Синтез жирных кислот протекает в цитоплазме клетки. В митохондриях в основном происходит удлинение существующих цепей жирных кислот. Установлено, что в цитоплазме пече-ночных клеток синтезируется пальмитиновая кислота (16 углеродных атомов), а в митохондриях этих клеток из уже синтезированной в цитоплазме клетки пальмитиновой кислоты или из жирных кислот экзогенного происхождения, т.е. поступающих из кишечника, образуются жирные кислоты, содержащие 18, 20 и 22 углеродных атома. Первой реакцией биосинтеза жирных кислот является карбоксилирование ацетил-КоА, для чего требуются бикарбонат, АТФ, ионы марганца. Катализирует эту реакцию фермент ацетил-КоА-кар-боксилаза. Фермент содержит в качестве простетической группы биотин. Реакция протекает в два этапа: I – карбоксилирование биотина с участием АТФ и II – перенос карбоксильной группы на ацетил-КоА, в результате чего образуется малонил-КоА. Малонил-КоА представляет собой первый специфический продукт биосинтеза жирных кислот. В присутствии соответствующей ферментной системы малонил-КоА быстро превращается в жирные кислоты. Последовательность реакций, происходящих при синтезе жирных кислот:
Далее цикл реакций повторяется. По сравнению с β-окислением биосинтез жирных кислот имеет ряд характерных особенностей: синтез жирных кислот в основном осуществляется в цитозоле клетки, а окисление – в митохондриях; участие в процессе биосинтеза жирных кислот малонил-КоА, который образуется путем связывания СО2 (в присутствии биотин-фермента и АТФ) с ацетил-КоА; на всех этапах синтеза жирных кислот принимает участие ацилпереносящий белок (HS-АПБ); при биосинтезе образуется D(–)-изомер 3-гидроксикис-лоты, а не L(+)-изомер, как это имеет место при β-окислении жирных кислот; необходимость для синтеза жирных кислот кофермента НАДФН.50. Холестери́н -холестерол — органическое соединение, природ-ный жирный (липофильный) спирт, содержащийся в клеточных мембранах всех животных организмов за исключением безъядер-ных (прокариот). Нерастворим в воде, растворим в жирах и органических растворителях. Биологическая роль. Холестерин в составе клеточной плазматической мембраны играет роль модификатора бислоя, придавая ему определенную жесткость за счет увеличения плотности «упаковки» молекул фосфолипидов. Таким образом, холестерин — стабилизатор текучести плаз-матической мембраны. Холестерин открывает цепь биосинтеза стероидных половых гормонов и кортикостероидов, служит основой для образования жёлчных кислот и витаминов группы D, участвует в регулировании проницаемости клеток и предохраняет эритроциты крови от действия гемолитических ядов. Обмен холестерина. Свободный холестерин подвергается окислению в печени и органах, синтезирующих стероидные гормоны (надпочечники, семенники, яичники, плацента). Это единственный процесс необратимого выведения холестерина из мембран и липопротеидных комплексов. Ежедневно на синтез стероидных гормонов расходуется 2—4% холестерина. В гепатоцитах 60—80% холестерина окисляется до желчных кислот, которые в составе желчи выделяются в просвет тонкой кишки и участвуют в пищеварении (эмульгировании жиров). Вместе с желчными кислотами в тонкую кишку выделяется небольшое количество свободного холестерина, который частично удаляется с каловыми массами, а оставшаяся часть его растворяется и вместе с желчными кислотами и фосфолипидами всасывается стенками тонкой кишки. Желчные кислоты обеспечивают разложение жиров на составные части (эмульгиро-вание жиров). После выполнения этой функции 70—80% остав-шихся желчных кислот всасывается в конечном отделе тонкой кишки (подвздошной кишке) и поступает по системе воротной вены в печень. Здесь стоит отметить, что желчные кислоты имеют еще одну функцию: они являются важнейшим стимулятором поддержания нормальной работы (моторики) кишечника. В печени начинают синтезироваться не до конца сформировавшиеся (насцентные) липопротеиды высокой плотности. Окончательно ЛПВП формируются в крови из специ-альных белков (апобелков) хиломикронов, ЛПОНП и холесте-рина, поступающего из тканей, в том числе и из артериальной стенки. Более просто кругооборот холестерина можно объяснить следующим образом: холестерин в составе липопротеидов несет жир из печени к различным частям вашего тела, используя кровеносные сосуды в качестве транспортной системы. После доставки жира холестерин возвращается в печень и повторяет свою работу снова. Первичные желчные кислоты. (холевая и хенодезоксихолевая) синтезируются в гепатоцитах печени из холестерина. Вторичная: дезоксихолевая кислота (первоначально синтезируется в толстой кишке). Желч-ные кислоты образуются в митохондриях гепатоцитов и вне их из холестерина с участием АТФ. Гидроксилирование при образова-нии кислот осуществляется в эндоплазматическом ретикулуме гепатоцита. Первичный синтез желчных кислот ингибируется (тормозится) желчными кислотами, присутствующими в крови. Однако, если всасывание в кровь желчных кислот будет недоста-точно, например, из-за тяжёлого поражения кишечника, то печень, способная произвести не более 5 г желчных кислот в сутки, не сможет восполнить требуемое для организма количество желчных кислот. Желчные кислоты — главные участ-ники энтерогепатической циркуляции у человека. Вторичные желчные кислоты (дезоксихолевая, литохолевая, урсодезоксихолевая, аллохолевая и другие) образуются из первичных желчных кислот в толстой кишке под действием кишечной микрофлоры. Их количество невелико. Дезоксихолевая кислота всасывается в кровь и секретируется печенью в составе желчи. Литохолевая кислота всасывается значительно хуже, чем дезоксихолевая.