5
Реферат
Целью данной курсовой работы является изучение особых свойств Гамма-функции Эйлера. В ходе работы была изучена Гамма-функция, её основные свойства и составлен алгоритм вычисления с разной степенью точности. Алгоритм был написан на языке высокого уровня - Си. Результат работы программы сверен с табличным. Расхождений в значениях обнаружено не было.
Пояснительная записка к курсовой работе выполнена в объёме 36 листов. Она содержит таблицу значений гамма-функции при некоторых значениях переменных и тексты программ для вычисления значений Гамма-функции и для построения графика, а также 2 рисунка.
Для написания курсовой работы было использовано 7 источников.
Выделяют особый класс функций, представимых в виде собственого либо несобственого интеграла, который зависит не только от формальной переменной, а и от параметра.
Такие функции называются интегралами зависящими от параметра. К их числу относятся гамма и бета функции Эйлера.
Бета функции представимы интегралом Эйлера первого рода:
Гамма функция представляется интегралом Эйлера второго рода:
Гамма-функция относится к числу самых простых и значимых специальных функций, знание свойств которой необходимо для изучения многих других специальных функций, например, цилиндрических, гипергеометрических и других.
Благодаря её введению значительно расширяются наши возможности при вычислении интегралов. Даже в случаях, когда конечная формула не содержит иных функций, кроме элементарных, получение её всё же часто облегчает использование функции Г, хотя бы в промежуточных выкладках.
Эйлеровы интегралы представляют собой хорошо изученные неэлементарные функции. Задача считается решённой, если она приводится к вычислению эйлеровых интегралов.
1. ????-??????я Эйлера
Бэта - функции определяются интегралом Эйлера первого рода:
=(1.1)
Он представляет функцию от двух переменных параметров и : функцию B. Если эти параметры удовлетворяют условиям и ,то интеграл (1.1) будет несобственным интегралом, зависящим от параметров и ,причём особыми точками этого интеграла будут точки и
Интеграл (1.1) сходятся при .Полагая получим:
= - =
т.e. аргумент и входят в симметрично. Принимая во внимание тождество
по формуле интегрирования почестям имеем
n! = 1·2·3·...·n.
Функцию факториал можно еще записать в виде рекурсионного соотношения:
(n+1)! = (n+1)·n!.
Это соотношение можно рассматривать не только при целых значениях n.
Рассмотрим разностное уравнение
G(z+1)=zG(z).
(2.1)
Несмотря на простую форму записи, в элементарных функциях это уравнение не решается. Его решение называется гамма-функцией. Гамма-функцию можно записать в виде ряда или в виде интеграла. Для изучения глобальных свойств гамма-функции обычно пользуются интегральным представлением.
2.2 Интегральное представление
Перейдем к решению этого уравнения. Будем искать решение в виде интеграла Лапласа:
В этом случае правая часть уравнения (2.1) может быть записана в виде:
Эта формула справедлива, если существуют пределы для внеинтегрального члена. Заранее нам не известно поведение образа [(G)tilde](p) при p® ±Ґ. Предположим, что образ гамма-функции таков, что внеинтегральное слагаемое равно нулю. После того, как будет найдено решение, надо будет проверить, верно ли предположение о внеинтегральном слагаемом, иначе придется искать G(z) как-нибудь по-другому.
Левая часть равенства (2.1) записывается следующим образом:
Тогда уравнение (2.1) для образа гамма-функции имеет вид:
Это уравнение легко решить:
(2.2)
Нетрудно заметить, что найденная функция [(Г)tilde](p) на самом деле такова, что внеинтегральный член в формуле (2.2) равен нулю.
Зная образ гамма-функции, легко получить и выражение для прообраза:
Это неканоническая формула, для того, чтобы привести ее к виду, полученному Эйлером, надо сделать замену переменной интегрирования: t = exp(-p), тогда интеграл примет вид:
Постоянная C выбирается так, чтобы при целых значениях z гамма-функция совпадала с функцией факториал: Г(n+1) = n!, тогда:
следовательно C = 1. Окончательно, получаем формулу Эйлера для гамма-функции:
(2.3)
Эта функция очень часто встречается в математических текстах. При работе со специальными функциями, пожалуй, даже чаще, чем восклицательный знак.
