21
Федеральное агенство по образованию РФ Саратовский государственный университет
имени Н.Г. Чернышевского
Кафедра геометрии
курсовая работа
Минимальные формы булевых многочленов
г. Саратов 2009 г.
содержание
Введение
Основные понятия булевой алгебры
1.1 Основные этапы развития булевой алгебры
1.2 Основные определения булевой алгебры
1.3 Минимальные формы булевых многочленов
II.Решение минимальных форм булевых многочленов с
помощью метода Куайна - Мак-Класки
Заключение
Список используемых источников.
ВВЕДЕНИЕ
Булевы алгебры - это решетки особого типа, которые применяются при исследовании логики (причем как логики человеческого мышления, так и цифровой компьютерной логики), а также переключательных схем. Это последнее приложение было инициировано К. Шенноном, показавшим, что фундаментальные свойства электрических сетей, состоящих из бистабильных элементов, могут быть выражены с помощью булевых алгебр. Наряду с шенноном пионерами в применении теории булевых алгебр для решения задач релейной техники в 1936-1938 гг. были русский математик В.И. Шестаков и японцы А.Накасима и М. Ханзава. Отметим также, что ещё в 1910 г. известный физик П. Эренфест в рецензии на русский перевод книги Л. Кутюра «Алгебра логики» указал на потенциальную применимость булевой логики к проектированию автоматических телефонных станций, сформулировав вопросы о реализуемости булевых функций и минимизации схем.
Целью данной курсовой работы является изучение булевой алгебры и применение минимальных форм булевых многочленов к решению задач.
Курсовая работа состоит из введения, трех глав, заключения и списка используемых источников.
Во введении описана актуальность темы, сформулирована цель, дана структура курсовой работы.
В первой главе даны основные определения и основные понятия булевой алгебры.
Во второй главе дается определение минимальных форм булевых многочленов и намечен курс дальнейшего исследования.
Третья глава посвящена применению минимальных форм булевых многочленов к решению задач.
В заключении сформулированы основные выводы к работе.
I. ОСНОВНЫЕ ПОНЯТИЯ БУЛЕВОЙ АЛГЕБРЫ
1.1 Основные этапы развития булевой алгебры.
В 1847 году Дж. Буль написал маленькую, но эпохальную книгу «математический анализ логики», в которой логика трактовалась как чисто формальная система; интерпретация в обычном языке пришла позже. Буль писал, что математика характеризуется своей формой, но не содержанием. В своей последующей книге «Исследование законов мышления» (1854) он ввел понятие булевой алгебры.
Булевское исчисление логики сосредоточено на формальной трактовке логики посредством математических (особенно алгебраических) методов и на описании логических тождеств. Следуя Булю, школа английских математиков, а также Шрёдер, Уайтхед разработали аксиоматику операций конъюнкции, дизъюнкции, отрицания; с другой стороны, Пирс и Шрёдер создали аксиоматику порядка, используя отношение включения в качестве фундаментального понятия. В 1904 году Хантингтон исследовал две системы аксиом и начал трактовать булевы алгебры как самостоятельные математические структуры, не обязательно связанные с логикой.
Буль использовал дистрибутивность пересечения относительно объединения, которую еще до него отметил Ламберт. Буль работал с множествами. Обозначая пересечение х и у через ху, а объединение - через х + у, если х и у дизъюнкты. Подобно Лейбницу, он интерпретировал отношение включения х у как ху = х, что легко давало возможность получить классические правила силлогизма. Затем Джевонс распространил операцию объединения на произвольные х и у; Де Морган и, позже, Пирс доказали соотношение двойственности, называемые законами де Моргана.
Большинство логиков девятнадцатого века не высказывало большого интереса к применению в математике своих находок. Одной из причин этого было отсутствие кванторов, введенных позже Фреге и Пирсом. Пеана, среди прочих, ввел символы , , - для объединения, пересечения и вычитания множеств. После книги ван дер Вардена по современной алгебре понятие универсальной алгебры было уже не за горами. Биркгоф развил концепцию «алгебры», отправляясь от подходов ван дер Вардена, и взял название «универсальная алгебра» из книги Уайтхеда. в 1934 году, будучи в Геттингене, Маклейн также высказывал некоторые мысли об универсальной алгебре, но не опубликовал их. Одна из фундаментальнейший статей по теории решеток была напечатана Оре в 1935 году. Последующие годы ознаменовались целым рядом исследований в области, как теории, так и приложений решеток, например, в теории групп, проектированной геометрии, квантовой механике, функциональном анализе, теории меры и интегрирования.
