Шпаргалка по предмету "Информатика (программирование)"


Отказ от универсальности

Для операции умножения и деления необходимы значительные усилия от почти любого центрального процессора, так как они должны быть осуществлены (аппаратно или программно) через сдвиги и сложения или сдвиги и вычитания соответственно. Традиционные 4-разрядные и 8-разрядные процессоры не имели машинных команд для умножения или деления, так что данные операции приходилось осуществлять при помощи длинных подпрограмм, где явно осуществляются сдвиги и сложения или вычитания. Первые 16-разрядные процессоры, среди которых 8086, 8088 и 68000, действительно дают возможность осуществить операции умножения и деления аппаратными средствами, но соответствующие процедуры были очень медленными: в процессорах 8086 и 8088, например, для деления 32-разрядного числа на 16-разрядное было необходимо около 150 тактов. Поэтому небольшие хитрости для увеличения скорости или устранения операций умножения и деления были и остаются одними из первых приемов, которые рассматривает каждый программист, который стремится к совершенству. Большинство из данных хитростей относится к категории, которую именуют «отказ от универсальности». Это замена рассчитанных на общий случай команд умножения и деления (или вызов соответствующих подпрограмм) рядом сдвигов и сложений или вычитаний для конкретных операндов. Рассмотрим одну из простых процедур оптимизации умножения. Для умножения числа на степень двойки его следует просто сдвинуть влево на необходимое число двоичных (битовых) позиций. Вот такой, например, имеет вид некоторая общая, но медленная последовательность команд для умножения значения переменной MyVar на 8:mov ax,MyVar mov bx,8 mul bxmov MyVar,axПрименение отказа от универсальности при выполнении деления несколько более ограничено. Деление на степень двойки, безусловно, очень просто. Для этого следует сдвинуть число вправо, следя только за выбором соответствующей команды сдвига для желаемого типа деления (со знаком или без знака). Определение остатка от деления на степень двойки для чисел без знака еще проще. Для этого следует осуществить просто одну команду операции логического И над операндом и непосредственным значением, которое должно быть записано в виде уменьшенного на единицу значения делителя. Деление чисел со знаком не так просто, так как знак остатка от деления должен соответствовать знаку делителя и не зависит от знака делимого. Реализация данных операций потребует непременного присутствия условных переходов, а это уже плохо.


Не сдавайте скачаную работу преподавателю!
С помощью нашего сервиса Вы можете собрать свою коллекцию шпаргалок по нужному предмету, и распечатать готовые ответы в удобном для вырезания виде. Для этого начните собирать ответы, добавляя в "Мои шпаргалки".

Поделись с друзьями, за репост + 100 мильонов к студенческой карме :

Делаем шпаргалки правильно:
! Шпаргалки для экзаменов Какие бывают шпаргалки, как их лучше подготовить и что писать.
! Делаем правильную шпаргалку Что представляет собой удобная и практичная шпаргалка, как ее сделать.
! Как воспользоваться шпаргалкой В какой момент лучше достать шпаргалку, как ей воспользоваться и что необходимо учесть.

Читайте также:
Сдаем экзамены Что представляет собой экзамен, как он проходит.
Экзамен в виде тестирования Каким образом проходит тестирование, в чем заключается его суть.
Готовимся к экзаменам Как правильно настроиться, когда следует прекратить подготовку и чем заниматься в последние часы.
Боремся с волнением Как преодолеть волнение, как внушить себе уверенность.
Отвечаем на экзамене Как лучше отвечать и каким идти к преподавателю.
Не готов к экзамену Что делать если не успел как следует подготовиться.
Пересдача экзамена На какое время назначается пересдача, каким образом она проходит.
Микронаушники Что такое микронаушник или "Профессор .. ллопух ...".

Виды дипломных работ:
выпускная работа бакалавра Требование к выпускной работе бакалавра. Как правило сдается на 4 курсе института.
магистерская диссертация Требования к магистерским диссертациям. Как правило сдается на 5,6 курсе обучения.