Проверить, что функция, определенная формулой (2.3), действительно удовлетворяет уравнению (2.1), можно, проинтегрировав интеграл в правой части этой формулы по частям:
В подынтегральной функции интеграла (2.3) при экспонента exp(-tz) при R(z) > 0 убывает гораздо быстрее, чем растет алгебраическая функция t(z-1). Особенность в нуле - интегрируемая, поэтому несобственный интеграл в (2.3) сходится абсолютно и равномерно при R (z) > 0. Более того, последовательным дифференцированием по параметру z легко убедиться, что Г(z) - голоморфная функция при R (z) > 0. Однако, непригодность интегрального представления (2.3) при R (z) 0 не означает, что там не определена сама гамма-функция - решение уравнения (2.1).
Рассмотрим поведение Г(z) в окрестности нуля. Для этого представим:
где - голоморфная функция в окрестности z = 0. Из формулы (2.1) следует:
Тогда
то есть Г(z) имеет полюс первого порядка при z = 0.
Также легко получить:
то есть в окрестности точки функция Г(z) также имеет полюс первого порядка.
Таким же образом можно получить формулу:
(2.4)
Из этой формулы следует, что точки z = 0,-1,-2,... - простые полюсы гамма-функции и других полюсов на вещественной оси эта функция не имеет. Нетрудно вычислить вычет в точке z = -n, n = 0,1,2,...:
Выясним, имеет ли гамма-функция нули. Для этого рассмотрим функцию
Полюсы этой функции и есть нули функции Г(z).
Разностное уравнение для I(z) легко получить, воспользовавшись выражением для Г(z):
Выражение для решения этого уравнения в виде интеграла можно получить так же, как было получено интегральное выражение для гамма-функции - через преобразование Лапласа. Ниже приведены вычисления.ни такие же, как и в п.1).ии ?теграла будут точки ````````````````````````````````````````````````````````````````````````````
или
После разделения переменных получим:
Проинтегрировав получаем:
или
Переход к прообразу Лапласа дает:
В полученном интеграле сделаем замену переменной интегрирования:
тогда
Здесь важно заметить, что подынтегральная функция при нецелых значениях z имеет точку ветвления t = 0. На комплексной плоскости переменной t проведем разрез по отрицательной вещественной полуоси. Интеграл по этой полуоси представим как сумму интеграла по верхнему берегу этого разреза от до 0 и интеграла от 0 до по нижнему берегу разреза. Чтобы интеграл не проходил через точку ветвления, устроим вокруг нее петлю.
Рис1: Петля в интегральном представлении Ганкеля.
В результате получим:
Чтобы выяснить значение постоянной, вспомним, что I(1) = 1, с другой стороны:
Интегральное представление
(2.5)
называется представлением Ганкеля по петле.
Легко видеть, что функция 1/Г(z) не имеет полюсов в комплексной плоскости, следовательно, гамма-функция не имеет нулей.
С помощью этого интегрального представления можно получить формулу для произведения гамма-функций. Для этого в интеграле сделаем замену переменной , тогда:
то есть
Ниже понадобится формула, в которой произведение двух гамма-функций представляется через одну гамма-функцию. Выведем эту формулу, используя интегральное представление гамма-функций.
Повторный интеграл представим как двойной несобственный интеграл. Это можно сделать, воспользовавшись теоремой Фубини. В результате получим:
Несобственный интеграл равномерно сходится. Его можно рассматривать, например, как интеграл по треугольнику, ограниченному осями координат и прямой x+y = R при R. В двойном интеграле сделаем замену переменных:
Якобиан этой замены
Пределы интегрирования: u меняется от 0 до ?, v при этом меняется от 0 до 1. В результате получим:
Перепишем опять этот интеграл как повторный, в результате получим:
где Rp > 0, Rv > 0.
Гамма функции являются удобным средством для вычисления некоторых интегралов в частности многих из тех интегралов, которые не представимы в элементарных функциях.
Благодаря этому они широко применяются в математике и ее приложениях, в механике, термодинамике и в других отраслях современной науки.
Лебедев И.И.,М.,Гостехтериоиздат,1953
2. Математический анализ часть 2:
Ильин О.А., Садовничий В.А., Сендов Бл.Х.,М.,”Московский университет”,1987
3. Сборник задач по математическому анализу:
Демидович Б.П.,М.,Наука,1966
4. Интегралы и ряды специальные функции:
Прудников А.П., Брычков Ю.А.,М.,Наука,1983
5. Специальные функции:
Кузнецов , М.,”Высшая школа”,1965
6.Асимптотика и специальные функции
Ф.Олвер, М.,Наука,1990.
7.Зоопарк чудовищ или знакомство со спецмальными функциями
О.М.Киселёв,
ПРИЛОЖЕНИЯ
Приложение 1 - График гамма-функции действительного переменного
Приложение 2 - График Гамма-функции
Таблица - таблица значений гамма-функции при некоторых значениях аргумента.