В 1933 - 1937 гг. М. Стоун получил важные результаты о булевых алгебрах, которые он интерпретировал как специальные кольца, а именно как булевы кольца, где была применима теория идеалов. Другие фундаментальные вопросы, рассматривавшиеся Стоуном, - это вопросы о представлении булевых алгебр и приложения булевых алгебр в топологии. С тех пор теория решеток превратилась во вполне жизнеспособную, сильную и самостоятельную дисциплину.
1.2 Основные определения и понятия булевой алгебры
Определение: Булевой алгеброй (обозначим В) называется непустое множество элементов с двумя бинарными операциями «+», «*» и одной унарной операцией «`», а так же специальными элементами 0 и 1, если выполняются следующие свойства:
a + b = b + a , a , b B
a * b = b * a , a, b B
a + (b * c) = (a + b) * (a + c)
a* (b + c) = (a * b) + (a * c)
a + 0 = a, a * 1 = a. (Тождественность)
a + a` = 1, a * a`= 0. (Дополнительность)
Эта система аксиом является полной и независимой.
Пример 1: Пусть множество В - это множество В= {1,0} на котором заданы две бинарные операции:
+ |
1 |
0 |
* |
1 |
0 |
||
1 |
1 |
1 |
1 |
1 |
0 |
||
0 |
1 |
0 |
0 |
0 |
0 |
||
И унарная операция: 0` = 1, 1` = 0.
Пример 2: Множество делителей числа 70:<1,2,5,7,10,14,35,70>
1. a + b = НОД (a, b)
2. a * b = НОК (a, b)
3. a` = 70/a
Определение: Пусть С - непустое подмножество множества В. Говорят, что С - подалгебра алгебры В, если она сама является алгеброй с теми же операциями.
Подмножество С - есть подалгебра алгебры В С замкнуто относительно трех операций.
Пример 3: Если С=<1,2,35,70> замкнуто относительно операций «+», «*», «`», тогда С является подалгеброй алгебры В.
Определение: Две булевы алгебры В и В` изоморфны: В В`, если существует взаимно-однозначная функция f: BB`, такая, что:
f (a + b) = f (a) + f (b)
f (a * b) = f (a) * f (b)
f (a`) = (f (a))`
Для булевой алгебры справедливы принципы дуальности.
Основные теоремы абстрактной булевой алгебры.
Идемпотентный закон: a + a = a, a * a = a.
Граничный закон: a + 1 = 1, a + 0 = a.
Абсорбционный закон: a + (a * b) = a, a * (a + b) = a.
Ассоциативный закон: a + (b + c) = (a + b) + c, a * (b * c) = (a * b) * c.
Единственность дополнения: если x: a + x = 1 , a * x = 0, то x = a`.
Инволютивный закон: ((a`))` = a 0` = 1 , 1` = 0.
Закон де Моргана: (a + b)`=a` * b`, (a * b)` = a` + b`.
Булева алгебра как решетка.
Поскольку для булевой алгебры справедливы ассоциативный, коммутативный и абсорбционный законы, то согласно определению булева алгебра есть решетка. В этой решетке
а, а + 1 = 1 а 1 , а * 0 = 0 0 а.
Таким образом В есть ограниченная решетка, кроме того аксиомы (2) и (4) указывают на то, что решетка дистрибутивна и дополнена. И наоборот, любая ограниченная, дистрибутивная и дополненная решетка есть булева алгебра.
Определение: Булева алгебра - это ограниченная, дистрибутивная и дополненная решетка.
Мы можем ввести на булевой алгебре отношение частичного порядка. Полагаем, что a b
a b = b , a b = a.
Теорема. В булевой алгебре следующие выражения эквивалентны:
1) a + b = b
2) a * b = a
3) a` + b = 1
4) a * b` = 0.
Доказательство.
