергенцию С с потоком С из бесконечно малого объема. Для любого конечного объема можно теперь использовать факт, доказанный выше, что суммарный поток из объема есть сумма потоков из отдельных его частей. Иначе говоря, мы можем проинтегрировать дивергенцию по всему объему. Это приводит нас к теореме, согласно которой интеграл от нормальной составляющей произвольного вектора по замк­нутой поверхности может быть представлен также в виде ин­теграла от дивергенции вектора по объему, заключенному внутри поверхности. Теорему эту называют теоремой Гаусса.
ТЕОРЕМА ГАУССА

(3.18)
где S — произвольная замкнутая поверхность, V — объем внутри нее.


Не сдавайте скачаную работу преподавателю!
Данный конспект лекций Вы можете использовать для создания шпаргалок и подготовки к экзаменам.

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Пишем конспект самостоятельно:
! Как написать конспект Как правильно подойти к написанию чтобы быстро и информативно все зафиксировать.