2
МИНИСТЕРСВО ОБРАЗОВАНИЯ И НАУКИ
РОССИЙСКОЙ ФЕДЕРАЦИИ
БЛАГОВЕЩЕНСКИЙ ГОСУДАРСТВЕННЫЙ
ПЕДАГОГИЧЕСКИЙ УНИВЕРСИТЕТ
Физико-математический факультет
Кафедра информатики
РЕАЛИЗАЦИЯ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ, ИСПОЛЬЗУЮЩИХ МЕТОДЫ ИНТЕГРИРОВАНИЯ, В СРЕДЕ MATLAB
Курсовая работа
Выполнил: студент курса
Научный руководитель:
кандидат физико-
математических наук, доцент
Благовещенск 2008СОДЕРЖАНИЕ
ВВЕДЕНИЕ
Невозможно представить себе современную науку без широкого применения математического моделирования. Сущность этого метода состоит в замене реального объекта его «образом» - математической моделью. Этот метод позволяет быстро и «безболезненно» изменить объект, изучить его свойства и поведение в различных средах и т.д. Неудивительно, что математическое моделирование бурно развивается и проникает во все сферы знаний.
Создание модели проходит в 3 этапа: модель - алгоритм - программа.
На первом этапе строится модель, наиболее полно отображающая свойства объекта. Модель исследуется теоретическими методами, что позволяет получить важные предварительные знания об объекте. Второй этап включает в себя разработку алгоритма, для реализации модели на компьютере. Модель представляется в форме, удобной для применения численных методов, определяется последовательность вычислительных и логических операций, которые необходимо провести для нахождения искомых величин с заданной точностью. На третьем этапе создаются программы, переводящие модель и алгоритм на доступный компьютеру язык. К ним предъявляются требования экономичности и адаптивности к особенностям решаемых задач и используемых компьютеров. Их можно назвать электронным эквивалентом изучаемого объекта, уже пригодным для непосредственного испытания на компьютере.
Целью данной курсовой работы является изучение приёмов численного и символьного интегрирования на базе математического пакета прикладных программ, а также реализация математической модели, основанной на методе интегрирования.
1. ИНТЕГРИРОВАНИЕ ФУНКЦИЙ В MATLAB
Возможны два различных подхода к определению определённого интеграла.
ОПРЕДЕЛЕНИЕ 1: приращение F(b)-F(a) любой из преобразованных функций F(x)+c при изменении аргумента от x=a до x=b называют определённым интегралом от a до b функции F и обозначается .
Причём функция F является первообразной для функции f на некотором промежутке D, а числа а и b принадлежат этому промежутку. Это можно записать следующим образом: , это формула Ньютона-Лейбница.
ОПРЕДЕЛЕНИЕ 2: Если при любой последовательности разбиений отрезка [a;b] таких, что д=maxДxi>0 (n>?) и при любом выборе точек интегральная сумма уk=f(еi) Дxi стремится к одному и тому же конечному пределу А, то это число А и есть определённый интеграл, т.е Дxi=A(2). Где Дхi=xi-xi-1 (i=1,2,…,n) е=maxДxi - начало разбиения произвольная точка из отрезка [xi-1;xi]
сумма всех произведений f(еi)Дxi, (i=1,…,n). Простыми словами, определенный интеграл есть предел интегральной суммы, число членов которой неограниченно возрастает, а каждое слагаемое стремится к нулю.
ГЕОМЕТРИЧЕСКИЙ СМЫСЛ:
Всякая непрерывная на отрезке [a,b] функция f интегрируема на отрезке [a,b], функция f неотрицательна, но определённый интеграл численно равен S криволинейной трапеции, ограниченной графиком функции f, осью абсцисс и прямыми x=a и x=b, .
Рассмотрим основные методы интегрирования: метод трапеций, метод прямоугольников и метод Симпсона.
Формула прямоугольников
Теперь рассмотрим первый вид приближённого вычисления:
требуется вычислить определённый интеграл: .