Докажем эквивалентность (1) и (3)
а) Пусть (1) верно, тогда
a` + b = a`+ (a + b) = (a` + a) + b = 1 + b = 1;
Пусть (3) верно, тогда
a + b = (a` + b) * (a + b) = b * (a + a`) = b * 1 = b;
Докажем эквивалентность (3) и (4)
Пусть (3) верно, тогда
0 = 1` = (a` + b)` = (a`)` * b` = a * b`;
b) Пусть (1) верно, тогда
1 = 0` = (a + b`)` = a` + (b`)` = a` + b;
Докажем эквивалентность (2) и (4)
Пусть (2) верно, тогда
a * b` = (a * b) * b` = a * (b * b`) = a * 0 = 0;
Пусть (4) верно, тогда
a * b = a * b + 0 = a * b + a * b` = a * (b + b`) = a * 1 = a;
Тогда выражения (1), (2), (3), (4) эквивалентны.
Задача. Определим форму булева многочлена р, заданного в дизъюнктивной нормальной форме
d = vwxyz + vwxyz + vwxyz + vwxyz + vwxyz + vwxyz + vwxyz + vwxyz + vwxyz + vwxyz + vwxyz + vwxyz + vwxyz + vwxyz + vwxyz + vwxyz
Решение:
Шаги 1 и 2
0 единиц |
0 0 0 0 0 |
|
(1) |
|
1 единица |
0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 |
|
(2) (3) (4) |
|
2 единицы |
0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 1 0 0 0 1 |
|
(5) (6) (7) (8) |
|
3 единицы |
0 1 1 0 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 0 1 1 1 0 0 |
|
(9) (10) (11) (12) (13) |
|
4 единицы |
0 1 1 1 1 1 1 1 1 0 |
|
(14) (15) |
|
5 единиц |
1 1 1 1 1 |
|
(16) |
|
Шаг 3. Комбинация строк (i) и (j) дает сокращение, указанное в строке (i)(j):
(1)(2) (1)(3) (1)(4) |
0 0 0 - 0 0 0 - 0 0 - 0 0 0 0 |
J |
|
(2)(5) (2)(7) (3)(5) (4)(8) |
0 0 - 1 0 0 - 0 1 0 0 0 1 - 0 1 0 0 0 - |
I |
|
(5)(10) (6)(9) (7)(10) (7)(12) (8)(11) |
0 - 1 1 0 0 1 - 0 1 0 1 - 1 0 - 1 0 1 0 1 0 - 0 1 |
H
G |
|
(9)(14) (10)(14) (10)(15) (12)(15) (13)(15) |
0 1 1 - 1 0 1 1 1 - - 1 1 1 0 1 1 -1 0 1 1 1 - 0 |
F
Е |
|
(14)(16) (15)(16) |
- 1 1 1 1 1 1 1 1 - |
|
|
Повторение этого шага с новыми строками дает нам
(1)(2)(3)(5) |
0 0 - - |
D |
|
(2)(5)(7)(10) |
0 - - 1 0 |
C |
|
(7)(10)(12)(15) |
- 1 - 1 0 |
B |
|
(10)(15)(14)(16) |
- 1 1 1 - |
A |
|
Пометки «птичкой» и буквами сделаны после процесса упрощения. найденные простые импликанты обозначены буквами А, В, …J.
Шаг 4. Формируем таблицу простых импликантов, где индексы столбцов - слагаемые из d - представлены в виде двоичных столбцов.
(1) 0 0 0 0 0 |
(2) 0 0 0 1 0 |
(3) 0 0 1 0 0 |
(4) 1 0 0 0 0 |
(5) 0 0 1 1 0 |
(6) 0 1 0 0 1 |
(7) 0 1 0 1 0 |
(8) 1 0 0 0 1 |
(9) 0 1 1 0 1 |
(10) 0 1 1 1 0 |
(11) 1 0 1 0 1 |
(12) 1 1 0 1 0 |
(13) 1 1 1 0 0 |
(14) 0 1 1 1 1 |
(15) 1 1 1 1 0 |
(16) 1 1 1 1 1 |
||||||||||||||||||||||||||||||||||||||
-111- А |
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
-1-10 В |
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
0--10 С |
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||
00--0 D |
|
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
111-0 E |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||
011-1 F |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||
10-01 G |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||
01-01 H |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||
1000- I
-0000 J
В наших кратких обозначениях ядро, т.е. сумма главных членов, есть D + H + G + B + E + A. Единственным произведение, не покрываемым ядро, является (4); это и есть q1. Простыми импликантами pi, не входящими в ядро, являются С, F, I, J. Новая таблица имеет вид
Это обозначает, что мы получаем две минимальные форы: (i) D + H + G + B + E + A + I, если использовать I, и (ii) D + H + G + B + E + A + J, если выбрать J. В обычных обозначениях минимальная форма (i) такова: vwz + vwyz + vwyz + wyz + vwxz + wxy + vwxy.