Приложение 3 - листинг программы, рисующий таблицу значений гамма-функции при некоторых значениях аргумента.
Приложение 4 - листинг программы, рисующей график гамма-функции
СОДЕРЖАНИЕ
Реферат ...................................3
Введение ...................................4
Теоретическая часть…………………………………………………….5
Бета функция Эйлера…………………………………………….5
Гамма функция. ...................................8
2.1. Определение………………………………………………...8
2.2. Интегральное представление………………………………8
2.3. Область определения и полюсы…………………………..10
2.4. Представление Ганкеля через интеграл по петле………..10
2.5. Предельная форма Эйлера………………………………...12
2.6. Формула для произведения………………………………..13
Производная гамма функции ..................................15
Вычисление интегралов. Формула Стирлинга...........................18
Примеры вычислений интегралов ..................................23
Практическая часть…………………………………………………….24
Заключение ..................................25
Список литературы……………………………………………..............26
Приложения……………………………………………………………..27
ПРИЛОЖЕНИЕ 1
График гамма-функции действительного переменного
ПРИЛОЖЕНИЕ 2
График Гамма-функции
ТАБЛИЦА
х |
g(x) |
|
1.450 1.452 1.454 1.458 1.460 1.462 1.464 1.466 1.468 1.470 1.472 1.474 1.476 1.478 1.480 |
0.8856616058 0.8856432994 0.8856284520 0.8856170571 0.8856091082 0.8856045988 0.8856035228 0.8856058736 0.8856116452 0.8856208314 0.8856334260 0.8856494230 0.8856688165 0.8856916004 0.8857177690 |
ПРИЛОЖЕНИЕ 3
#include<stdio.h>
#include<stdlib.h>
#include<iostream.h>
#include<math.h>
#include<conio.h>
#define CN 8
static double cof[CN]={
2.5066282746310005,
1.0000000000190015,
76.18009172947146,
-86.50532032941677,
24.01409824083091,
-1.231739572450155,
0.1208650973866179e-2,
-0.5395239384953e-5,
};
double GammLn(double x) {
double lg,lg1;
lg1=log(cof[0]*(cof[1]+cof[2]/(x+1)+cof[3]/(x+2)+cof[4]/(x+3)+cof[5]/(x+4)+cof[6]/(x+5)+cof[7]/(x+6))/x);
lg=(x+0.5)*log(x+5.5)-(x+5.5)+lg1;
return lg;
}
double Gamma(double x) {
return(exp(GammLn(x)));
}
void main()
{
double x[8],g[8];
int i,j;
clrscr();
cout<<"vvedite x[1]";
cin>>x[1];
printf("nttt_________________________________________");
printf("nttt| x |Gamma(x) |");
printf("nttt_________________________________________");
for(i=1;i<=8;i++)
{
x[i+1]=x[i]+0.5;
g[i]=Gamma(x[i]);
printf("nttt| %f | %f |",x[i],g[i]);
}
printf("nttt_________________________________________");
printf("n Dlia vuhoda iz programmu najmite lybyiy klavishy");
getch();
}
ПРИЛОЖЕНИЕ 4
#include<stdio.h>
#include<graphics.h>
#include<math.h>
#include<conio.h>
Double gam(double x, double eps)
{
Int I, j, n, nb;
Double dze[5]={1.6449340668422643647,
1.20205690315959428540,
1.08232323371113819152,
1.03692775514336992633,
1.01734306198444913971};
Double a=x, y, fc=1.0, s, s1, b;
If(x<=0)
{
Printf (“вы ввели неправильные данные, попробуйте сноваn”); return -1.0;
}
If(x<i)
{
A=x+1.0;
Fc=1.0/x;
}
While (a>=2)
{
A=a-1.0;
Fc=fc*a;
}
A=a-1.0;
If(a==0) return fc;
B=a*a;
S=0;
For (i=0;i<5;i++)
{
S=s+b*dze[i]/(i+2.0);
B=-b*a;
}
Nb=exp((i.0/6.0)*(7.0*log(a)-log(42/0)-log(eps)))+I;
For (n=1;n<=nb;n++)
{
B=a/n;
Si=0;
For(j=0; j<5; j++)
{
Si=si+b/(j+1.0);
B=-b*a/n;
}
S=s+si-log(1.0+a/n);
}
Y=exp(-ce*a+s);
Return y*fc;
}
Main()
}
Double dx,dy, xfrom=0,xto=4, yto=5, h, maxy, miny;
Int n=100, I, gdriver=DETECT, gmode, X0, YN0, X, Y, Y0,pr=0;
Initgraph(&gdriver,&gmode, “ ”);
X0=30;
YN0=getmaxy()-20;
Line(30, getmaxy ()-10,30,30);
Line(20, getmaxy ()-30, getmaxx ()-20, getmaxy ()-30);
X=170;
