Не единственность преобразований Лоренца.
Рассмотрим пространство Минковского и изотропный конус. Рассмотрим две точки М и М на поверхности изотропного конуса. Попробуем определить: есть ли единственность перевода точки М в точку М, то есть, только ли известные преобразования Лоренца переводят М в М.
Преобразования должны быть ортогональны, чтобы преобразования входили в ортогональную группу, для которой существует инвариант двух точек, то есть интервал, что дает нам право задать метрическую форму.
Рассматриваем, как получают условие ортогональности: оно начинается с рассмотрения вырожденности канонической квадратичной формы. Форма должна быть не вырожденной, тогда используется известная формула. Так как мы рассматриваем поверхность изотропного конуса, то форма у нас тождественный ноль, а значит вырождена. Это означает, что наша форма должна иметь на одну координату меньше, чем размерность пространства. (Все это общеизвестные факты, см. литературу.) Если точку М определяют координаты x,y,z,t, а точку М определяют координаты x,y,z,t, тогда преобразования Лоренца (не будем расписывать всем известные коэффициенты) выглядят:
(1) t=At+Bx, x=Dt+Ex , y=y, z= z,
Чтобы форма не была тождественно равна нулю, и чтобы в ней было не четыре координаты (так как размерность пространства четыре) нам необходимо зафиксировать, к примеру, координату z=z^, z=z^. Разделим форму для x,y,z,t на z^, а форму для x,y,z,t на z^, а затем заменим все координаты:
(2) T=t/z^, X= x/z^, Y=y/z^ и T=t/z^, X=x/z^, Y=y/z^,
ясно, что мы получили квадратичные формы в каноническом виде отличные от нуля (не будем их расписывать).
Подставим в (2) формулы (1), тогда (в трехмерном пространстве, на котором заданы координаты T,X,Y):
(3) T= AT+BX, X= DT+EX, Y=Y,
уравнения (3) в точности совпадают с известными преобразованиями Лоренца, а значит ортогональны. Ч.т.д.
Но мы видим, что при введении произвольного коэффициента N для всех координат одновременно изменений в уравнениях (3) не произойдет, действительно, если
(4) t=N(At+Bx), x=N(Dt+Ex) , y=Ny, z= Nz,
то уравнения (3) не изменятся, при этом сохранится их ортогональность, но уравнения (1) не будут единственными. Интервал, записанный в координатах (4) не изменяется, так как он - тождественный ноль, исследование на ортогональность по известным формулам не проводится, так как форма вырождена, но после того, как придем к не вырожденной форме (в трехмерном пространстве, на котором заданы координаты T,X,Y), преобразования координат будут ортогональны. Надо отметить это возможно только на поверхности изотропного конуса.
Литература: 1) Н.В. Ефимов «Высшая геометрия».
2) Г.Е. Шилов «Математический анализ. Конечномерные линейные пространства».
12 мая 2008 год Игорь Елкин
Аннотация к статье «Преобразования Лоренца не единственны»:
Основа физики - геометрия, так как только геометрия определяет способы задания координат (это около 400 страниц высшей математики, туда входит проективная геометрия и теория групп). Вывод из этих теорий однозначен - преобразования координат единственны и это преобразования Лоренца, но это внутри изотропного конуса. Если рассмотреть поверхность изотропного конуса, то можно доказать на этом подпространстве, что эти преобразования не обладают единственностью. Самое интересное, что любые измерения расстояния (в трехмерном евклидовом пространстве) можно свести к измерению расстояния светом. Это означает, что мы все рассматриваем на поверхности изотропного конуса. Это уже означает, что все преобразования координат мы обязаны рассматривать на поверхности изотропного конуса, а они не обладают единственностью.
! | Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ. |
! | Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу. |
! | Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться. |
! | План курсовой работы Нумерованным списком описывается порядок и структура будующей работы. |
! | Введение курсовой работы Что пишется в введении, какой объем вводной части? |
! | Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать. |
! | Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа. |
! | Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема. |
! | Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом. |
! | Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ. |
→ | Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия. |
→ | Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта. |
→ | Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты. |
→ | Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести. |
→ | Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя. |
→ | Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика. |
Курсовая работа | Деятельность Движения Харе Кришна в свете трансформационных процессов современности |
Курсовая работа | Маркетинговая деятельность предприятия (на примере ООО СФ "Контакт Плюс") |
Курсовая работа | Политический маркетинг |
Курсовая работа | Создание и внедрение мембранного аппарата |
Курсовая работа | Социальные услуги |
Курсовая работа | Педагогические условия нравственного воспитания младших школьников |
Курсовая работа | Деятельность социального педагога по решению проблемы злоупотребления алкоголем среди школьников |
Курсовая работа | Карибский кризис |
Курсовая работа | Сахарный диабет |
Курсовая работа | Разработка оптимизированных систем аспирации процессов переработки и дробления руд в цехе среднего и мелкого дробления Стойленского ГОКа |