ЗАКЛЮЧЕНИЕ По результатам проведённого курсового исследования по теме «Минимальные формы булевых многочленов» можно сделать следующие выводы. При всей простоте своей аксиоматики теория булевых алгебр весьма содержательна. Мы находим в ней немало трудных и глубоких проблем, многие из которых ещё не решены. Эти проблемы весьма разнообразны, они соприкасаются с логикой и теорией множеств, с теорией вероятностей и анализом. Такое обилие точек соприкосновения со смежными математическими дисциплинами роднит теорию булевых алгебр с функциональным анализом, к которому она близка и по своему общему математическому стилю. Существуют различные методы нахождения минимальных форм булевых многочленов. В своей курсовой работе я исследовала один из методов - метод Куайна - Мак-Класки. Он предназначен для нахождения множества простых импликант для функций, заданных совокупностью наборов, на которых функция равна единице, или дизъюнктивной совершенной нормальной формой. Умение минимизировать логические функции имеет огромное значение при проектировании устройств цифровой электроники. СПИСОК ИСПОЛЬЗУЕМЫХ ИСТОЧНИКОВ
1. Владимиров Д.А., Булевы алгебры - М., Издательство «Наука» 1969. 2. Дискретная математика и математические вопросы кибернетики - под общей редакцией С.В. Яблонского и О.Б. Лупанова - М., «Наука», 1974. 3. Лидл Р., Пильц Г., «Прикладная абстрактная алгебра» - Екатеринбург, «Издательство уральского университета» 1996. 4. www.exponenta.ru/educat/systemat/1006/2_tutorials/bin_log.asp 5. www.intuit.ru/department/hardware/archsys/keywords.2.html |
! | Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ. |
! | Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу. |
! | Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться. |
! | План курсовой работы Нумерованным списком описывается порядок и структура будующей работы. |
! | Введение курсовой работы Что пишется в введении, какой объем вводной части? |
! | Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать. |
! | Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа. |
! | Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема. |
! | Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом. |
! | Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ. |
→ | Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия. |
→ | Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта. |
→ | Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты. |
→ | Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести. |
→ | Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя. |
→ | Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика. |
Курсовая работа | Деятельность Движения Харе Кришна в свете трансформационных процессов современности |
Курсовая работа | Маркетинговая деятельность предприятия (на примере ООО СФ "Контакт Плюс") |
Курсовая работа | Политический маркетинг |
Курсовая работа | Создание и внедрение мембранного аппарата |
Курсовая работа | Социальные услуги |
Курсовая работа | Педагогические условия нравственного воспитания младших школьников |
Курсовая работа | Деятельность социального педагога по решению проблемы злоупотребления алкоголем среди школьников |
Курсовая работа | Карибский кризис |
Курсовая работа | Сахарный диабет |
Курсовая работа | Разработка оптимизированных систем аспирации процессов переработки и дробления руд в цехе среднего и мелкого дробления Стойленского ГОКа |
Курсовая работа | Организация работы вагоносборочного участка ремонтного депо пассажирских вагонов |
Курсовая работа | Конкуренция и ее роль в рыночной экономике |
Курсовая работа | Роль государственного сектора в экономике |
Курсовая работа | Педагогический рисунок |
Курсовая работа | Устав муниципального образования |
Курсовая работа | Планирование ассортимента выпускаемой продукции |
Курсовая работа | Методы и приемы словарной работы на уроках русского языка в начальной школе. |
Курсовая работа | Технология обслуживания пассажиров в аэропортах |
Курсовая работа | Анализ деловой активности предприятия (на примере ОАО "Омега") |
Курсовая работа | Принятие и реализация управленческих решений |
Курсовая работа | Учетная политика предприятия |
Курсовая работа | Пневмония |
Курсовая работа | Мотивация производительности труда |
Курсовая работа | Миома матки |
Курсовая работа | Понятие потребительского кредита его проблемы и перспективы развития |