Пусть на отрезке [a,b] задана непрерывная функция y=f(x). Разделим отрезок [a,b], аналогично как в формуле трапеций: точками a=x0, x1, x2,…, xn=b на n равных частей длины Дх, где Дх=(b-a)/n.
Обозначим через y0, y1 ,y2,…, yn-1, yn значение функции f(x) в точках x0, x1, x2…, xn, то есть, если записать в наглядной формуле:
Y0=f(x0), y1=f(x1), y2=f(x2)…yn,=f(xn).
В данном способе подынтегральную функцию заменяем функцией, которая имеет ступенчатый вид.
Составим суммы: y0Дx+ y1Дx1+ y2Дx2…+yn-1Дx; Y1Дx+ y2Дx+…+ynДx.
В результате вычислений получаем конечную формулу прямоугольников:
Формула трапеций
Возьмём определённый интеграл , где -- непрерывная подынтегральная функция, которую мы для наглядности будем предполагать положительной. При вычислении интеграла с помощью формулы трапеций подынтегральная функция f заменяется функцией, график которой представляет собой ломанную линию звенья которой соединяют концы ординат yi-1 и yi (i=1,2,…,n).
Тогда площадь криволинейной трапеции, ограниченной линиями x=a, x=b, y=0, y=f(x), а значит (следуя из геометрического смысла), и значение нужного нам интеграла, приблизительно равна сумме площадей обычных трапеций с основаниями yi-1 и yi и высотой h=(b-a)/n, так как (если более привычно выражать для нас) h это Дx,a Дx=(b-a)/n при делении отрезка на n равных отрезков при помощи точек x0=a<x1<…<xn=b. Прямые x=xk разбивают криволинейную трапецию на n полосок. Принимая каждую из этих полосок за обыкновенную трапецию, получаем, что площадь криволинейной трапеции приблизительно равна сумме обыкновенных трапеций.
2
Площадь крайней полоски слева равна произведению полусуммы основания на высоту
Итак, запишем сказанное выше в математическом виде:
- это и есть формула трапеций.
Формула Симпсона (формула парабол).
Разделим отрезок [a;b] на чётное число равных частей n=2m. Площадь криволинейной трапеции, соответствующей первым двум отрезкам [x0,x1], [x1,x2] и ограниченной заданной кривой y=f(x), заменим площадью криволинейной трапеции, которая ограничена параболой второй степени, проходящей через три точки M0[x0,y0], M1[x1,y1], M2[x2,y2] и имеющей ось, параллельную оси Oy (рис). Такую криволинейную трапецию будем называть параболической трапецией.
Уравнение параболы с осью, параллельной оси Oy, имеет вид: . Коэффициенты A, B и C однозначно определяются из условия, что парабола проходит через три заданные точки. Аналогичные параболы строятся и для других пар отрезков. Сумма параболических трапеций и даст приближённое значение интеграла. Сначала вычислим площадь одной параболической трапеции. И продолжая вычисления, получаем формулу Симпсона:
Теперь рассмотрим методы решения интегралов с помощью программы Matlab.
1.1 Численный метод
Вычисление определенных интегралов.
Рассмотрим пример: .
В первую очередь необходимо создать функцию, вычисляющую подынтегральное выражение.
Для вычисления интеграла вызовем функцию quad, задав первым аргументом ссылку на функцию fint, а вторым и третьим -- нижний и верхний пределы интегрирования.
По умолчанию функция quad вычисляет приближенное значение интеграла с точностью 10-6. [1, C.266] Для изменения точности вычислений следует задать дополнительный четвертый аргумент:
Вычисление двойных интегралов.
В MATLAB определена функция dblquad для приближенного вычисления двойных интегралов. Как и в случае вычисления определенных интегралов, следует написать файл-функцию для вычисления подынтегрального выражения. Вычислим интеграл:
Следовательно, функция должна содержать два аргумента x и y:
Функция dblquad имеет пять входных аргументов. При ее вызове необходимо учесть, что первыми задаются пределы внутреннего интеграла по х, а вторыми -- внешнего по у:
Интегралы, зависящие от параметра.
