Понятие о независимых случайных величинах – одно их важных понятий теории вероятностей. Остановимся несколько подробнее на понятиях о «зависимости» и «независимости» случайных величин.
Понятие «независимости» случайных величин, которым мы пользуемся в теории вероятностей, несколько отличается от обычного понятия «зависимости» величин, которым мы оперируем в математике. Действительно, обычно под «зависимостью» величин подразумевают только один тип зависимости - полную, жесткую, так называемую - функциональную зависимость. Две величины и называются функционально зависимыми, если, зная значение одной из них, можно точно указать значение другой.
В теории вероятностей мы встречаемся с другим, более общим, типом зависимости — с вероятностной или «стохастической» зависимостью. Если величина связана с величиной вероятностной зависимостью, то, зная значение , нельзя указать точно значение , а можно указать только ее закон распределения, зависящий от того, какое значение приняла величина .
Вероятностная зависимость может быть более или менее тесной; по мере увеличения тесноты вероятностной зависимости она все более приближается к функциональной. Таким образом, функциональную зависимость можно рассматривать как крайний, предельный случай наиболее тесной вероятностной зависимости. Другой крайний случай - полная независимость случайных величин. Между этими двумя крайними случаями лежат все градации вероятностной зависимости - от самой сильной до самой слабой. Те физические величины, которые на практике мы считаем функционально зависимыми, в действительности связаны весьма тесной вероятностной зависимостью: при заданном значении одной из этих величин другая колеблется в столь узких пределах, что ее практически можно считать вполне определенной. С другой стороны, те величины, которые мы на практике считаем независимыми, в действительности часто находятся в некоторой взаимной зависимости, но эта зависимость настолько слаба, что ею для практических целей можно пренебречь.
Вероятностная зависимость между случайными величинами очень часто встречается на практике. Если случайные величины и находятся в вероятностной зависимости, это не означает, что с изменением величины величина изменяется вполне определенным образом; это лишь означает, что с изменением величины величина имеет тенденцию также изменяться (например, возрастать или убывать при возрастании ). Эта тенденция соблюдается лишь «в среднем», в общих чертах, и в каждом отдельном случае от нее возможны отступлении.
Рассмотрим, например, две такие случайные величины: - рост наугад взятого человека, - его вес. Очевидно, величины и находятся в определенной вероятностной зависимости; она выражается в том, что в общем люди с большим ростом имеют больший вес. Можно даже составить эмпирическую формулу, приближенно заменяющую эту вероятностную зависимость функциональной. Такова, например, общеизвестная формула, приближенно выражающая зависимость между ростом и весом:
.
Формулы подобного типа, очевидно, не являются точными и выражают лишь некоторую среднюю, массовую закономерность, тенденцию, от которой в каждом отдельном случае возможны отступления.
В вышеприведенном примере мы имели дело со случаем явно выраженной зависимости. Рассмотрим теперь такие две случайные величины: - рост наугад взятого человека; - его возраст. Очевидно, для взрослого человека величины и можно считать практически независимыми; напротив, для ребенка величины и являются зависимыми.
Приведем еще несколько примеров случайных величин, находящихся в различных степенях зависимости.
1. Из камней, составляющих кучу щебня, выбирается наугад один камень. Случайная величина - вес камня; случайная величина - наибольшая длина камня. Величины и находятся в явно выраженной вероятностной зависимости.
2. Производится стрельба ракетой в заданный район океана. Величина - продольная ошибка точки попадания (недолет, перелет); случайная величина - ошибка в скорости ракеты в конце активного участка движения. Величины и явно зависимы, так как ошибка является одной из главных причин, порождающих продольную ошибку .
3. Летательный аппарат, находясь в полете, измеряет высоту над поверхностью Земли с помощью барометрического прибора. Рассматриваются две случайные величины: - ошибка измерения высоты и - вес топлива, сохранившегося в топливных баках к моменту измерения. Величины и практически можно считать независимыми.
Определим в двух формах понятие независимости для дискретных случайных величин.
Определение 3. Случайные величины и называются независимыми, если закон распределения каждой из них не зависит от того, какие значение приняла другая. В противном случае величины и называются зависимыми.
Определение 3а. Две дискретные случайные величины и называются независимыми, если для всех пар i, j выполняется соотношение
,
где i=1, 2, ..., n; j=1, 2, ..., s.
Определение 3а можно распространить на n случайных величин.
Определение 4. Случайные величины называются независимыми, если для всех
Другими словами, набор есть набор независимых событий.
Определение 5. Назовем произведением независимых случайных величин Х и Y случайную величину XY, возможные значения которой равны произведениям всех возможных значений Х на все возможные значения Y, а соответствующие им вероятности равны произведениям вероятностей сомножителей.
xi
x1
x2
pi
p1
p2
уi
у1
у2
gi
g1
g2
Тогда ряд распределения для XY выглядит так:
ХY
x1y1
x2y1
x1y2
x2y2
p
p1g1
p2g1
p1g2
p2g2
Определение 6. Определим сумму случайных величин Х и Y как случайную величину Х + Y, возможные значения которой равны суммам каждого возможного значения Х с каждым возможным значением Y; вероятности таких сумм равны произведениям вероятностей слагаемых (для зависимых случайных величин – произведениям вероятности одного слагаемого на условную вероятность второго).