Теорема Область сходимости степенного ряда, расположенного по степеням х есть (-R, R), симметричный относительно точки х=0. Иногда в него надо включить оба конца, иногда только один, а иногда надо оба конца исключить.
Промежуток (-R, R) называется промежутком сходимости, положительное число R — радиусом сходимости степенного ряда. Внутри этого промежутка ряд сходится, вне его расходится. Необходимо, также, исследовать сходимость ряда на концах интервала.
Если степенной ряд сходится только в точке х=0, то R=0. Если ряд сходится во всех точках, то говорят, что радиус сходимости равен бесконечности (R=¥).
Теорема Радиус сходимости R степенного ряда равен пределу отношения при условии, что этот предел (конечный или бесконечный) существует:
Промежуток и радиус сходимости степенного ряда,