Функции quad и quadl позволяют находить значения интегралов, зависящих от параметров. Аргументами функции, вычисляющей подынтегральное выражение, должна быть не только переменная интегрирования, но и все параметры. Значения параметров указываются через запятую, начиная с шестого аргумента quad или quadl. [1, C.270]
Решим интеграл:
Зададим функцию
Используя quad, вычислим интеграл:
1.2 Символьный метод
Символьные переменные и функции являются объектами класса sym object, в отличие от числовых переменных, которые содержатся в массивах double array. Символьный объект создается при помощи функции syms. Команда
>> syms х a b
создает три символьные переменные х, а и b. Конструирование символьных функций от переменных класса sym object производится с использованием обычных арифметических операций и обозначений для встроенных математических функций, например:
>>f = (sin(x)+a)^2 * (cos(x)+b)^2/sqrt (abs(a+b))
f =
( sin(x)+a)2*(cos(x)+b)^2/abs(a+b)^(1/2)
Запись формулы для выражения в одну строку не всегда удобна, более естественный вид выражения выводит в командное окно функция pretty:
>>pretty(f)
2 2
(sin(x)+a) (cos(x)+b)
-------------------------------
1/2
| a + b |
Символьную функцию можно создать без предварительного объявления переменных при помощи sym, входным аргументом которой является строка с выражением, заключенная в апострофы:
Symbolic Math Toolbox позволяет работать как с неопределенными интегралами, так и с определенными. Неопределенные интегралы от символьных функций вычисляются при помощи int, в качестве входных аргументов указываются символьная функция и переменная, по которой происходит интегрирование, например:
Разумеется, функция int не всегда может выполнить интегрирование. В некоторых случаях int возвращает выражение для первообразной через специальные функции, например, посчитаем интеграл:
Ответ содержит так называемую функцию ошибки, которая определяется интегралом с переменным верхним пределом:
Кроме того, в полученное выражение входит комплексная единица, хотя подынтегральная функция вещественна. Требуются дополнительные преобразования для достижения окончательного результата.
Для нахождения определенного интеграла в символьном виде следует задать нижний и верхний пределы интегрирования, соответственно, в третьем и четвертом аргументах int:
Двойные интегралы вычисляются повторным применением функции int. [1, C.780]
Например:
Определим символьные переменные а, b, с, d, x, у, подынтегральную функцию f от х и у и проинтегрируем сначала по х, а затем по у:
Аналогичным образом в символьном виде вычисляются любые кратные интегралы.
! | Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ. |
! | Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу. |
! | Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться. |
! | План курсовой работы Нумерованным списком описывается порядок и структура будующей работы. |
! | Введение курсовой работы Что пишется в введении, какой объем вводной части? |
! | Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать. |
! | Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа. |
! | Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема. |
! | Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом. |
! | Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ. |
→ | Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия. |
→ | Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта. |
→ | Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты. |
→ | Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести. |
→ | Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя. |
→ | Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика. |
Курсовая работа | Деятельность Движения Харе Кришна в свете трансформационных процессов современности |
Курсовая работа | Маркетинговая деятельность предприятия (на примере ООО СФ "Контакт Плюс") |
Курсовая работа | Политический маркетинг |
Курсовая работа | Создание и внедрение мембранного аппарата |
Курсовая работа | Социальные услуги |
Курсовая работа | Педагогические условия нравственного воспитания младших школьников |
Курсовая работа | Деятельность социального педагога по решению проблемы злоупотребления алкоголем среди школьников |
Курсовая работа | Карибский кризис |
Курсовая работа | Сахарный диабет |
Курсовая работа | Разработка оптимизированных систем аспирации процессов переработки и дробления руд в цехе среднего и мелкого дробления Стойленского ГОКа |