Y=450;
Do{
Moveto(X,Y);
DO{
Y=Y-1;
Lineto(X,Y);
Y=Y-10;
Moveto(X,Y);
}while (Y>30);
X=X+150;
Y=450;
}while (X<700);
X=30;
Y=366;
Do{
Moveto(X,Y);
Do{
X=X+1;
Lineto(X,Y);
X=X+10;
Moveto(X,Y);
}while (X<=620);
Y=Y-84;
X=30;
}while (y>=30);
X=30+150.0*0,1845;
Moveto(X,30);
For9i=1;i<n,i++)
{
Dx=(4.0*i)/n;
Dy=gam(dx,1e-3);
X=30+(600/0*i)/n;
Y=450-84*dy;
If(Y<30) continue;
Lineto (X,Y);
}
X=30+150.0*308523;
Lineto(X,30);
Line (30,30,30,10);
Line(620,450,640,450);
Line(30,10,25,15);
Line(30,10,25,15);
Line(640,450,635,445);
Line(640,450,635,455);
Line(170,445,170,455);
Line(320,445,320,455);
Line(470,445,470,455);
Line(620,445,620,455);
Line(25,366,35,366);
Line(25,282,35,282);
Line(25,114,35,114);
Line(25,30,35,30);
Outtexty(20,465,"0");
Outtexty(165,465, "1";
Outtexty(315,465, "2";
Outtexty(465,465, "3";
Outtexty(615,465, "4";
Outtexty(630,465, "x";
Outtexty(15,364, "1";
Outtexty(15,280, "2";
Outtexty(15,196, "3";
Outtexty(15,112, "4";
Outtexty(15,30, "5";
Outtexty(15,10, "y";
Getch()
}
! | Как писать курсовую работу Практические советы по написанию семестровых и курсовых работ. |
! | Схема написания курсовой Из каких частей состоит курсовик. С чего начать и как правильно закончить работу. |
! | Формулировка проблемы Описываем цель курсовой, что анализируем, разрабатываем, какого результата хотим добиться. |
! | План курсовой работы Нумерованным списком описывается порядок и структура будующей работы. |
! | Введение курсовой работы Что пишется в введении, какой объем вводной части? |
! | Задачи курсовой работы Правильно начинать любую работу с постановки задач, описания того что необходимо сделать. |
! | Источники информации Какими источниками следует пользоваться. Почему не стоит доверять бесплатно скачанным работа. |
! | Заключение курсовой работы Подведение итогов проведенных мероприятий, достигнута ли цель, решена ли проблема. |
! | Оригинальность текстов Каким образом можно повысить оригинальность текстов чтобы пройти проверку антиплагиатом. |
! | Оформление курсовика Требования и методические рекомендации по оформлению работы по ГОСТ. |
→ | Разновидности курсовых Какие курсовые бывают в чем их особенности и принципиальные отличия. |
→ | Отличие курсового проекта от работы Чем принципиально отличается по структуре и подходу разработка курсового проекта. |
→ | Типичные недостатки На что чаще всего обращают внимание преподаватели и какие ошибки допускают студенты. |
→ | Защита курсовой работы Как подготовиться к защите курсовой работы и как ее провести. |
→ | Доклад на защиту Как подготовить доклад чтобы он был не скучным, интересным и информативным для преподавателя. |
→ | Оценка курсовой работы Каким образом преподаватели оценивают качества подготовленного курсовика. |
Курсовая работа | Деятельность Движения Харе Кришна в свете трансформационных процессов современности |
Курсовая работа | Маркетинговая деятельность предприятия (на примере ООО СФ "Контакт Плюс") |
Курсовая работа | Политический маркетинг |
Курсовая работа | Создание и внедрение мембранного аппарата |
Курсовая работа | Социальные услуги |
Курсовая работа | Педагогические условия нравственного воспитания младших школьников |
Курсовая работа | Деятельность социального педагога по решению проблемы злоупотребления алкоголем среди школьников |
Курсовая работа | Карибский кризис |
Курсовая работа | Сахарный диабет |
Курсовая работа | Разработка оптимизированных систем аспирации процессов переработки и дробления руд в цехе среднего и мелкого дробления Стойленского ГОКа |